code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def __a ( A__ : list[int] ): # This function is recursive SCREAMING_SNAKE_CASE = len(A__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE = array[0] SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE = longest_subsequence(A__ ) if len(A__ ) > len(A__ ): SCREAMING_SNAKE_CASE = temp_array else: i += 1 SCREAMING_SNAKE_CASE = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE = [pivot, *longest_subsequence(A__ )] if len(A__ ) > len(A__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __a ( A__ : Dict , A__ : int=10 ): SCREAMING_SNAKE_CASE = [] for _ in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __a ( A__ : Union[str, Any] , A__ : Any=10 ): SCREAMING_SNAKE_CASE = [] for step in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(A__ , "schedule.bin" ) torch.save(scheduler.state_dict() , A__ ) SCREAMING_SNAKE_CASE = torch.load(A__ ) scheduler.load_state_dict(A__ ) return lrs @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Any ): self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): SCREAMING_SNAKE_CASE = criterion(__lowerCamelCase , __lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCamelCase , weight_decay=0.0 , relative_step=__lowerCamelCase , scale_parameter=__lowerCamelCase , warmup_init=__lowerCamelCase , ) for _ in range(1000 ): SCREAMING_SNAKE_CASE = criterion(__lowerCamelCase , __lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None lowerCamelCase__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCamelCase__ = 1_0 def _snake_case ( self : str , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None ): self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase , msg=__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = scheduler_func(self.optimizer , **__lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE = unwrap_schedule(__lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCamelCase , __lowerCamelCase , tol=1e-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE = scheduler_func(self.optimizer , **__lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCamelCase ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE = unwrap_and_save_reload_schedule(__lowerCamelCase , self.num_steps ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase , msg=f"failed for {scheduler_func} in save and reload" ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = fn def __call__( self : Dict , *__lowerCamelCase : int , **__lowerCamelCase : str ): return self.fn(*__lowerCamelCase , **__lowerCamelCase ) @classmethod def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = list(map(self , scheduler.lr_lambdas ) )
698
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __A : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __A : int = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __a ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : List[str]=8 ): SCREAMING_SNAKE_CASE = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : MultilingualCLIP , __lowerCamelCase : XLMRobertaTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , __lowerCamelCase : VQModel , ): super().__init__() self.register_modules( text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , movq=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ): if latents is None: SCREAMING_SNAKE_CASE = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE = latents.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any]=None , ): SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE = self.tokenizer( __lowerCamelCase , padding="max_length" , truncation=__lowerCamelCase , max_length=77 , return_attention_mask=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = text_inputs.input_ids SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) SCREAMING_SNAKE_CASE = text_input_ids.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = text_inputs.attention_mask.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.text_encoder( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) SCREAMING_SNAKE_CASE = prompt_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) SCREAMING_SNAKE_CASE = text_encoder_hidden_states.repeat_interleave(__lowerCamelCase , dim=0 ) SCREAMING_SNAKE_CASE = text_mask.repeat_interleave(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: SCREAMING_SNAKE_CASE = [""] * batch_size elif type(__lowerCamelCase ) is not type(__lowerCamelCase ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCamelCase )} !=" f" {type(__lowerCamelCase )}." ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(__lowerCamelCase ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(__lowerCamelCase )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = self.tokenizer( __lowerCamelCase , padding="max_length" , max_length=77 , truncation=__lowerCamelCase , return_attention_mask=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = uncond_input.input_ids.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = uncond_input.attention_mask.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.text_encoder( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE = negative_prompt_embeds.repeat(1 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __lowerCamelCase ) SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.repeat(1 , __lowerCamelCase , 1 ) SCREAMING_SNAKE_CASE = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , __lowerCamelCase , -1 ) SCREAMING_SNAKE_CASE = uncond_text_mask.repeat_interleave(__lowerCamelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE = torch.cat([negative_prompt_embeds, prompt_embeds] ) SCREAMING_SNAKE_CASE = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) SCREAMING_SNAKE_CASE = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _snake_case ( self : List[Any] , __lowerCamelCase : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(__lowerCamelCase , __lowerCamelCase , prev_module_hook=__lowerCamelCase ) if self.safety_checker is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cpu_offload_with_hook(self.safety_checker , __lowerCamelCase , prev_module_hook=__lowerCamelCase ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : Union[str, Any] ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCamelCase ) def __call__( self : Union[str, Any] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 100 , __lowerCamelCase : float = 4.0 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = 1 elif isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}" ) SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE = guidance_scale > 1.0 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._encode_prompt( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.cat(__lowerCamelCase , dim=0 ) if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.cat(__lowerCamelCase , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) SCREAMING_SNAKE_CASE = negative_image_embeds.repeat_interleave(__lowerCamelCase , dim=0 ) SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=__lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase , device=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps SCREAMING_SNAKE_CASE = self.unet.config.in_channels SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_new_h_w(__lowerCamelCase , __lowerCamelCase , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} SCREAMING_SNAKE_CASE = self.unet( sample=__lowerCamelCase , timestep=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , added_cond_kwargs=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase , ).prev_sample # post-processing SCREAMING_SNAKE_CASE = self.movq.decode(__lowerCamelCase , force_not_quantize=__lowerCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
from __future__ import annotations import requests __A : Optional[int] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __a ( A__ : str , A__ : int = 1 , A__ : str = "new" , A__ : list | None = None ): SCREAMING_SNAKE_CASE = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(A__ ) - valid_terms ) ): SCREAMING_SNAKE_CASE = F"Invalid search term: {invalid_search_terms}" raise ValueError(A__ ) SCREAMING_SNAKE_CASE = requests.get( F"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError SCREAMING_SNAKE_CASE = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(A__ )} SCREAMING_SNAKE_CASE = {} for id_ in range(A__ ): SCREAMING_SNAKE_CASE = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE = tokenizer("Hello there" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE = tokenizer("Hi I am" , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ).loss SCREAMING_SNAKE_CASE = -tf.math.reduce_mean(__lowerCamelCase ).numpy() SCREAMING_SNAKE_CASE = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
698
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __a ( A__ : Optional[int] , A__ : Optional[Any] , A__ : int ): # Construct model if gpta_config_file == "": SCREAMING_SNAKE_CASE = GPTaConfig() else: SCREAMING_SNAKE_CASE = GPTaConfig.from_json_file(A__ ) SCREAMING_SNAKE_CASE = GPTaModel(A__ ) # Load weights from numpy load_tf_weights_in_gpta(A__ , A__ , A__ ) # Save pytorch-model SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + "/" + WEIGHTS_NAME SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , A__ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(A__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __A : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
698
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __A : str = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' __A : Dict = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' __A : Dict = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/krishnap25/mauve" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/krishnap25/mauve"] , reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ] , ) def _snake_case ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]="auto" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : Any=0.9 , __lowerCamelCase : int=5 , __lowerCamelCase : List[str]=500 , __lowerCamelCase : Optional[int]="gpt2-large" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : List[str]=25 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : int=True , __lowerCamelCase : Dict=25 , ): SCREAMING_SNAKE_CASE = compute_mauve( p_text=__lowerCamelCase , q_text=__lowerCamelCase , p_features=__lowerCamelCase , q_features=__lowerCamelCase , p_tokens=__lowerCamelCase , q_tokens=__lowerCamelCase , num_buckets=__lowerCamelCase , pca_max_data=__lowerCamelCase , kmeans_explained_var=__lowerCamelCase , kmeans_num_redo=__lowerCamelCase , kmeans_max_iter=__lowerCamelCase , featurize_model_name=__lowerCamelCase , device_id=__lowerCamelCase , max_text_length=__lowerCamelCase , divergence_curve_discretization_size=__lowerCamelCase , mauve_scaling_factor=__lowerCamelCase , verbose=__lowerCamelCase , seed=__lowerCamelCase , ) return out
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __A : str = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , **__lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = padding_value SCREAMING_SNAKE_CASE = kwargs.pop("padding_side" , "right" ) SCREAMING_SNAKE_CASE = kwargs.pop("return_attention_mask" , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): SCREAMING_SNAKE_CASE = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCamelCase ) == 0: if return_attention_mask: SCREAMING_SNAKE_CASE = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch SCREAMING_SNAKE_CASE = required_input[0] if isinstance(__lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. SCREAMING_SNAKE_CASE = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCamelCase ): SCREAMING_SNAKE_CASE = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "tf" elif is_torch_tensor(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "pt" elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ): SCREAMING_SNAKE_CASE = "np" else: raise ValueError( f"type of {first_element} unknown: {type(__lowerCamelCase )}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): SCREAMING_SNAKE_CASE = to_numpy(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = [to_numpy(__lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy SCREAMING_SNAKE_CASE = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase ) SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) SCREAMING_SNAKE_CASE = [] for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE = {k: v[i] for k, v in processed_features.items()} # truncation SCREAMING_SNAKE_CASE = self._truncate( __lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) truncated_inputs.append(__lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length SCREAMING_SNAKE_CASE = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) SCREAMING_SNAKE_CASE = PaddingStrategy.MAX_LENGTH SCREAMING_SNAKE_CASE = {} for i in range(__lowerCamelCase ): # padding SCREAMING_SNAKE_CASE = self._pad( truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: SCREAMING_SNAKE_CASE = [] if value.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE = value.astype(np.floataa ) batch_outputs[key].append(__lowerCamelCase ) return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: SCREAMING_SNAKE_CASE = np.ones(len(__lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = max_length - len(__lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (0, difference) ) SCREAMING_SNAKE_CASE = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) SCREAMING_SNAKE_CASE = np.pad( __lowerCamelCase , __lowerCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: SCREAMING_SNAKE_CASE = np.pad( processed_features["attention_mask"] , (difference, 0) ) SCREAMING_SNAKE_CASE = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) SCREAMING_SNAKE_CASE = np.pad( __lowerCamelCase , __lowerCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): SCREAMING_SNAKE_CASE = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) > max_length if needs_to_be_truncated: SCREAMING_SNAKE_CASE = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: SCREAMING_SNAKE_CASE = processed_features["attention_mask"][:max_length] return processed_features def _snake_case ( self : int , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Any=None ): # Get padding strategy if padding is not False: if padding is True: SCREAMING_SNAKE_CASE = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = PaddingStrategy(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = padding else: SCREAMING_SNAKE_CASE = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
698
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : List[str] , __lowerCamelCase : int = None , __lowerCamelCase : int = None ): super().__init__() SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = vocab SCREAMING_SNAKE_CASE = merges SCREAMING_SNAKE_CASE = BytePairTokenizer(__lowerCamelCase , __lowerCamelCase , sequence_length=__lowerCamelCase ) @classmethod def _snake_case ( cls : int , __lowerCamelCase : GPTaTokenizer , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = [" ".join(__lowerCamelCase ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE = tokenizer.get_vocab() return cls(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , __lowerCamelCase : Union[str, os.PathLike] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) return cls.from_tokenizer(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) @classmethod def _snake_case ( cls : int , __lowerCamelCase : str ): return cls(**__lowerCamelCase ) def _snake_case ( self : List[Any] ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _snake_case ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int = None ): SCREAMING_SNAKE_CASE = self.tf_tokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tf.ones_like(__lowerCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pad_model_inputs( __lowerCamelCase , max_seq_length=__lowerCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( A__ : Tuple , A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : str , A__ : Any ): # Load configuration defined in the metadata file with open(A__ ) as metadata_file: SCREAMING_SNAKE_CASE = json.load(A__ ) SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=A__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" )["module"] # Load the entity vocab file SCREAMING_SNAKE_CASE = load_original_entity_vocab(A__ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE = AddedToken("<ent>" , lstrip=A__ , rstrip=A__ ) SCREAMING_SNAKE_CASE = AddedToken("<ent2>" , lstrip=A__ , rstrip=A__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(A__ ) with open(os.path.join(A__ , "tokenizer_config.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE = json.load(A__ ) SCREAMING_SNAKE_CASE = "MLukeTokenizer" with open(os.path.join(A__ , "tokenizer_config.json" ) , "w" ) as f: json.dump(A__ , A__ ) with open(os.path.join(A__ , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(A__ , A__ ) SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(A__ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(["@"] )[0] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(["#"] )[0] SCREAMING_SNAKE_CASE = state_dict["embeddings.word_embeddings.weight"] SCREAMING_SNAKE_CASE = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE = state_dict[bias_name] SCREAMING_SNAKE_CASE = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE = F"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE = state_dict["entity_embeddings.entity_embeddings.weight"] SCREAMING_SNAKE_CASE = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE = state_dict["entity_predictions.bias"] SCREAMING_SNAKE_CASE = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) SCREAMING_SNAKE_CASE = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE = LukeForMaskedLM(config=A__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): SCREAMING_SNAKE_CASE = state_dict[key] else: SCREAMING_SNAKE_CASE = state_dict[key] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(A__ , strict=A__ ) if set(A__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(A__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(A__ , task="entity_classification" ) SCREAMING_SNAKE_CASE = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." SCREAMING_SNAKE_CASE = (0, 9) SCREAMING_SNAKE_CASE = tokenizer(A__ , entity_spans=[span] , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**A__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 33, 768) ) SCREAMING_SNAKE_CASE = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE = MLukeTokenizer.from_pretrained(A__ ) SCREAMING_SNAKE_CASE = "Tokyo is the capital of <mask>." SCREAMING_SNAKE_CASE = (24, 30) SCREAMING_SNAKE_CASE = tokenizer(A__ , entity_spans=[span] , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**A__ ) SCREAMING_SNAKE_CASE = encoding["input_ids"][0].tolist() SCREAMING_SNAKE_CASE = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) SCREAMING_SNAKE_CASE = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A__ ) SCREAMING_SNAKE_CASE = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(A__ ) ) model.save_pretrained(A__ ) def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = ["[MASK]", "[PAD]", "[UNK]"] SCREAMING_SNAKE_CASE = [json.loads(A__ ) for line in open(A__ )] SCREAMING_SNAKE_CASE = {} for entry in data: SCREAMING_SNAKE_CASE = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE = entity_id break SCREAMING_SNAKE_CASE = F"{language}:{entity_name}" SCREAMING_SNAKE_CASE = entity_id return new_mapping if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
698
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionSAGPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = False def _snake_case ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _snake_case ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def _snake_case ( self : Union[str, Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE = sag_pipe.to(__lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE = sag_pipe.to(__lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE = sag_pipe.to(__lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , width=768 , height=512 , generator=__lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) SCREAMING_SNAKE_CASE = output.images assert image.shape == (1, 512, 768, 3)
698
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
1
import numpy as np import qiskit def __a ( A__ : int = 8 , A__ : int | None = None ): SCREAMING_SNAKE_CASE = np.random.default_rng(seed=A__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. SCREAMING_SNAKE_CASE = 6 * key_len # Measurement basis for Alice's qubits. SCREAMING_SNAKE_CASE = rng.integers(2 , size=A__ ) # The set of states Alice will prepare. SCREAMING_SNAKE_CASE = rng.integers(2 , size=A__ ) # Measurement basis for Bob's qubits. SCREAMING_SNAKE_CASE = rng.integers(2 , size=A__ ) # Quantum Circuit to simulate BB84 SCREAMING_SNAKE_CASE = qiskit.QuantumCircuit(A__ , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A__ ): if alice_state[index] == 1: bbaa_circ.x(A__ ) if alice_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A__ ): if bob_basis[index] == 1: bbaa_circ.h(A__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. SCREAMING_SNAKE_CASE = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. SCREAMING_SNAKE_CASE = qiskit.execute(A__ , A__ , shots=1 , seed_simulator=A__ ) # Returns the result of measurement. SCREAMING_SNAKE_CASE = job.result().get_counts(A__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. SCREAMING_SNAKE_CASE = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A__ , A__ , A__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. SCREAMING_SNAKE_CASE = gen_key[:key_len] if len(A__ ) >= key_len else gen_key.ljust(A__ , "0" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
from graphs.minimum_spanning_tree_kruskal import kruskal def __a ( ): SCREAMING_SNAKE_CASE = 9 SCREAMING_SNAKE_CASE = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] SCREAMING_SNAKE_CASE = kruskal(A__ , A__ ) SCREAMING_SNAKE_CASE = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(A__ ) == sorted(A__ )
698
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( A__ : str , A__ : List[str] ): assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A__ : Tuple , A__ : List[Any] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : int ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def __a ( A__ : int , A__ : str , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_3": "float64", "col_1": "string", "col_2": "int64"} SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __a ( A__ : str , A__ : str ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} SCREAMING_SNAKE_CASE = {"col_2": "int64", "col_3": "float64", "col_1": "string"} SCREAMING_SNAKE_CASE = features.copy() SCREAMING_SNAKE_CASE = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() assert isinstance(A__ , A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A__ : Any , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , cache_dir=A__ , split=A__ ).read() _check_json_dataset(A__ , A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __a ( A__ : Tuple , A__ : Optional[Any] , A__ : List[Any] ): if issubclass(A__ , A__ ): SCREAMING_SNAKE_CASE = jsonl_path elif issubclass(A__ , A__ ): SCREAMING_SNAKE_CASE = [jsonl_path] SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_dataset(A__ , A__ ) def __a ( A__ : str , A__ : Dict , A__ : Any=("train",) ): assert isinstance(A__ , A__ ) for split in splits: SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A__ : List[Any] , A__ : Dict , A__ : Dict ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE = JsonDatasetReader({"train": jsonl_path} , cache_dir=A__ , keep_in_memory=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __a ( A__ : int , A__ : Optional[Any] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE = JsonDatasetReader({"train": jsonl_path} , features=A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A__ : Dict , A__ : Optional[Any] , A__ : Dict ): if split: SCREAMING_SNAKE_CASE = {split: jsonl_path} else: SCREAMING_SNAKE_CASE = "train" SCREAMING_SNAKE_CASE = {"train": jsonl_path, "test": jsonl_path} SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE = JsonDatasetReader(A__ , cache_dir=A__ ).read() _check_json_datasetdict(A__ , A__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __a ( A__ : Dict ): return json.load(A__ ) def __a ( A__ : Optional[int] ): return [json.loads(A__ ) for line in buffer] class _SCREAMING_SNAKE_CASE : '''simple docstring''' @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : str ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE = load_json_function(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(exported_content[0] , __lowerCamelCase ) assert len(__lowerCamelCase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def _snake_case ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , lines=__lowerCamelCase , orient=__lowerCamelCase , num_proc=2 ).write() buffer.seek(0 ) SCREAMING_SNAKE_CASE = load_json(__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__lowerCamelCase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__lowerCamelCase ) == 10 def _snake_case ( self : Any , __lowerCamelCase : List[Any] ): with pytest.raises(__lowerCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp("data" ) / f"test.json.{extension}" SCREAMING_SNAKE_CASE = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(__lowerCamelCase , __lowerCamelCase , compression=__lowerCamelCase ).write() with fsspec.open(__lowerCamelCase , "rb" , compression="infer" ) as f: SCREAMING_SNAKE_CASE = f.read() with fsspec.open(__lowerCamelCase , "rb" , compression="infer" ) as f: SCREAMING_SNAKE_CASE = f.read() assert exported_content == original_content
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : str = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __A : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : int ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} if prompt is not None: SCREAMING_SNAKE_CASE = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) SCREAMING_SNAKE_CASE = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , __lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCamelCase : Any ): return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=None ): SCREAMING_SNAKE_CASE = load_image(__lowerCamelCase ) if prompt is not None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f"Received an invalid text input, got - {type(__lowerCamelCase )} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation." ) SCREAMING_SNAKE_CASE = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.tokenizer(text=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids SCREAMING_SNAKE_CASE = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE = self.image_processor(images=__lowerCamelCase , header_text=__lowerCamelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework ) SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , return_tensors=self.framework ) model_inputs.update(__lowerCamelCase ) else: raise ValueError(f"Model type {model_type} does not support conditional text generation" ) else: SCREAMING_SNAKE_CASE = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE = None return model_inputs def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , __lowerCamelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): SCREAMING_SNAKE_CASE = None if generate_kwargs is None: SCREAMING_SNAKE_CASE = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE = self.model.generate(__lowerCamelCase , **__lowerCamelCase , **__lowerCamelCase ) return model_outputs def _snake_case ( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE = { "generated_text": self.tokenizer.decode( __lowerCamelCase , skip_special_tokens=__lowerCamelCase , ) } records.append(__lowerCamelCase ) return records
698
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __a ( A__ : Any , A__ : Union[str, Any] , A__ : List[Any] , A__ : Optional[int]=1024 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] SCREAMING_SNAKE_CASE = list(zip(A__ , A__ ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sorted_examples[0] def is_too_big(A__ : int ): return tok(A__ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE = new_src + " " + src SCREAMING_SNAKE_CASE = new_tgt + " " + tgt if is_too_big(A__ ) or is_too_big(A__ ): # cant fit, finalize example finished_src.append(A__ ) finished_tgt.append(A__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A__ ) finished_tgt.append(A__ ) return finished_src, finished_tgt def __a ( A__ : Union[str, Any] , A__ : Path , A__ : Tuple , A__ : str ): SCREAMING_SNAKE_CASE = Path(A__ ) save_path.mkdir(exist_ok=A__ ) for split in ["train"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F"{split}.source", data_dir / F"{split}.target" SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(A__ ).open().readlines()] SCREAMING_SNAKE_CASE = [x.rstrip() for x in Path(A__ ).open().readlines()] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pack_examples(A__ , A__ , A__ , A__ ) print(F"packed {split} split from {len(A__ )} examples -> {len(A__ )}." ) Path(save_path / F"{split}.source" ).open("w" ).write("\n".join(A__ ) ) Path(save_path / F"{split}.target" ).open("w" ).write("\n".join(A__ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data_dir / F"{split}.source", data_dir / F"{split}.target" shutil.copyfile(A__ , save_path / F"{split}.source" ) shutil.copyfile(A__ , save_path / F"{split}.target" ) def __a ( ): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=A__ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=A__ , default=128 ) parser.add_argument("--data_dir" , type=A__ ) parser.add_argument("--save_path" , type=A__ ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
698
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
1
import math def __a ( A__ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( A__ : float = 0.1 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(A__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
698
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
from __future__ import annotations import numpy as np def __a ( A__ : np.ndarray ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = np.shape(A__ ) if rows != columns: SCREAMING_SNAKE_CASE = ( "'table' has to be of square shaped array but got a " F"{rows}x{columns} array:\n{table}" ) raise ValueError(A__ ) SCREAMING_SNAKE_CASE = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE = np.zeros((rows, columns) ) for i in range(A__ ): for j in range(A__ ): SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(A__ ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE = 1 for j in range(A__ , A__ ): SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(A__ ) ) SCREAMING_SNAKE_CASE = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1
def __a ( A__ : int , A__ : int ): return int((input_a, input_a).count(0 ) != 0 ) def __a ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( A__ : Dict , A__ : Tuple ): assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A__ : Any , A__ : Dict , A__ : Dict ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE = TextDatasetReader(A__ , cache_dir=A__ , keep_in_memory=A__ ).read() _check_text_dataset(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : List[str] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"text": "string"} SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE = TextDatasetReader(A__ , features=A__ , cache_dir=A__ ).read() _check_text_dataset(A__ , A__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A__ : List[Any] , A__ : Any , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"text": "string"} SCREAMING_SNAKE_CASE = TextDatasetReader(A__ , cache_dir=A__ , split=A__ ).read() _check_text_dataset(A__ , A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __a ( A__ : Any , A__ : List[Any] , A__ : Any ): if issubclass(A__ , A__ ): SCREAMING_SNAKE_CASE = text_path elif issubclass(A__ , A__ ): SCREAMING_SNAKE_CASE = [text_path] SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"text": "string"} SCREAMING_SNAKE_CASE = TextDatasetReader(A__ , cache_dir=A__ ).read() _check_text_dataset(A__ , A__ ) def __a ( A__ : str , A__ : Any , A__ : Optional[Any]=("train",) ): assert isinstance(A__ , A__ ) for split in splits: SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A__ : List[Any] , A__ : Union[str, Any] , A__ : List[Any] ): SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE = TextDatasetReader({"train": text_path} , cache_dir=A__ , keep_in_memory=A__ ).read() _check_text_datasetdict(A__ , A__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __a ( A__ : List[Any] , A__ : List[str] , A__ : Dict ): SCREAMING_SNAKE_CASE = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE = {"text": "string"} SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE = TextDatasetReader({"train": text_path} , features=A__ , cache_dir=A__ ).read() _check_text_datasetdict(A__ , A__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A__ : str , A__ : List[Any] , A__ : List[Any] ): if split: SCREAMING_SNAKE_CASE = {split: text_path} else: SCREAMING_SNAKE_CASE = "train" SCREAMING_SNAKE_CASE = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE = tmp_path / "cache" SCREAMING_SNAKE_CASE = {"text": "string"} SCREAMING_SNAKE_CASE = TextDatasetReader(A__ , cache_dir=A__ ).read() _check_text_datasetdict(A__ , A__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
698
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
1
import argparse import os import re __A : Optional[int] = 'src/transformers' # Pattern that looks at the indentation in a line. __A : Any = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. __A : Optional[int] = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : int = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. __A : Tuple = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : int = re.compile(r'\[([^\]]+)\]') def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def __a ( A__ : str , A__ : Dict="" , A__ : List[str]=None , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 SCREAMING_SNAKE_CASE = ["\n".join(lines[:index] )] else: SCREAMING_SNAKE_CASE = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). SCREAMING_SNAKE_CASE = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(A__ ) ) if index < len(A__ ) - 1: SCREAMING_SNAKE_CASE = [lines[index + 1]] index += 1 else: SCREAMING_SNAKE_CASE = [] else: blocks.append("\n".join(A__ ) ) SCREAMING_SNAKE_CASE = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append("\n".join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def __a ( A__ : Optional[Any] ): def _inner(A__ : Any ): return key(A__ ).lower().replace("_" , "" ) return _inner def __a ( A__ : str , A__ : Union[str, Any]=None ): # If no key is provided, we use a noop. def noop(A__ : Any ): return x if key is None: SCREAMING_SNAKE_CASE = noop # Constants are all uppercase, they go first. SCREAMING_SNAKE_CASE = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. SCREAMING_SNAKE_CASE = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. SCREAMING_SNAKE_CASE = [obj for obj in objects if not key(A__ )[0].isupper()] SCREAMING_SNAKE_CASE = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def __a ( A__ : int ): # This inner function sort imports between [ ]. def _replace(A__ : Tuple ): SCREAMING_SNAKE_CASE = match.groups()[0] if "," not in imports: return F"[{imports}]" SCREAMING_SNAKE_CASE = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" SCREAMING_SNAKE_CASE = import_statement.split("\n" ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. SCREAMING_SNAKE_CASE = 2 if lines[1].strip() == "[" else 1 SCREAMING_SNAKE_CASE = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] SCREAMING_SNAKE_CASE = sort_objects(A__ , key=lambda A__ : x[1] ) SCREAMING_SNAKE_CASE = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: SCREAMING_SNAKE_CASE = _re_bracket_content.sub(_replace , lines[1] ) else: SCREAMING_SNAKE_CASE = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE = keys[:-1] SCREAMING_SNAKE_CASE = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line SCREAMING_SNAKE_CASE = _re_bracket_content.sub(_replace , A__ ) return import_statement def __a ( A__ : Optional[Any] , A__ : str=True ): with open(A__ , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 SCREAMING_SNAKE_CASE = split_code_in_indented_blocks( A__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. SCREAMING_SNAKE_CASE = main_blocks[block_idx] SCREAMING_SNAKE_CASE = block.split("\n" ) # Get to the start of the imports. SCREAMING_SNAKE_CASE = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: SCREAMING_SNAKE_CASE = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. SCREAMING_SNAKE_CASE = "\n".join(block_lines[line_idx:-1] ) SCREAMING_SNAKE_CASE = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. SCREAMING_SNAKE_CASE = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend SCREAMING_SNAKE_CASE = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. SCREAMING_SNAKE_CASE = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. SCREAMING_SNAKE_CASE = [(i, key) for i, key in enumerate(A__ ) if key is not None] SCREAMING_SNAKE_CASE = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] for i in range(len(A__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: SCREAMING_SNAKE_CASE = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. SCREAMING_SNAKE_CASE = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , "w" , encoding="utf-8" ) as f: f.write("\n".join(A__ ) ) def __a ( A__ : Optional[Any]=True ): SCREAMING_SNAKE_CASE = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE = sort_imports(os.path.join(A__ , "__init__.py" ) , check_only=A__ ) if result: SCREAMING_SNAKE_CASE = [os.path.join(A__ , "__init__.py" )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __A : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("check_bouncy() accepts only integer arguments" ) SCREAMING_SNAKE_CASE = str(A__ ) SCREAMING_SNAKE_CASE = "".join(sorted(A__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __a ( A__ : float = 99 ): if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 while True: if check_bouncy(A__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(9_9)}')
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
import numpy as np class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE = (0, 0) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 def __eq__( self : List[str] , __lowerCamelCase : str ): return self.position == cell.position def _snake_case ( self : Optional[int] ): print(self.position ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=(5, 5) ): SCREAMING_SNAKE_CASE = np.zeros(__lowerCamelCase ) SCREAMING_SNAKE_CASE = world_size[0] SCREAMING_SNAKE_CASE = world_size[1] def _snake_case ( self : Optional[int] ): print(self.w ) def _snake_case ( self : int , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] SCREAMING_SNAKE_CASE = cell.position[0] SCREAMING_SNAKE_CASE = cell.position[1] SCREAMING_SNAKE_CASE = [] for n in neughbour_cord: SCREAMING_SNAKE_CASE = current_x + n[0] SCREAMING_SNAKE_CASE = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: SCREAMING_SNAKE_CASE = Cell() SCREAMING_SNAKE_CASE = (x, y) SCREAMING_SNAKE_CASE = cell neighbours.append(__lowerCamelCase ) return neighbours def __a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] _open.append(A__ ) while _open: SCREAMING_SNAKE_CASE = np.argmin([n.f for n in _open] ) SCREAMING_SNAKE_CASE = _open[min_f] _closed.append(_open.pop(A__ ) ) if current == goal: break for n in world.get_neigbours(A__ ): for c in _closed: if c == n: continue SCREAMING_SNAKE_CASE = current.g + 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = n.position SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = goal.position SCREAMING_SNAKE_CASE = (ya - ya) ** 2 + (xa - xa) ** 2 SCREAMING_SNAKE_CASE = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(A__ ) SCREAMING_SNAKE_CASE = [] while current.parent is not None: path.append(current.position ) SCREAMING_SNAKE_CASE = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A : int = Gridworld() # Start position and goal __A : List[Any] = Cell() __A : Optional[int] = (0, 0) __A : List[Any] = Cell() __A : Optional[Any] = (4, 4) print(f'path from {start.position} to {goal.position}') __A : Optional[int] = astar(world, start, goal) # Just for visual reasons. for i in s: __A : Optional[int] = 1 print(world.w)
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Any=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=99 , __lowerCamelCase : Optional[Any]=64 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Dict=37 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Any=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[int]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Optional[Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = MegatronBertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self : str , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = MegatronBertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = MegatronBertForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = MegatronBertForNextSentencePrediction(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = MegatronBertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , next_sentence_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = MegatronBertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MegatronBertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = MegatronBertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = MegatronBertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True # test_resize_embeddings = False lowerCamelCase__ = False def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCamelCase ) def __a ( A__ : int ): return torch.tensor( A__ , dtype=torch.long , device=A__ , ) __A : int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("Model is not available." ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE = os.path.join(os.environ["MYDIR"] , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MegatronBertModel.from_pretrained(__lowerCamelCase ) model.to(__lowerCamelCase ) model.half() SCREAMING_SNAKE_CASE = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE = output[0, ii, jj] SCREAMING_SNAKE_CASE = expected[3 * ii + jj] SCREAMING_SNAKE_CASE = "ii={} jj={} a={} b={}".format(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.assertTrue(math.isclose(__lowerCamelCase , __lowerCamelCase , rel_tol=__lowerCamelCase , abs_tol=__lowerCamelCase ) , msg=__lowerCamelCase )
698
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: SCREAMING_SNAKE_CASE = s_dict.pop(A__ ) elif "subsample" in key: SCREAMING_SNAKE_CASE = s_dict.pop(A__ ) def __a ( A__ : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : List[str] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) SCREAMING_SNAKE_CASE = mam_aaa["args"] SCREAMING_SNAKE_CASE = mam_aaa["model"] SCREAMING_SNAKE_CASE = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(A__ ) rename_keys(A__ ) SCREAMING_SNAKE_CASE = state_dict["decoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE = args.share_decoder_input_output_embed SCREAMING_SNAKE_CASE = [int(A__ ) for i in args.conv_kernel_sizes.split("," )] SCREAMING_SNAKE_CASE = SpeechaTextConfig( vocab_size=A__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(A__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=A__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=A__ , num_beams=5 , max_length=200 , use_cache=A__ , decoder_start_token_id=2 , early_stopping=A__ , ) SCREAMING_SNAKE_CASE = SpeechaTextForConditionalGeneration(A__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.model.load_state_dict(A__ , strict=A__ ) if len(A__ ) > 0 and not set(A__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F" but all the following weights are missing {missing}" ) if tie_embeds: SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE = lm_head_weights model.save_pretrained(A__ ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __A : Optional[int] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
698
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = f"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() )
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "markuplm" def __init__( self : str , __lowerCamelCase : Any=30522 , __lowerCamelCase : str=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Dict=256 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : Optional[Any]=216 , __lowerCamelCase : str=1001 , __lowerCamelCase : Any=32 , __lowerCamelCase : List[str]=50 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Dict , ): super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout # additional properties SCREAMING_SNAKE_CASE = max_depth SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE = tag_pad_id SCREAMING_SNAKE_CASE = subs_pad_id SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
698
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
1
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) model_cpu_arr.append(__lowerCamelCase ) self.add(*__lowerCamelCase , *__lowerCamelCase , *__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) ckpt_arr.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCamelCase ) self.add(*__lowerCamelCase , *__lowerCamelCase ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Disk" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__lowerCamelCase , run_time=3 ) , Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(FadeOut(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase , run_time=3 ) ) self.play( FadeOut(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , *__lowerCamelCase ) , ) self.wait()
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = np.random.default_rng(__lowerCamelCase ) SCREAMING_SNAKE_CASE = length SCREAMING_SNAKE_CASE = rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Tuple ): return self.length def __getitem__( self : List[Any] , __lowerCamelCase : Optional[Any] ): return {"x": self.x[i], "y": self.y[i]} class _SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Dict=0 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Union[str, Any]=False ): super().__init__() SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE = True def _snake_case ( self : int , __lowerCamelCase : str=None ): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE = False return x * self.a[0] + self.b[0] class _SCREAMING_SNAKE_CASE ( torch.nn.Module ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=False ): super().__init__() SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__lowerCamelCase ).float() ) SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__lowerCamelCase ).float() ) SCREAMING_SNAKE_CASE = True def _snake_case ( self : List[Any] , __lowerCamelCase : Dict=None ): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) SCREAMING_SNAKE_CASE = False return x * self.a + self.b def __a ( A__ : List[Any] , A__ : int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} SCREAMING_SNAKE_CASE = load_dataset("csv" , data_files=A__ ) SCREAMING_SNAKE_CASE = datasets["train"].unique("label" ) SCREAMING_SNAKE_CASE = {v: i for i, v in enumerate(A__ )} def tokenize_function(A__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=A__ , max_length=A__ , padding="max_length" ) if "label" in examples: SCREAMING_SNAKE_CASE = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE = datasets.map( A__ , batched=A__ , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(A__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(A__ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets["train"] , shuffle=A__ , collate_fn=A__ , batch_size=2 ) SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets["validation"] , shuffle=A__ , collate_fn=A__ , batch_size=1 ) return train_dataloader, eval_dataloader
698
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
__A : List[str] = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
698
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : int = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "bert" def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Any=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Optional[Any] , ): super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Dict ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
698
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = eval_examples SCREAMING_SNAKE_CASE = post_process_function def _snake_case ( self : Optional[int] , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str = "eval" ): SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE = self.get_eval_dataloader(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE = time.time() try: SCREAMING_SNAKE_CASE = eval_loop( __lowerCamelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE = compute_metrics SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) SCREAMING_SNAKE_CASE = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str = "test" ): SCREAMING_SNAKE_CASE = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop SCREAMING_SNAKE_CASE = time.time() try: SCREAMING_SNAKE_CASE = eval_loop( __lowerCamelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE = compute_metrics SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , "predict" ) SCREAMING_SNAKE_CASE = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __A : Tuple = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def __a ( A__ : str = "dhaka" , A__ : int = 5 ): SCREAMING_SNAKE_CASE = min(A__ , 50 ) # Prevent abuse! SCREAMING_SNAKE_CASE = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } SCREAMING_SNAKE_CASE = requests.get("https://www.google.com/search" , params=A__ , headers=A__ ) SCREAMING_SNAKE_CASE = BeautifulSoup(html.text , "html.parser" ) SCREAMING_SNAKE_CASE = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) SCREAMING_SNAKE_CASE = json.dumps(A__ ) SCREAMING_SNAKE_CASE = json.loads(A__ ) SCREAMING_SNAKE_CASE = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , A__ , ) if not matched_google_image_data: return 0 SCREAMING_SNAKE_CASE = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(A__ ) , ) SCREAMING_SNAKE_CASE = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , A__ , ) for index, fixed_full_res_image in enumerate(A__ ): if index >= max_images: return index SCREAMING_SNAKE_CASE = bytes(A__ , "ascii" ).decode( "unicode-escape" ) SCREAMING_SNAKE_CASE = bytes(A__ , "ascii" ).decode( "unicode-escape" ) SCREAMING_SNAKE_CASE = urllib.request.build_opener() SCREAMING_SNAKE_CASE = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(A__ ) SCREAMING_SNAKE_CASE = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(A__ ): os.makedirs(A__ ) urllib.request.urlretrieve( # noqa: S310 A__ , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __A : Any = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print('Please provide a search term.') raise
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = (DPMSolverSinglestepScheduler,) lowerCamelCase__ = (("num_inference_steps", 2_5),) def _snake_case ( self : str , **__lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**__lowerCamelCase ) return config def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any]=0 , **__lowerCamelCase : str ): SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(__lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self : Any ): pass def _snake_case ( self : List[str] , __lowerCamelCase : str=0 , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self : Dict , __lowerCamelCase : str=None , **__lowerCamelCase : Union[str, Any] ): if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_574 ) < 1e-3 def _snake_case ( self : List[str] ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def _snake_case ( self : Any ): # make sure that iterating over schedulers with same config names gives same results # for defaults SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def _snake_case ( self : Optional[Any] ): self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , algorithm_type="dpmsolver++" , solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , ) def _snake_case ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def _snake_case ( self : Dict ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=__lowerCamelCase , solver_type=__lowerCamelCase , prediction_type=__lowerCamelCase , algorithm_type=__lowerCamelCase , ) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def _snake_case ( self : Optional[int] ): self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _snake_case ( self : Union[str, Any] ): self.check_over_configs(variance_type=__lowerCamelCase ) self.check_over_configs(variance_type="learned_range" ) def _snake_case ( self : str ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=0 ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_791 ) < 1e-3 def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.full_loop(use_karras_sigmas=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_248 ) < 1e-3 def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.1_453 ) < 1e-3 def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.0_649 ) < 1e-3 def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=__lowerCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa
698
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Optional[Any] = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __a ( A__ : Optional[Any] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = [] for part_id in partition_order: SCREAMING_SNAKE_CASE = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(A__ ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __a ( ): SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() SCREAMING_SNAKE_CASE = spark.range(100 ).repartition(1 ) SCREAMING_SNAKE_CASE = Spark(A__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __a ( ): SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() SCREAMING_SNAKE_CASE = spark.range(10 ).repartition(2 ) SCREAMING_SNAKE_CASE = [1, 0] SCREAMING_SNAKE_CASE = _generate_iterable_examples(A__ , A__ ) # Reverse the partitions. SCREAMING_SNAKE_CASE = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , A__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() SCREAMING_SNAKE_CASE = spark.range(10 ).repartition(1 ) SCREAMING_SNAKE_CASE = SparkExamplesIterable(A__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A__ ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __a ( ): SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() SCREAMING_SNAKE_CASE = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: SCREAMING_SNAKE_CASE = lambda A__ : x.reverse() SCREAMING_SNAKE_CASE = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [2, 1, 0] ) SCREAMING_SNAKE_CASE = SparkExamplesIterable(A__ ).shuffle_data_sources(A__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() SCREAMING_SNAKE_CASE = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE = SparkExamplesIterable(A__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE = _get_expected_row_ids_and_row_dicts_for_partition_order(A__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(A__ ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() SCREAMING_SNAKE_CASE = spark.range(100 ).repartition(1 ) SCREAMING_SNAKE_CASE = Spark(A__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
698
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : str=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=99 , __lowerCamelCase : int=32 , __lowerCamelCase : Any=2 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : int=2 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]="None" , __lowerCamelCase : int=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[Any]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = position_biased_input SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = scope def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = TFDebertaVaModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE = [input_ids, input_mask] SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = TFDebertaVaForMaskedLM(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFDebertaVaForSequenceClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFDebertaVaForTokenClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = TFDebertaVaForQuestionAnswering(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__ = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : List[str] ): self.config_tester.run_common_tests() def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _snake_case ( self : Dict ): pass @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) SCREAMING_SNAKE_CASE = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 )
698
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __A : str = Lock() def __a ( A__ : Dict , A__ : Optional[int] , A__ : List[Any] , A__ : List[Any] , A__ : Tuple , A__ : Dict , A__ : Dict ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE = min(A__ , A__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE = max(A__ , A__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE = Pipe() SCREAMING_SNAKE_CASE = Pipe() process_array_.append( Process( target=A__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE = temp_rs SCREAMING_SNAKE_CASE = temp_rr for i in range(1 , len(A__ ) - 1 ): SCREAMING_SNAKE_CASE = Pipe() SCREAMING_SNAKE_CASE = Pipe() process_array_.append( Process( target=A__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE = temp_rs SCREAMING_SNAKE_CASE = temp_rr process_array_.append( Process( target=A__ , args=( len(A__ ) - 1, arr[len(A__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A__ ) ): SCREAMING_SNAKE_CASE = result_pipe[p][0].recv() process_array_[p].join() return arr def __a ( ): SCREAMING_SNAKE_CASE = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*A__ ) SCREAMING_SNAKE_CASE = odd_even_transposition(A__ ) print("Sorted List\n" ) print(*A__ ) if __name__ == "__main__": main()
698
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : Any=True , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : Dict=16 , __lowerCamelCase : List[str]=36 , __lowerCamelCase : Any=6 , __lowerCamelCase : Tuple=6 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : int=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Any=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_hidden_groups SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Optional[int] ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self : str , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : str , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = True def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = AlbertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Dict ): self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def _snake_case ( self : Dict ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
698
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __a ( A__ : List[str] , A__ : Dict=False ): SCREAMING_SNAKE_CASE = OmegaConf.load(A__ ) if display: print(yaml.dump(OmegaConf.to_container(A__ ) ) ) return config def __a ( A__ : List[Any] , A__ : int=None , A__ : Dict=None ): if conf_path is None: SCREAMING_SNAKE_CASE = "./model_checkpoints/vqgan_only.yaml" SCREAMING_SNAKE_CASE = load_config(A__ , display=A__ ) SCREAMING_SNAKE_CASE = VQModel(**config.model.params ) if ckpt_path is None: SCREAMING_SNAKE_CASE = "./model_checkpoints/vqgan_only.pt" SCREAMING_SNAKE_CASE = torch.load(A__ , map_location=A__ ) if ".ckpt" in ckpt_path: SCREAMING_SNAKE_CASE = sd["state_dict"] model.load_state_dict(A__ , strict=A__ ) model.to(A__ ) del sd return model def __a ( A__ : Dict , A__ : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.encode(A__ ) print(F"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) SCREAMING_SNAKE_CASE = model.decode(A__ ) return xrec def __a ( A__ : str , A__ : Optional[int]=False ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = string.rsplit("." , 1 ) if reload: SCREAMING_SNAKE_CASE = importlib.import_module(A__ ) importlib.reload(A__ ) return getattr(importlib.import_module(A__ , package=A__ ) , cls ) def __a ( A__ : Dict ): if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def __a ( A__ : Dict , A__ : List[str] , A__ : Dict=True , A__ : Optional[Any]=True ): SCREAMING_SNAKE_CASE = instantiate_from_config(A__ ) if sd is not None: model.load_state_dict(A__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __a ( A__ : List[Any] , A__ : Optional[int] , A__ : List[str] , A__ : Optional[int] ): # load the specified checkpoint if ckpt: SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) SCREAMING_SNAKE_CASE = pl_sd["global_step"] print(F"loaded model from global step {global_step}." ) else: SCREAMING_SNAKE_CASE = {"state_dict": None} SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=A__ , eval_mode=A__ )["model"] return model, global_step
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1
def __a ( A__ : Optional[Any] ): # noqa: E741 SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [0] * n SCREAMING_SNAKE_CASE = [False] * n SCREAMING_SNAKE_CASE = [False] * n def dfs(A__ : Optional[Any] , A__ : List[str] , A__ : Optional[Any] , A__ : int ): if parent == root: out_edge_count += 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = at for to in l[at]: if to == parent: pass elif not visited[to]: SCREAMING_SNAKE_CASE = dfs(A__ , A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: SCREAMING_SNAKE_CASE = True # AP found via cycle if at == low[to]: SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = min(low[at] , A__ ) return out_edge_count for i in range(A__ ): if not visited[i]: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = dfs(A__ , A__ , -1 , A__ ) SCREAMING_SNAKE_CASE = out_edge_count > 1 for x in range(len(A__ ) ): if is_art[x] is True: print(A__ ) # Adjacency list of graph __A : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : int = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "luke" def __init__( self : Any , __lowerCamelCase : Union[str, Any]=50267 , __lowerCamelCase : List[Any]=500000 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : Any=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : Any=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : str=1e-12 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : int=2 , **__lowerCamelCase : Tuple , ): super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = entity_vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = entity_emb_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_entity_aware_attention SCREAMING_SNAKE_CASE = classifier_dropout
698
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : str = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "vit_msn" def __init__( self : Tuple , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : str=1e-06 , __lowerCamelCase : List[str]=224 , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = qkv_bias
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A : int = get_logger(__name__) __A : Dict = Path(__file__).parent / 'model_card_template.md' __A : Dict = uuida().hex __A : Optional[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __A : Optional[Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __A : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __a ( A__ : Union[Dict, str, None] = None ): SCREAMING_SNAKE_CASE = F"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"; torch/{_torch_version}" if is_flax_available(): ua += F"; jax/{_jax_version}" ua += F"; flax/{_flax_version}" if is_onnx_available(): ua += F"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(A__ , A__ ): ua += "; " + "; ".join(F"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(A__ , A__ ): ua += "; " + user_agent return ua def __a ( A__ : str , A__ : Optional[str] = None , A__ : Optional[str] = None ): if token is None: SCREAMING_SNAKE_CASE = HfFolder.get_token() if organization is None: SCREAMING_SNAKE_CASE = whoami(A__ )["name"] return F"{username}/{model_id}" else: return F"{organization}/{model_id}" def __a ( A__ : Optional[int] , A__ : List[Any] ): if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(A__ , "local_rank" ) and args.local_rank not in [-1, 0]: return SCREAMING_SNAKE_CASE = args.hub_token if hasattr(A__ , "hub_token" ) else None SCREAMING_SNAKE_CASE = get_full_repo_name(A__ , token=A__ ) SCREAMING_SNAKE_CASE = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=A__ , model_name=A__ , repo_name=A__ , dataset_name=args.dataset_name if hasattr(A__ , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(A__ , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(A__ , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(A__ , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(A__ , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(A__ , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(A__ , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(A__ , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(A__ , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(A__ , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(A__ , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , "README.md" ) model_card.save(A__ ) def __a ( A__ : Optional[str] , A__ : Optional[str] = None ): if resolved_file is None or commit_hash is not None: return commit_hash SCREAMING_SNAKE_CASE = str(Path(A__ ).as_posix() ) SCREAMING_SNAKE_CASE = re.search(R"snapshots/([^/]+)/" , A__ ) if search is None: return None SCREAMING_SNAKE_CASE = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(A__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A : Optional[int] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __A : Dict = os.path.join(hf_cache_home, 'diffusers') def __a ( A__ : Optional[str] = None , A__ : Optional[str] = None ): if new_cache_dir is None: SCREAMING_SNAKE_CASE = DIFFUSERS_CACHE if old_cache_dir is None: SCREAMING_SNAKE_CASE = old_diffusers_cache SCREAMING_SNAKE_CASE = Path(A__ ).expanduser() SCREAMING_SNAKE_CASE = Path(A__ ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): SCREAMING_SNAKE_CASE = new_cache_dir / old_blob_path.relative_to(A__ ) new_blob_path.parent.mkdir(parents=A__ , exist_ok=A__ ) os.replace(A__ , A__ ) try: os.symlink(A__ , A__ ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A : Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __A : Optional[Any] = 0 else: with open(cache_version_file) as f: try: __A : Any = int(f.read()) except ValueError: __A : int = 0 if cache_version < 1: __A : int = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __A : Dict = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' 'the directory exists and can be written to.' ) def __a ( A__ : str , A__ : Optional[str] = None ): if variant is not None: SCREAMING_SNAKE_CASE = weights_name.split("." ) SCREAMING_SNAKE_CASE = splits[:-1] + [variant] + splits[-1:] SCREAMING_SNAKE_CASE = ".".join(A__ ) return weights_name def __a ( A__ : int , *, A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Any , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : int , A__ : Optional[int] , A__ : Any , A__ : Tuple , A__ : Dict=None , ): SCREAMING_SNAKE_CASE = str(A__ ) if os.path.isfile(A__ ): return pretrained_model_name_or_path elif os.path.isdir(A__ ): if os.path.isfile(os.path.join(A__ , A__ ) ): # Load from a PyTorch checkpoint SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(A__ , A__ , A__ ) ): SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ , A__ ) return model_file else: raise EnvironmentError( F"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(A__ ).base_version ) >= version.parse("0.20.0" ) ): try: SCREAMING_SNAKE_CASE = hf_hub_download( A__ , filename=_add_variant(A__ , A__ ) , cache_dir=A__ , force_download=A__ , proxies=A__ , resume_download=A__ , local_files_only=A__ , use_auth_token=A__ , user_agent=A__ , subfolder=A__ , revision=revision or commit_hash , ) warnings.warn( F"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , A__ , ) return model_file except: # noqa: E722 warnings.warn( F"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(A__ , A__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(A__ , A__ )}' so that the correct variant file can be added." , A__ , ) try: # 2. Load model file as usual SCREAMING_SNAKE_CASE = hf_hub_download( A__ , filename=A__ , cache_dir=A__ , force_download=A__ , proxies=A__ , resume_download=A__ , local_files_only=A__ , use_auth_token=A__ , user_agent=A__ , subfolder=A__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " "this model name. Check the model page at " F"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( F"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( F"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( F"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" F" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" F" directory containing a file named {weights_name} or" " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " F"containing a file named {weights_name}" )
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
from torch import nn class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = class_size SCREAMING_SNAKE_CASE = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) SCREAMING_SNAKE_CASE = self.mlp(__lowerCamelCase ) return logits
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Optional[Any] = '▁' __A : Dict = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } __A : List[str] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } __A : Optional[Any] = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } __A : str = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] __A : Optional[Any] = {'mustc': MUSTC_LANGS} class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = MAX_MODEL_INPUT_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] lowerCamelCase__ = [] def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : List[Any]="<unk>" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Any=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_upper_case=__lowerCamelCase , do_lower_case=__lowerCamelCase , tgt_lang=__lowerCamelCase , lang_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = do_upper_case SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = load_json(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = spm_file SCREAMING_SNAKE_CASE = load_spm(__lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: SCREAMING_SNAKE_CASE = lang_codes SCREAMING_SNAKE_CASE = LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE = [f"<lang:{lang}>" for lang in self.langs] SCREAMING_SNAKE_CASE = {lang: self.sp_model.PieceToId(f"<lang:{lang}>" ) for lang in self.langs} SCREAMING_SNAKE_CASE = self.lang_tokens SCREAMING_SNAKE_CASE = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: SCREAMING_SNAKE_CASE = {} @property def _snake_case ( self : Union[str, Any] ): return len(self.encoder ) @property def _snake_case ( self : List[str] ): return self._tgt_lang @tgt_lang.setter def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = new_tgt_lang self.set_tgt_lang_special_tokens(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE = [lang_code_id] def _snake_case ( self : List[Any] , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _snake_case ( self : Dict , __lowerCamelCase : Tuple ): return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] ) def _snake_case ( self : Dict , __lowerCamelCase : int ): return self.decoder.get(__lowerCamelCase , self.unk_token ) def _snake_case ( self : Dict , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE = self.sp_model.decode(__lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.sp_model.decode(__lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _snake_case ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ) assert save_dir.is_dir(), f"{save_directory} should be a directory" SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) SCREAMING_SNAKE_CASE = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (str(__lowerCamelCase ), str(__lowerCamelCase )) def __a ( A__ : str , A__ : Dict[str, Any] ): SCREAMING_SNAKE_CASE = sentencepiece.SentencePieceProcessor(**A__ ) spm.Load(str(A__ ) ) return spm def __a ( A__ : str ): with open(A__ , "r" ) as f: return json.load(A__ ) def __a ( A__ : Dict , A__ : str ): with open(A__ , "w" ) as f: json.dump(A__ , A__ , indent=2 )
698
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Any=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : int=4 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=0 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = projection_dim def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) SCREAMING_SNAKE_CASE = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = TFDPRContextEncoder(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _snake_case ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _snake_case ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = TFDPRReader(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCamelCase__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = TFDPRModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Optional[int] ): self.config_tester.run_common_tests() def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowerCamelCase ) @slow def _snake_case ( self : Dict ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRContextEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFDPRReader.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) SCREAMING_SNAKE_CASE = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
698
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : str=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=True , __lowerCamelCase : str=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Optional[int]=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Any=4 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_choices def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_attention_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def _snake_case ( self : List[Any] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = 50000 SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
def __a ( A__ : bytes ): return "".join([hex(A__ )[2:].zfill(2 ).upper() for byte in list(A__ )] ) def __a ( A__ : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(A__ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A__ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(A__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
698
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
from heapq import heappop, heappush import numpy as np def __a ( A__ : np.ndarray , A__ : tuple[int, int] , A__ : tuple[int, int] , A__ : bool , ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = grid.shape SCREAMING_SNAKE_CASE = [-1, 1, 0, 0] SCREAMING_SNAKE_CASE = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [(0, source)], set() SCREAMING_SNAKE_CASE = np.full((rows, cols) , np.inf ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = np.empty((rows, cols) , dtype=A__ ) SCREAMING_SNAKE_CASE = None while queue: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = heappop(A__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: SCREAMING_SNAKE_CASE = [] while (x, y) != source: path.append((x, y) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = predecessors[x, y] path.append(A__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(A__ ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: SCREAMING_SNAKE_CASE = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(A__ , (dist + 1, (nx, ny)) ) SCREAMING_SNAKE_CASE = dist + 1 SCREAMING_SNAKE_CASE = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
698
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : str = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : List[str] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __A : List[Any] = {'facebook/blenderbot_small-90M': 5_1_2} def __a ( A__ : int ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char SCREAMING_SNAKE_CASE = set(A__ ) return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict="__start__" , __lowerCamelCase : List[Any]="__end__" , __lowerCamelCase : Any="__unk__" , __lowerCamelCase : Optional[int]="__null__" , **__lowerCamelCase : Optional[int] , ): super().__init__(unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , **__lowerCamelCase ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} @property def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = re.sub("([.,!?()])" , r" \1" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = re.sub("(')" , r" \1 " , __lowerCamelCase ) SCREAMING_SNAKE_CASE = re.sub(r"\s{2,}" , " " , __lowerCamelCase ) if "\n" in token: SCREAMING_SNAKE_CASE = token.replace("\n" , " __newln__" ) SCREAMING_SNAKE_CASE = token.split(" " ) SCREAMING_SNAKE_CASE = [] for token in tokens: if not len(__lowerCamelCase ): continue SCREAMING_SNAKE_CASE = token.lower() SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: words.append(__lowerCamelCase ) continue while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = "@@ ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word[:-4] SCREAMING_SNAKE_CASE = word words.append(__lowerCamelCase ) return " ".join(__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = re.findall(r"\S+\n?" , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) ) return split_tokens def _snake_case ( self : Any , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = token.lower() return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : List[str] , __lowerCamelCase : int ): return self.decoder.get(__lowerCamelCase , self.unk_token ) def _snake_case ( self : List[str] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file
698
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
1
def __a ( A__ : int , A__ : int , A__ : int ): SCREAMING_SNAKE_CASE = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __a ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
698
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[int] = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "nllb-moe" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : Dict=128112 , __lowerCamelCase : Optional[Any]=1024 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Optional[Any]=4096 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Union[str, Any]=4096 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : str=0.05 , __lowerCamelCase : Union[str, Any]=0.05 , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : int=1024 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Tuple="float32" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Dict=0.001 , __lowerCamelCase : Dict=0.001 , __lowerCamelCase : List[Any]="all" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : Tuple=0.2 , __lowerCamelCase : str=1 , __lowerCamelCase : str=0 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Optional[Any]=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE = router_z_loss_coef SCREAMING_SNAKE_CASE = router_aux_loss_coef SCREAMING_SNAKE_CASE = decoder_sparse_step SCREAMING_SNAKE_CASE = encoder_sparse_step SCREAMING_SNAKE_CASE = num_experts SCREAMING_SNAKE_CASE = expert_capacity SCREAMING_SNAKE_CASE = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE = router_dtype SCREAMING_SNAKE_CASE = router_ignore_padding_tokens SCREAMING_SNAKE_CASE = batch_prioritized_routing SCREAMING_SNAKE_CASE = second_expert_policy SCREAMING_SNAKE_CASE = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE = moe_token_dropout SCREAMING_SNAKE_CASE = output_router_logits super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : int = '▁' __A : Any = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __A : List[str] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __A : Optional[int] = {'vinai/bartpho-syllable': 1_0_2_4} class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Dict="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = monolingual_vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE = cnt cnt += 1 with open(__lowerCamelCase , "r" , encoding="utf-8" ) as f: for line in f.readlines(): SCREAMING_SNAKE_CASE = line.strip().split()[0] SCREAMING_SNAKE_CASE = len(self.fairseq_tokens_to_ids ) if str(__lowerCamelCase ) not in self.fairseq_tokens_to_ids: SCREAMING_SNAKE_CASE = len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ): SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self : int ): return len(self.fairseq_ids_to_tokens ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self : Tuple , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : int ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _snake_case ( self : str , __lowerCamelCase : str ): return self.fairseq_ids_to_tokens[index] def _snake_case ( self : str , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__lowerCamelCase , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(__lowerCamelCase )} \n" ) return out_vocab_file, out_monolingual_vocab_file
698
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above SCREAMING_SNAKE_CASE = tf_top_k_top_p_filtering(__lowerCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) SCREAMING_SNAKE_CASE = output[output != -float("inf" )] SCREAMING_SNAKE_CASE = tf.cast( tf.where(tf.not_equal(__lowerCamelCase , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(__lowerCamelCase , __lowerCamelCase ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase , __snake_case ): '''simple docstring''' if is_tf_available(): lowerCamelCase__ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def _snake_case ( self : Any ): # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 2 class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : List[str] ): super(__lowerCamelCase , self ).__init__() SCREAMING_SNAKE_CASE = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=__lowerCamelCase , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model.generate( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , max_new_tokens=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE = [[2, 0], [102, 103]] SCREAMING_SNAKE_CASE = [[1, 0], [1, 1]] SCREAMING_SNAKE_CASE = DummyModel(model=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__lowerCamelCase , __lowerCamelCase , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE = tf.saved_model.load(__lowerCamelCase ).signatures["serving_default"] for batch_size in range(1 , len(__lowerCamelCase ) + 1 ): SCREAMING_SNAKE_CASE = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } SCREAMING_SNAKE_CASE = serving_func(**__lowerCamelCase )["sequences"] SCREAMING_SNAKE_CASE = test_model.generate(**__lowerCamelCase , max_new_tokens=__lowerCamelCase ) tf.debugging.assert_equal(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : List[str] ): # TF-only test: tf.saved_model export SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : Tuple ): super(__lowerCamelCase , self ).__init__() SCREAMING_SNAKE_CASE = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=__lowerCamelCase , ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = self.model.generate( input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , max_new_tokens=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , ) return {"sequences": outputs["sequences"]} SCREAMING_SNAKE_CASE = [[2], [102, 103]] SCREAMING_SNAKE_CASE = [[1], [1, 1]] SCREAMING_SNAKE_CASE = DummyModel(model=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__lowerCamelCase , __lowerCamelCase , signatures={"serving_default": dummy_model.serving} ) SCREAMING_SNAKE_CASE = tf.saved_model.load(__lowerCamelCase ).signatures["serving_default"] for input_row in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } SCREAMING_SNAKE_CASE = serving_func(**__lowerCamelCase )["sequences"] SCREAMING_SNAKE_CASE = test_model.generate(**__lowerCamelCase , max_new_tokens=__lowerCamelCase ) tf.debugging.assert_equal(__lowerCamelCase , __lowerCamelCase ) @slow @require_tensorflow_text def _snake_case ( self : int ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int ): super().__init__() SCREAMING_SNAKE_CASE = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__lowerCamelCase , "spiece.model" ) , "rb" ).read() ) SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def _snake_case ( self : int , __lowerCamelCase : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.tokenizer.tokenize(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = text.pad_model_inputs( __lowerCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) SCREAMING_SNAKE_CASE = self.model.generate(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) return self.tokenizer.detokenize(__lowerCamelCase ) SCREAMING_SNAKE_CASE = CompleteSentenceTransformer() SCREAMING_SNAKE_CASE = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) SCREAMING_SNAKE_CASE = complete_model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tf.keras.Model(__lowerCamelCase , __lowerCamelCase ) keras_model.save(__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): # Has PT equivalent: this test relies on random sampling SCREAMING_SNAKE_CASE = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = "Hello, my dog is cute and" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="tf" ) SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) SCREAMING_SNAKE_CASE = [638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _snake_case ( self : int ): # Has PT equivalent: ample use of framework-specific code SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE = "Hugging Face is a technology company based in New York and Paris." SCREAMING_SNAKE_CASE = bart_tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE = bart_model.generate(__lowerCamelCase ).numpy() class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : int ): return super().call(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) SCREAMING_SNAKE_CASE = bart_model.generate(__lowerCamelCase , foo="bar" ).numpy() self.assertTrue(np.array_equal(__lowerCamelCase , __lowerCamelCase ) ) class _SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): '''simple docstring''' def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , **__lowerCamelCase : Union[str, Any] ): return super().call(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = FakeEncoder(bart_model.config , bart_model.model.shared ) SCREAMING_SNAKE_CASE = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) SCREAMING_SNAKE_CASE = bart_model.generate(__lowerCamelCase ).numpy() with self.assertRaises(__lowerCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__lowerCamelCase , foo="bar" )
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
import qiskit def __a ( A__ : int , A__ : int ): SCREAMING_SNAKE_CASE = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE = qiskit.QuantumCircuit(A__ , A__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A__ ) if __name__ == "__main__": __A : Union[str, Any] = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
698
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A : Optional[int] = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether tp freeze the encoder."} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowerCamelCase__ = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) lowerCamelCase__ = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__ = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) lowerCamelCase__ = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__ = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) lowerCamelCase__ = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) lowerCamelCase__ = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Source language id for translation."} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Target language id for translation."} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "# num_beams to use for evaluation."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def __a ( A__ : Tuple , A__ : Tuple , A__ : List[Any] ): logger.info(F"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(F" {key} = {metrics[key]}" ) save_json(A__ , os.path.join(A__ , F"{split}_results.json" ) ) def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() check_output_dir(A__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(A__ , A__ , A__ ): assert hasattr(A__ , A__ ), F"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(A__ , A__ , getattr(A__ , A__ ) ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=A__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(A__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(A__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(A__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE = ( dataset_class( A__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( dataset_class( A__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE = ( dataset_class( A__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE = ( build_compute_metrics_fn(data_args.task , A__ ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=A__ , args=A__ , data_args=A__ , train_dataset=A__ , eval_dataset=A__ , data_collator=SeqaSeqDataCollator( A__ , A__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=A__ , tokenizer=A__ , ) SCREAMING_SNAKE_CASE = {} # Training if training_args.do_train: logger.info("*** Train ***" ) SCREAMING_SNAKE_CASE = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , A__ , training_args.output_dir ) all_metrics.update(A__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE = trainer.evaluate(metric_key_prefix="val" ) SCREAMING_SNAKE_CASE = data_args.n_val SCREAMING_SNAKE_CASE = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.do_predict: logger.info("*** Predict ***" ) SCREAMING_SNAKE_CASE = trainer.predict(test_dataset=A__ , metric_key_prefix="test" ) SCREAMING_SNAKE_CASE = test_output.metrics SCREAMING_SNAKE_CASE = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE = round(metrics["test_loss"] , 4 ) handle_metrics("test" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) SCREAMING_SNAKE_CASE = lmap(str.strip , A__ ) write_txt_file(A__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(A__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def __a ( A__ : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
698
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : int = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : int = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Dict = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : Union[str, Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Optional[int] = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : str = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = DPRContextEncoderTokenizer class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = DPRQuestionEncoderTokenizer __A : str = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : Optional[int] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Optional[Any] , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages assert len(__lowerCamelCase ) == len( __lowerCamelCase ), f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"] lowerCamelCase__ = DPRReaderTokenizer
698
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __A : List[Any] = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __a ( A__ : Any , A__ : Union[str, Any] ): warnings.warn(A__ , A__ ) requires_backends(A__ , "sklearn" ) return (preds == labels).mean() def __a ( A__ : List[str] , A__ : Tuple ): warnings.warn(A__ , A__ ) requires_backends(A__ , "sklearn" ) SCREAMING_SNAKE_CASE = simple_accuracy(A__ , A__ ) SCREAMING_SNAKE_CASE = fa_score(y_true=A__ , y_pred=A__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __a ( A__ : List[Any] , A__ : List[str] ): warnings.warn(A__ , A__ ) requires_backends(A__ , "sklearn" ) SCREAMING_SNAKE_CASE = pearsonr(A__ , A__ )[0] SCREAMING_SNAKE_CASE = spearmanr(A__ , A__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __a ( A__ : Union[str, Any] , A__ : List[str] , A__ : Optional[Any] ): warnings.warn(A__ , A__ ) requires_backends(A__ , "sklearn" ) assert len(A__ ) == len(A__ ), F"Predictions and labels have mismatched lengths {len(A__ )} and {len(A__ )}" if task_name == "cola": return {"mcc": matthews_corrcoef(A__ , A__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "mrpc": return acc_and_fa(A__ , A__ ) elif task_name == "sts-b": return pearson_and_spearman(A__ , A__ ) elif task_name == "qqp": return acc_and_fa(A__ , A__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(A__ , A__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(A__ , A__ )} elif task_name == "qnli": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "rte": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "wnli": return {"acc": simple_accuracy(A__ , A__ )} elif task_name == "hans": return {"acc": simple_accuracy(A__ , A__ )} else: raise KeyError(A__ ) def __a ( A__ : Tuple , A__ : Union[str, Any] , A__ : Dict ): warnings.warn(A__ , A__ ) requires_backends(A__ , "sklearn" ) if len(A__ ) != len(A__ ): raise ValueError(F"Predictions and labels have mismatched lengths {len(A__ )} and {len(A__ )}" ) if task_name == "xnli": return {"acc": simple_accuracy(A__ , A__ )} else: raise KeyError(A__ )
698
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) __A : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __a ( A__ : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE = model_type_to_module_name(A__ ) SCREAMING_SNAKE_CASE = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(A__ , "__name__" , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE = importlib.import_module("transformers" ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def __a ( A__ : Union[str, os.PathLike] , A__ : Optional[Union[str, os.PathLike]] = None , A__ : bool = False , A__ : bool = False , A__ : Optional[Dict[str, str]] = None , A__ : Optional[Union[bool, str]] = None , A__ : Optional[str] = None , A__ : bool = False , **A__ : str , ): SCREAMING_SNAKE_CASE = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(A__ , encoding="utf-8" ) as reader: return json.load(A__ ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] ): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def _snake_case ( cls : Any , __lowerCamelCase : Tuple , **__lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = kwargs.pop("config" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = kwargs.pop("trust_remote_code" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = config_dict.get("image_processor_type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): SCREAMING_SNAKE_CASE = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE = config_dict.pop("feature_extractor_type" , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) SCREAMING_SNAKE_CASE = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): SCREAMING_SNAKE_CASE = config_dict["auto_map"]["AutoFeatureExtractor"] SCREAMING_SNAKE_CASE = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , "image_processor_type" , __lowerCamelCase ) if hasattr(__lowerCamelCase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: SCREAMING_SNAKE_CASE = image_processor_class_from_name(__lowerCamelCase ) SCREAMING_SNAKE_CASE = image_processor_auto_map is not None SCREAMING_SNAKE_CASE = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = kwargs.pop("code_revision" , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def _snake_case ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = RobertaTokenizer lowerCamelCase__ = RobertaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"cls_token": "<s>"} def _snake_case ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def _snake_case ( self : Optional[Any] , **__lowerCamelCase : Any ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Dict , **__lowerCamelCase : int ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCamelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCamelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("roberta-base" ) SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode( "sequence builders" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = "Encode this sequence." SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )} ) # mask token has a left space SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) SCREAMING_SNAKE_CASE = "Encode <mask> sequence" SCREAMING_SNAKE_CASE = "Encode <mask>sequence" SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = encoded.index(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = encoded.index(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): pass def _snake_case ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A, <mask> AllenNLP sentence." SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _snake_case ( self : Tuple ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["trim_offsets"] , __lowerCamelCase ) def _snake_case ( self : Tuple ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = "hello" # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE = f"{text_of_1_token} {text_of_1_token}" SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) SCREAMING_SNAKE_CASE = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) def __a ( A__ : List[Any] , A__ : Tuple , A__ : Optional[int] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = original_name.split("." )[0] SCREAMING_SNAKE_CASE = key.split("." ) SCREAMING_SNAKE_CASE = int(key_list[key_list.index(A__ ) - 2] ) SCREAMING_SNAKE_CASE = int(key_list[key_list.index(A__ ) - 1] ) SCREAMING_SNAKE_CASE = orig_block_num - offset SCREAMING_SNAKE_CASE = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = OrderedDict() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): SCREAMING_SNAKE_CASE = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 SCREAMING_SNAKE_CASE = key[: key.find("proj" )] SCREAMING_SNAKE_CASE = key.replace(A__ , F"patch_embeddings.{total_embed_found}." ) SCREAMING_SNAKE_CASE = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: SCREAMING_SNAKE_CASE = "poolformer.encoder." + key if "mlp.fc1" in key: SCREAMING_SNAKE_CASE = replace_key_with_offset(A__ , A__ , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: SCREAMING_SNAKE_CASE = replace_key_with_offset(A__ , A__ , "mlp.fc2" , "output.conv2" ) if "norm1" in key: SCREAMING_SNAKE_CASE = replace_key_with_offset(A__ , A__ , "norm1" , "before_norm" ) if "norm2" in key: SCREAMING_SNAKE_CASE = replace_key_with_offset(A__ , A__ , "norm2" , "after_norm" ) if "layer_scale_1" in key: SCREAMING_SNAKE_CASE = replace_key_with_offset(A__ , A__ , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: SCREAMING_SNAKE_CASE = replace_key_with_offset(A__ , A__ , "layer_scale_2" , "layer_scale_2" ) if "head" in key: SCREAMING_SNAKE_CASE = key.replace("head" , "classifier" ) SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return image @torch.no_grad() def __a ( A__ : List[Any] , A__ : int , A__ : int ): SCREAMING_SNAKE_CASE = PoolFormerConfig() # set attributes based on model_name SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = model_name[-3:] SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = (1, 1000) # set config attributes SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if size == "s12": SCREAMING_SNAKE_CASE = [2, 2, 6, 2] SCREAMING_SNAKE_CASE = [64, 128, 320, 512] SCREAMING_SNAKE_CASE = 4.0 SCREAMING_SNAKE_CASE = 0.9 elif size == "s24": SCREAMING_SNAKE_CASE = [4, 4, 12, 4] SCREAMING_SNAKE_CASE = [64, 128, 320, 512] SCREAMING_SNAKE_CASE = 4.0 SCREAMING_SNAKE_CASE = 0.9 elif size == "s36": SCREAMING_SNAKE_CASE = [6, 6, 18, 6] SCREAMING_SNAKE_CASE = [64, 128, 320, 512] SCREAMING_SNAKE_CASE = 4.0 SCREAMING_SNAKE_CASE = 1E-6 SCREAMING_SNAKE_CASE = 0.9 elif size == "m36": SCREAMING_SNAKE_CASE = [6, 6, 18, 6] SCREAMING_SNAKE_CASE = [96, 192, 384, 768] SCREAMING_SNAKE_CASE = 4.0 SCREAMING_SNAKE_CASE = 1E-6 SCREAMING_SNAKE_CASE = 0.9_5 elif size == "m48": SCREAMING_SNAKE_CASE = [8, 8, 24, 8] SCREAMING_SNAKE_CASE = [96, 192, 384, 768] SCREAMING_SNAKE_CASE = 4.0 SCREAMING_SNAKE_CASE = 1E-6 SCREAMING_SNAKE_CASE = 0.9_5 else: raise ValueError(F"Size {size} not supported" ) # load image processor SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=A__ ) # Prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict SCREAMING_SNAKE_CASE = torch.load(A__ , map_location=torch.device("cpu" ) ) # rename keys SCREAMING_SNAKE_CASE = rename_keys(A__ ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = PoolFormerForImageClassification(A__ ) model.load_state_dict(A__ ) model.eval() # Define image processor SCREAMING_SNAKE_CASE = PoolFormerImageProcessor(crop_pct=A__ ) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass SCREAMING_SNAKE_CASE = model(A__ ) SCREAMING_SNAKE_CASE = outputs.logits # define expected logit slices for different models if size == "s12": SCREAMING_SNAKE_CASE = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": SCREAMING_SNAKE_CASE = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": SCREAMING_SNAKE_CASE = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": SCREAMING_SNAKE_CASE = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": SCREAMING_SNAKE_CASE = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , A__ , atol=1E-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
from typing import TYPE_CHECKING from ....utils import _LazyModule __A : Optional[int] = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : str = 'pt' elif is_tf_available(): __A : int = 'tf' else: __A : str = 'jax' class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = PerceiverTokenizer lowerCamelCase__ = False def _snake_case ( self : Optional[int] ): super().setUp() SCREAMING_SNAKE_CASE = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self : Dict ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def _snake_case ( self : List[str] , **__lowerCamelCase : Optional[Any] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=20 , __lowerCamelCase : int=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE = [] for i in range(len(__lowerCamelCase ) ): try: SCREAMING_SNAKE_CASE = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE = list(filter(lambda __lowerCamelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCamelCase ) , __lowerCamelCase ) ) if max_length is not None and len(__lowerCamelCase ) > max_length: SCREAMING_SNAKE_CASE = toks[:max_length] if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0: while len(__lowerCamelCase ) < min_length: SCREAMING_SNAKE_CASE = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) if " " not in output_txt and len(__lowerCamelCase ) > 1: SCREAMING_SNAKE_CASE = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase ) ) if with_prefix_space: SCREAMING_SNAKE_CASE = " " + output_txt SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) return output_txt, output_ids def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = "Unicode €." SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , __lowerCamelCase ) # decoding SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , "[CLS]Unicode €.[SEP]" ) SCREAMING_SNAKE_CASE = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , __lowerCamelCase ) # decoding SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertNotIn("decoder_input_ids" , __lowerCamelCase ) self.assertNotIn("decoder_attention_mask" , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.perceiver_tokenizer SCREAMING_SNAKE_CASE = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _snake_case ( self : int ): # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [f"<extra_id_{i}>" for i in range(125 )] SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( __lowerCamelCase , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__lowerCamelCase )] SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def _snake_case ( self : Optional[Any] ): pass def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : List[str] ): pass def _snake_case ( self : Optional[int] ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Tuple = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "lxmert" lowerCamelCase__ = {} def __init__( self : Dict , __lowerCamelCase : str=30522 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : Any=9500 , __lowerCamelCase : Union[str, Any]=1600 , __lowerCamelCase : int=400 , __lowerCamelCase : Any=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : Tuple=9 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : int=2048 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Tuple=6.67 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : int=True , __lowerCamelCase : int=True , __lowerCamelCase : Union[str, Any]=True , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = num_qa_labels SCREAMING_SNAKE_CASE = num_object_labels SCREAMING_SNAKE_CASE = num_attr_labels SCREAMING_SNAKE_CASE = l_layers SCREAMING_SNAKE_CASE = x_layers SCREAMING_SNAKE_CASE = r_layers SCREAMING_SNAKE_CASE = visual_feat_dim SCREAMING_SNAKE_CASE = visual_pos_dim SCREAMING_SNAKE_CASE = visual_loss_normalizer SCREAMING_SNAKE_CASE = task_matched SCREAMING_SNAKE_CASE = task_mask_lm SCREAMING_SNAKE_CASE = task_obj_predict SCREAMING_SNAKE_CASE = task_qa SCREAMING_SNAKE_CASE = visual_obj_loss SCREAMING_SNAKE_CASE = visual_attr_loss SCREAMING_SNAKE_CASE = visual_feat_loss SCREAMING_SNAKE_CASE = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**__lowerCamelCase )
698
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
1
import argparse __A : str = 'docs/source/_static/js/custom.js' def __a ( A__ : Any ): with open(A__ , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 SCREAMING_SNAKE_CASE = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(A__ ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') __A : str = parser.parse_args() update_custom_js(args.version)
698
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
1
from ...configuration_utils import PretrainedConfig __A : Tuple = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "tapas" def __init__( self : List[Any] , __lowerCamelCase : Optional[int]=30522 , __lowerCamelCase : int=768 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[int]=1024 , __lowerCamelCase : str=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Union[str, Any]=10.0 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : int=1.0 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : List[str]=None , __lowerCamelCase : int=None , __lowerCamelCase : int=64 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : str=False , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=False , __lowerCamelCase : List[Any]=False , __lowerCamelCase : str=True , __lowerCamelCase : str=False , __lowerCamelCase : str=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Union[str, Any] , ): super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_sizes SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE = positive_label_weight SCREAMING_SNAKE_CASE = num_aggregation_labels SCREAMING_SNAKE_CASE = aggregation_loss_weight SCREAMING_SNAKE_CASE = use_answer_as_supervision SCREAMING_SNAKE_CASE = answer_loss_importance SCREAMING_SNAKE_CASE = use_normalized_answer_loss SCREAMING_SNAKE_CASE = huber_loss_delta SCREAMING_SNAKE_CASE = temperature SCREAMING_SNAKE_CASE = aggregation_temperature SCREAMING_SNAKE_CASE = use_gumbel_for_cells SCREAMING_SNAKE_CASE = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE = average_approximation_function SCREAMING_SNAKE_CASE = cell_selection_preference SCREAMING_SNAKE_CASE = answer_loss_cutoff SCREAMING_SNAKE_CASE = max_num_rows SCREAMING_SNAKE_CASE = max_num_columns SCREAMING_SNAKE_CASE = average_logits_per_cell SCREAMING_SNAKE_CASE = select_one_column SCREAMING_SNAKE_CASE = allow_empty_column_selection SCREAMING_SNAKE_CASE = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE = reset_position_index_per_cell SCREAMING_SNAKE_CASE = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE = aggregation_labels SCREAMING_SNAKE_CASE = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : int=13 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=True , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : int=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : Any=16 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Any=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[Any]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = 13 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 99 SCREAMING_SNAKE_CASE = 384 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 37 SCREAMING_SNAKE_CASE = "gelu" SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = 512 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 0.02 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 9 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = TFConvBertModel(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE = [input_ids, input_mask] SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = TFConvBertForMaskedLM(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : str , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFConvBertForSequenceClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = TFConvBertForMultipleChoice(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFConvBertForTokenClassification(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True if hasattr(__lowerCamelCase , "use_cache" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , "saved_model" , "1" ) SCREAMING_SNAKE_CASE = tf.keras.models.load_model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE = outputs["encoder_hidden_states"] SCREAMING_SNAKE_CASE = outputs["encoder_attentions"] else: SCREAMING_SNAKE_CASE = outputs["hidden_states"] SCREAMING_SNAKE_CASE = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) SCREAMING_SNAKE_CASE = getattr(self.model_tester , "key_length" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = [1, 6, 768] self.assertEqual(output.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
698
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
1
import math import tensorflow as tf from packaging import version def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __a ( A__ : int ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(A__ , 3 )) )) return x * cdf def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) return x * tf.tanh(tf.math.softplus(A__ ) ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = tf.cast(0.0_4_4_7_1_5 , x.dtype ) SCREAMING_SNAKE_CASE = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) SCREAMING_SNAKE_CASE = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __a ( A__ : List[Any] ): return tf.clip_by_value(_gelu(A__ ) , -10 , 10 ) def __a ( A__ : List[Any] , A__ : int=-1 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tf.split(A__ , 2 , axis=A__ ) return a * tf.math.sigmoid(A__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def __a ( A__ : Optional[Any] ): return tf.keras.activations.gelu(A__ , approximate=A__ ) __A : Dict = tf.keras.activations.gelu __A : Optional[int] = approximate_gelu_wrap else: __A : Tuple = _gelu __A : Any = _gelu_new __A : List[str] = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def __a ( A__ : Tuple ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = (32, 32) SCREAMING_SNAKE_CASE = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def _snake_case ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _snake_case ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCamelCase ) @property def _snake_case ( self : Any ): def extract(*__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE = torch.ones([0] ) def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any] ): self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(pipe.scheduler , __lowerCamelCase ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.dummy_cond_unet SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_vae SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 SCREAMING_SNAKE_CASE = unet.half() SCREAMING_SNAKE_CASE = vae.half() SCREAMING_SNAKE_CASE = bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) SCREAMING_SNAKE_CASE = 4003660346 SCREAMING_SNAKE_CASE = 7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "padme amidala taking a bath artwork, safe for work, no nudity" SCREAMING_SNAKE_CASE = 2734971755 SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) SCREAMING_SNAKE_CASE = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) SCREAMING_SNAKE_CASE = 1044355234 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
698
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
1
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self : List[str] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _snake_case ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__lowerCamelCase , device=torch.device(__lowerCamelCase ) , ) SCREAMING_SNAKE_CASE = floats_tensor(control_image.shape , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _snake_case ( self : List[Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _snake_case ( self : Any ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _snake_case ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__lowerCamelCase : Tuple ): if isinstance(__lowerCamelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__lowerCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__lowerCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE = MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _snake_case ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Any=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__lowerCamelCase , device=torch.device(__lowerCamelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__lowerCamelCase , device=torch.device(__lowerCamelCase ) , ), ] SCREAMING_SNAKE_CASE = floats_tensor(control_image[0].shape , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = 10.0 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**__lowerCamelCase )[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**__lowerCamelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**__lowerCamelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**__lowerCamelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _snake_case ( self : Any ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _snake_case ( self : Optional[Any] ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__lowerCamelCase ) except NotImplementedError: pass @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase , controlnet=__lowerCamelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = "evil space-punk bird" SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) SCREAMING_SNAKE_CASE = pipe( __lowerCamelCase , __lowerCamelCase , control_image=__lowerCamelCase , generator=__lowerCamelCase , output_type="np" , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (512, 512, 3) SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : int = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "mra" def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple=50265 , __lowerCamelCase : str=768 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : str=1 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Optional[int]=1e-5 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Optional[int]="full" , __lowerCamelCase : str=0 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : str=0 , __lowerCamelCase : int=2 , **__lowerCamelCase : Optional[int] , ): super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = block_per_row SCREAMING_SNAKE_CASE = approx_mode SCREAMING_SNAKE_CASE = initial_prior_first_n_blocks SCREAMING_SNAKE_CASE = initial_prior_diagonal_n_blocks
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : List[Any] , __lowerCamelCase : UNetaDModel , __lowerCamelCase : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : str , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 2000 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , **__lowerCamelCase : List[Any] , ): SCREAMING_SNAKE_CASE = self.unet.config.sample_size SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE = self.unet SCREAMING_SNAKE_CASE = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(self.device ) self.scheduler.set_timesteps(__lowerCamelCase ) self.scheduler.set_sigmas(__lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE = self.unet(__lowerCamelCase , __lowerCamelCase ).sample SCREAMING_SNAKE_CASE = self.scheduler.step_correct(__lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # prediction step SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ).sample SCREAMING_SNAKE_CASE = self.scheduler.step_pred(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowerCamelCase )
698
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "blip_text_model" def __init__( self : str , __lowerCamelCase : int=30524 , __lowerCamelCase : Any=768 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Any=8 , __lowerCamelCase : Any=512 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[Any]=1e-12 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Optional[int]=30522 , __lowerCamelCase : Dict=2 , __lowerCamelCase : str=0 , __lowerCamelCase : List[Any]=102 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Optional[Any] , ): super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , sep_token_id=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = encoder_hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = is_decoder SCREAMING_SNAKE_CASE = use_cache @classmethod def _snake_case ( cls : Tuple , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Tuple ): cls._set_token_in_kwargs(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": SCREAMING_SNAKE_CASE = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "blip_vision_model" def __init__( self : Dict , __lowerCamelCase : Dict=768 , __lowerCamelCase : Optional[Any]=3072 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : int=384 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Dict=1e-5 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[int]=1e-10 , **__lowerCamelCase : List[str] , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def _snake_case ( cls : str , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Any ): cls._set_token_in_kwargs(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": SCREAMING_SNAKE_CASE = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "blip" lowerCamelCase__ = True def __init__( self : Optional[Any] , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Union[str, Any]=2.6_592 , __lowerCamelCase : Optional[Any]=256 , **__lowerCamelCase : Optional[Any] , ): super().__init__(**__lowerCamelCase ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) SCREAMING_SNAKE_CASE = BlipTextConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = BlipVisionConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.vision_config.hidden_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = logit_scale_init_value SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.02 SCREAMING_SNAKE_CASE = image_text_hidden_size @classmethod def _snake_case ( cls : Dict , __lowerCamelCase : BlipTextConfig , __lowerCamelCase : BlipVisionConfig , **__lowerCamelCase : Any ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __A : Dict = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( A__ : List[str] ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( A__ : str , A__ : str , A__ : List[str] ): return max(metric_fn(A__ , A__ ) for gt in ground_truths ) def __a ( A__ : Union[str, Any] , A__ : Dict , A__ : Tuple ): SCREAMING_SNAKE_CASE = [line.strip() for line in open(A__ , "r" ).readlines()] SCREAMING_SNAKE_CASE = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE = pd.read_csv(A__ , sep="\t" , header=A__ ) for answer_list in data[1]: SCREAMING_SNAKE_CASE = ast.literal_eval(A__ ) answers.append(A__ ) else: SCREAMING_SNAKE_CASE = [line.strip() for line in open(A__ , "r" ).readlines()] SCREAMING_SNAKE_CASE = [[reference] for reference in references] SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = 0 for prediction, ground_truths in zip(A__ , A__ ): total += 1 em += metric_max_over_ground_truths(A__ , A__ , A__ ) fa += metric_max_over_ground_truths(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE = 1_0_0.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __a ( A__ : int , A__ : Optional[int] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = args.k SCREAMING_SNAKE_CASE = [line.strip() for line in open(A__ , "r" ).readlines()] SCREAMING_SNAKE_CASE = [line.strip() for line in open(A__ , "r" ).readlines()] SCREAMING_SNAKE_CASE = SCREAMING_SNAKE_CASE = 0 for hypo, reference in zip(A__ , A__ ): SCREAMING_SNAKE_CASE = set(hypo.split("\t" )[:k] ) SCREAMING_SNAKE_CASE = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE = 1_0_0.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __a ( A__ : Optional[int] , A__ : Tuple , A__ : Tuple ): def strip_title(A__ : Optional[Any] ): if title.startswith("\"" ): SCREAMING_SNAKE_CASE = title[1:] if title.endswith("\"" ): SCREAMING_SNAKE_CASE = title[:-1] return title SCREAMING_SNAKE_CASE = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A__ , return_tensors="pt" , padding=A__ , truncation=A__ , )["input_ids"].to(args.device ) SCREAMING_SNAKE_CASE = rag_model.rag.question_encoder(A__ ) SCREAMING_SNAKE_CASE = question_enc_outputs[0] SCREAMING_SNAKE_CASE = rag_model.retriever( A__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE = [] for docs in all_docs: SCREAMING_SNAKE_CASE = [strip_title(A__ ) for title in docs["title"]] provenance_strings.append("\t".join(A__ ) ) return provenance_strings def __a ( A__ : Tuple , A__ : int , A__ : Union[str, Any] ): with torch.no_grad(): SCREAMING_SNAKE_CASE = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A__ , return_tensors="pt" , padding=A__ , truncation=A__ ) SCREAMING_SNAKE_CASE = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE = rag_model.generate( # rag_model overwrites generate A__ , attention_mask=A__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE = rag_model.retriever.generator_tokenizer.batch_decode(A__ , skip_special_tokens=A__ ) if args.print_predictions: for q, a in zip(A__ , A__ ): logger.info("Q: {} - A: {}".format(A__ , A__ ) ) return answers def __a ( ): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=A__ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=A__ , choices=["exact", "compressed", "legacy"] , type=A__ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=A__ , type=A__ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=A__ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=A__ , type=A__ , required=A__ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=A__ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=A__ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=A__ , type=A__ , required=A__ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=A__ , type=A__ , required=A__ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=A__ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=A__ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=A__ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=A__ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=A__ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=A__ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a ( A__ : int ): SCREAMING_SNAKE_CASE = {} if args.model_type is None: SCREAMING_SNAKE_CASE = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): SCREAMING_SNAKE_CASE = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration SCREAMING_SNAKE_CASE = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE = args.index_path else: SCREAMING_SNAKE_CASE = BartForConditionalGeneration SCREAMING_SNAKE_CASE = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , A__ ) SCREAMING_SNAKE_CASE = get_scores if args.eval_mode == "e2e" else get_precision_at_k SCREAMING_SNAKE_CASE = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(A__ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(A__ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): SCREAMING_SNAKE_CASE = RagRetriever.from_pretrained(A__ , **A__ ) SCREAMING_SNAKE_CASE = model_class.from_pretrained(A__ , retriever=A__ , **A__ ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE = model_class.from_pretrained(A__ , **A__ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: SCREAMING_SNAKE_CASE = [] for line in tqdm(A__ ): questions.append(line.strip() ) if len(A__ ) == args.eval_batch_size: SCREAMING_SNAKE_CASE = evaluate_batch_fn(A__ , A__ , A__ ) preds_file.write("\n".join(A__ ) + "\n" ) preds_file.flush() SCREAMING_SNAKE_CASE = [] if len(A__ ) > 0: SCREAMING_SNAKE_CASE = evaluate_batch_fn(A__ , A__ , A__ ) preds_file.write("\n".join(A__ ) ) preds_file.flush() score_fn(A__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __A : Tuple = get_args() main(args)
698
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
1
from pathlib import Path import numpy as np from PIL import Image def __a ( A__ : np.ndarray ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __a ( A__ : np.ndarray ): return (gray > 127) & (gray <= 255) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = np.zeros_like(A__ ) SCREAMING_SNAKE_CASE = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE = int(summation > 0 ) return output if __name__ == "__main__": # read original image __A : int = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __A : List[str] = np.array(Image.open(lena_path)) # kernel to be applied __A : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __A : str = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __A : List[Any] = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
698
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
1
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] ): SCREAMING_SNAKE_CASE = {} def _snake_case ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase ) for j in self.vertex[i]] ) ) def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowerCamelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE = [to_vertex] def _snake_case ( self : Optional[int] ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : int , __lowerCamelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE = True print(__lowerCamelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": __A : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
698
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __A : List[Any] = datasets.utils.logging.get_logger(__name__) __A : Optional[Any] = ['names', 'prefix'] __A : Optional[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __A : Optional[Any] = ['encoding_errors', 'on_bad_lines'] __A : str = ['date_format'] @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ = "," lowerCamelCase__ = None lowerCamelCase__ = "infer" lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = False lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = "." lowerCamelCase__ = None lowerCamelCase__ = '"' lowerCamelCase__ = 0 lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = 0 lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = None lowerCamelCase__ = 1_0_0_0_0 lowerCamelCase__ = None lowerCamelCase__ = "strict" lowerCamelCase__ = "error" lowerCamelCase__ = None def _snake_case ( self : int ): if self.delimiter is not None: SCREAMING_SNAKE_CASE = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE = self.column_names @property def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ = CsvConfig def _snake_case ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self : int , __lowerCamelCase : int ): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = [files] SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def _snake_case ( self : str , __lowerCamelCase : pa.Table ): if self.config.features is not None: SCREAMING_SNAKE_CASE = self.config.features.arrow_schema if all(not require_storage_cast(__lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE = table_cast(__lowerCamelCase , __lowerCamelCase ) return pa_table def _snake_case ( self : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE = pd.read_csv(__lowerCamelCase , iterator=__lowerCamelCase , dtype=__lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = pa.Table.from_pandas(__lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(__lowerCamelCase )}: {e}" ) raise
698
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
from __future__ import annotations from random import random from typing import Generic, TypeVar __A : int = TypeVar('KT') __A : List[str] = TypeVar('VT') class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : KT | str = "root" , __lowerCamelCase : VT | None = None ): SCREAMING_SNAKE_CASE = key SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = [] def __repr__( self : Optional[Any] ): return f"Node({self.key}: {self.value})" @property def _snake_case ( self : Optional[Any] ): return len(self.forward ) class _SCREAMING_SNAKE_CASE ( Generic[KT, VT] ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : float = 0.5 , __lowerCamelCase : int = 16 ): SCREAMING_SNAKE_CASE = Node[KT, VT]() SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = p SCREAMING_SNAKE_CASE = max_level def __str__( self : int ): SCREAMING_SNAKE_CASE = list(self ) if len(__lowerCamelCase ) == 0: return f"SkipList(level={self.level})" SCREAMING_SNAKE_CASE = max((len(str(__lowerCamelCase ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE = max(__lowerCamelCase , 4 ) + 4 SCREAMING_SNAKE_CASE = self.head SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = node.forward.copy() lines.append(f"[{node.key}]".ljust(__lowerCamelCase , "-" ) + "* " * len(__lowerCamelCase ) ) lines.append(" " * label_size + "| " * len(__lowerCamelCase ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE = node.forward[0] lines.append( f"[{node.key}]".ljust(__lowerCamelCase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = node.forward lines.append("None".ljust(__lowerCamelCase ) + "* " * len(__lowerCamelCase ) ) return f"SkipList(level={self.level})\n" + "\n".join(__lowerCamelCase ) def __iter__( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE = node.forward[0] def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = 1 while random() < self.p and level < self.max_level: level += 1 return level def _snake_case ( self : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _snake_case ( self : List[str] , __lowerCamelCase : KT ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(__lowerCamelCase ) if node is not None: for i, update_node in enumerate(__lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE = node.forward[i] else: SCREAMING_SNAKE_CASE = update_node.forward[:i] def _snake_case ( self : Optional[int] , __lowerCamelCase : KT , __lowerCamelCase : VT ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(__lowerCamelCase ) if node is not None: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __lowerCamelCase ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE = level SCREAMING_SNAKE_CASE = Node(__lowerCamelCase , __lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = new_node def _snake_case ( self : int , __lowerCamelCase : VT ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._locate_node(__lowerCamelCase ) if node is not None: return node.value return None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 12 ) skip_list.insert("Key3" , 41 ) skip_list.insert("Key4" , -19 ) SCREAMING_SNAKE_CASE = skip_list.head SCREAMING_SNAKE_CASE = {} while node.level != 0: SCREAMING_SNAKE_CASE = node.forward[0] SCREAMING_SNAKE_CASE = node.value assert len(A__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 10 ) skip_list.insert("Key1" , 12 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 10 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 10 ) SCREAMING_SNAKE_CASE = skip_list.head SCREAMING_SNAKE_CASE = {} while node.level != 0: SCREAMING_SNAKE_CASE = node.forward[0] SCREAMING_SNAKE_CASE = node.value if len(A__ ) != 4: print() assert len(A__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() assert skip_list.find("Some key" ) is None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key2" , 20 ) assert skip_list.find("Key2" ) == 20 skip_list.insert("Some Key" , 10 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 13 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 10 assert skip_list.find("V" ) == 13 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 14 ) skip_list.insert("Key2" , 15 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 14 assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 12 assert skip_list.find("Key2" ) == 15 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 15 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert("Key1" , 12 ) skip_list.insert("V" , 13 ) skip_list.insert("X" , 142 ) skip_list.insert("Key2" , 15 ) skip_list.delete("X" ) def traverse_keys(A__ : Dict ): yield node.key for forward_node in node.forward: yield from traverse_keys(A__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __a ( ): def is_sorted(A__ : Dict ): return all(next_item >= item for item, next_item in zip(A__ , lst[1:] ) ) SCREAMING_SNAKE_CASE = SkipList() for i in range(10 ): skip_list.insert(A__ , A__ ) assert is_sorted(list(A__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(A__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(A__ ) ) def __a ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __a ( ): SCREAMING_SNAKE_CASE = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1
__A : Optional[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __A : Optional[Any] = ['a', 'b', 'c', 'd', 'e'] def __a ( A__ : Dict , A__ : List[Any] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = start # add current to visited visited.append(A__ ) SCREAMING_SNAKE_CASE = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": __A : Any = topological_sort('a', [], []) print(sort)
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
from __future__ import annotations from collections import Counter from random import random class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] ): SCREAMING_SNAKE_CASE = {} def _snake_case ( self : str , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = {} def _snake_case ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if nodea not in self.connections: self.add_node(__lowerCamelCase ) if nodea not in self.connections: self.add_node(__lowerCamelCase ) SCREAMING_SNAKE_CASE = probability def _snake_case ( self : Optional[Any] ): return list(self.connections ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __a ( A__ : str , A__ : list[tuple[str, str, float]] , A__ : int ): SCREAMING_SNAKE_CASE = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = Counter(graph.get_nodes() ) SCREAMING_SNAKE_CASE = start for _ in range(A__ ): SCREAMING_SNAKE_CASE = graph.transition(A__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
698
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) SCREAMING_SNAKE_CASE = "xvjiarui/stable-diffusion-2-inpainting" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionInpaintPipeline.from_pretrained(__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "Face of a yellow cat, high resolution, sitting on a park bench" SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = num_samples * [init_image] SCREAMING_SNAKE_CASE = num_samples * [mask_image] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(__lowerCamelCase ) SCREAMING_SNAKE_CASE = jax.random.split(__lowerCamelCase , jax.device_count() ) SCREAMING_SNAKE_CASE = shard(__lowerCamelCase ) SCREAMING_SNAKE_CASE = shard(__lowerCamelCase ) SCREAMING_SNAKE_CASE = shard(__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , jit=__lowerCamelCase ) SCREAMING_SNAKE_CASE = output.images.reshape(__lowerCamelCase , 512 , 512 , 3 ) SCREAMING_SNAKE_CASE = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Union[str, Any] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None # sigma(t_i) @classmethod def _snake_case ( cls : Tuple ): return cls() @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' @property def _snake_case ( self : List[Any] ): return True @register_to_config def __init__( self : int , __lowerCamelCase : float = 0.02 , __lowerCamelCase : float = 100 , __lowerCamelCase : float = 1.007 , __lowerCamelCase : float = 80 , __lowerCamelCase : float = 0.05 , __lowerCamelCase : float = 50 , ): pass def _snake_case ( self : Optional[int] ): return KarrasVeSchedulerState.create() def _snake_case ( self : str , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : int , __lowerCamelCase : Tuple = () ): SCREAMING_SNAKE_CASE = jnp.arange(0 , __lowerCamelCase )[::-1].copy() SCREAMING_SNAKE_CASE = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__lowerCamelCase , schedule=jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , timesteps=__lowerCamelCase , ) def _snake_case ( self : Dict , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : float , __lowerCamelCase : random.KeyArray , ): if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE = random.split(__lowerCamelCase , num=1 ) SCREAMING_SNAKE_CASE = self.config.s_noise * random.normal(key=__lowerCamelCase , shape=sample.shape ) SCREAMING_SNAKE_CASE = sigma + gamma * sigma SCREAMING_SNAKE_CASE = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Dict , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , state=__lowerCamelCase ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : jnp.ndarray , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , state=__lowerCamelCase ) def _snake_case ( self : Dict , __lowerCamelCase : KarrasVeSchedulerState , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): raise NotImplementedError()
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = IFInpaintingSuperResolutionPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def _snake_case ( self : Tuple ): return self._get_superresolution_dummy_components() def _snake_case ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _snake_case ( self : int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _snake_case ( self : Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _snake_case ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _snake_case ( self : List[Any] ): self._test_save_load_local() def _snake_case ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
698
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __a ( A__ : List[Any] , A__ : List[Any] , A__ : Optional[int]=0 ): # Format the message. if name is None: SCREAMING_SNAKE_CASE = None else: SCREAMING_SNAKE_CASE = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" SCREAMING_SNAKE_CASE = fmt.format(A__ ) # Print and recurse (if needed). if isinstance(A__ , A__ ): if msg is not None: print(A__ ) for k in val.keys(): recursive_print(A__ , val[k] , spaces + 2 ) elif isinstance(A__ , torch.Tensor ): print(A__ , ":" , val.size() ) else: print(A__ , ":" , A__ ) def __a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : Dict , A__ : List[str] , A__ : List[Any] ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE = (num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE = param.view(*A__ ) SCREAMING_SNAKE_CASE = param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE = (num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE = param.view(*A__ ) SCREAMING_SNAKE_CASE = param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE = param.view(*A__ ) return param def __a ( A__ : Optional[Any] , A__ : Tuple , A__ : Any ): # The converted output model. SCREAMING_SNAKE_CASE = {} # old versions did not store training args SCREAMING_SNAKE_CASE = input_state_dict.get("args" , A__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE = ds_args.padded_vocab_size SCREAMING_SNAKE_CASE = ds_args.max_position_embeddings SCREAMING_SNAKE_CASE = ds_args.hidden_size SCREAMING_SNAKE_CASE = ds_args.num_layers SCREAMING_SNAKE_CASE = ds_args.num_attention_heads SCREAMING_SNAKE_CASE = ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE = config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE = input_state_dict["checkpoint_version"] else: SCREAMING_SNAKE_CASE = 0.0 # The model. SCREAMING_SNAKE_CASE = input_state_dict["model"] # The language model. SCREAMING_SNAKE_CASE = model["language_model"] # The embeddings. SCREAMING_SNAKE_CASE = lm["embedding"] # The word embeddings. SCREAMING_SNAKE_CASE = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE = word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE = word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. SCREAMING_SNAKE_CASE = pos_embeddings # The transformer. SCREAMING_SNAKE_CASE = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. SCREAMING_SNAKE_CASE = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE = layer_re.match(A__ ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE = int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE = m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE = m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE = F"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): SCREAMING_SNAKE_CASE = "ln_1" if op_name.startswith("input" ) else "ln_2" SCREAMING_SNAKE_CASE = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , A__ , A__ ) SCREAMING_SNAKE_CASE = causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE = torch.tensor(-1E4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE = masked_bias SCREAMING_SNAKE_CASE = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE = out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ ) # Store. No change of shape. SCREAMING_SNAKE_CASE = out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE = megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE = transformer["final_layernorm.weight"] SCREAMING_SNAKE_CASE = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE = word_embeddings # It should be done! return output_state_dict def __a ( ): # Create the argument parser. SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=A__ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=A__ , help="An optional config json file describing the pre-trained model." , ) SCREAMING_SNAKE_CASE = parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: SCREAMING_SNAKE_CASE = torch.load(A__ , map_location="cpu" ) else: SCREAMING_SNAKE_CASE = torch.load(args.path_to_checkpoint , map_location="cpu" ) SCREAMING_SNAKE_CASE = input_state_dict.get("args" , A__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE = "gelu_fast" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE = "gelu_new" else: SCREAMING_SNAKE_CASE = "gelu" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE = "gelu_new" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=A__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type="cls_index" , summary_use_proj=A__ , summary_activation=A__ , summary_proj_to_labels=A__ , summary_first_dropout=0.1 , scale_attn_weights=A__ , use_cache=A__ , bos_token_id=50256 , eos_token_id=50256 , ) else: SCREAMING_SNAKE_CASE = GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE = ["GPT2LMHeadModel"] # Convert. print("Converting" ) SCREAMING_SNAKE_CASE = convert_megatron_checkpoint(A__ , A__ , A__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(A__ , A__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE = "gpt2" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE = ds_args.tokenizer_name_or_path else: raise ValueError(F"Unrecognized tokenizer_type {tokenizer_type}" ) else: SCREAMING_SNAKE_CASE = "gpt2" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(A__ ) SCREAMING_SNAKE_CASE = type(A__ ).__name__ SCREAMING_SNAKE_CASE = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(A__ ) # Save tokenizer based on args print(F"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(A__ ) # Store the state_dict to file. SCREAMING_SNAKE_CASE = os.path.join(A__ , "pytorch_model.bin" ) print(F"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(A__ , A__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
698
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
1
from __future__ import annotations def __a ( A__ : int | float | str , A__ : int | float | str ): if nth_term == "": return [""] SCREAMING_SNAKE_CASE = int(A__ ) SCREAMING_SNAKE_CASE = int(A__ ) SCREAMING_SNAKE_CASE = [] for temp in range(int(A__ ) ): series.append(F"1 / {pow(temp + 1 , int(A__ ) )}" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = int(input('Enter the last number (nth term) of the P-Series')) __A : int = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "roc_bert" def __init__( self : List[str] , __lowerCamelCase : Any=30522 , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : str="absolute" , __lowerCamelCase : Dict=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=768 , __lowerCamelCase : Any=910 , __lowerCamelCase : Union[str, Any]=512 , __lowerCamelCase : Dict=24858 , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Any , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = enable_pronunciation SCREAMING_SNAKE_CASE = enable_shape SCREAMING_SNAKE_CASE = pronunciation_embed_dim SCREAMING_SNAKE_CASE = pronunciation_vocab_size SCREAMING_SNAKE_CASE = shape_embed_dim SCREAMING_SNAKE_CASE = shape_vocab_size SCREAMING_SNAKE_CASE = concat_input SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
698
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __A : str = 5_0_0_0_0 __A : Optional[Any] = 5_0_0_0 __A , __A : Union[str, Any] = os.path.split(__file__) __A : int = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __a ( A__ : datasets.Dataset , A__ : Union[str, Any] ): for i in range(A__ ): SCREAMING_SNAKE_CASE = dataset[i] @get_duration def __a ( A__ : datasets.Dataset , A__ : Optional[int] , A__ : Tuple ): for i in range(0 , len(A__ ) , A__ ): SCREAMING_SNAKE_CASE = dataset[i : i + batch_size] @get_duration def __a ( A__ : datasets.Dataset , A__ : List[Any] , A__ : str ): with dataset.formatted_as(type=A__ ): for i in range(A__ ): SCREAMING_SNAKE_CASE = dataset[i] @get_duration def __a ( A__ : datasets.Dataset , A__ : Optional[Any] , A__ : Optional[Any] , A__ : Union[str, Any] ): with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): SCREAMING_SNAKE_CASE = dataset[i : i + batch_size] def __a ( ): SCREAMING_SNAKE_CASE = {"num examples": SPEED_TEST_N_EXAMPLES} SCREAMING_SNAKE_CASE = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted, {"type": "pandas", "length": SMALL_TEST}), (read_formatted, {"type": "torch", "length": SMALL_TEST}), (read_formatted, {"type": "tensorflow", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] SCREAMING_SNAKE_CASE = [ (read, {"length": SMALL_TEST}), (read, {"length": SPEED_TEST_N_EXAMPLES}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 10}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 100}), (read_batch, {"length": SPEED_TEST_N_EXAMPLES, "batch_size": 1000}), (read_formatted, {"type": "numpy", "length": SMALL_TEST}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 10}), (read_formatted_batch, {"type": "numpy", "length": SMALL_TEST, "batch_size": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) SCREAMING_SNAKE_CASE = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) SCREAMING_SNAKE_CASE = generate_example_dataset( os.path.join(A__ , "dataset.arrow" ) , A__ , num_examples=A__ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) SCREAMING_SNAKE_CASE = func(A__ , **A__ ) print("shuffling dataset" ) SCREAMING_SNAKE_CASE = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(A__ ) ) SCREAMING_SNAKE_CASE = func( A__ , **A__ ) with open(A__ , "wb" ) as f: f.write(json.dumps(A__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
698
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : NestedDataStructureLike[PathLike] , __lowerCamelCase : Optional[NamedSplit] = None , __lowerCamelCase : Optional[Features] = None , __lowerCamelCase : str = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Tuple , ): super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = field SCREAMING_SNAKE_CASE = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE = Json( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , field=__lowerCamelCase , **__lowerCamelCase , ) def _snake_case ( self : Any ): # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Dataset , __lowerCamelCase : Union[PathLike, BinaryIO] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : int , ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0." ) SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = path_or_buf SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE = num_proc SCREAMING_SNAKE_CASE = "utf-8" SCREAMING_SNAKE_CASE = to_json_kwargs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("path_or_buf" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("orient" , "records" ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop("compression" , __lowerCamelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=__lowerCamelCase ) as buffer: SCREAMING_SNAKE_CASE = self._write(file_obj=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead." ) SCREAMING_SNAKE_CASE = self._write( file_obj=self.path_or_buf , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **self.to_json_kwargs ) return written def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = args SCREAMING_SNAKE_CASE = query_table( table=self.dataset.data , key=slice(__lowerCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE = batch.to_pandas().to_json( path_or_buf=__lowerCamelCase , orient=__lowerCamelCase , lines=__lowerCamelCase , index=__lowerCamelCase , **__lowerCamelCase ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : BinaryIO , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int , **__lowerCamelCase : List[str] , ): SCREAMING_SNAKE_CASE = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): SCREAMING_SNAKE_CASE = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCamelCase , __lowerCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(__lowerCamelCase ) return written
698
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
1