code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): SCREAMING_SNAKE_CASE = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowerCamelCase , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = "sgugger/tiny-distilbert-classification" SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=__lowerCamelCase , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase , [config] ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase , [config] ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase , [config] ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = "patrickvonplaten/t5-tiny-random" SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase , configs=[config] ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=__lowerCamelCase , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv" ) , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv" ) , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv" ) ).exists() ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase : Dict ): self.assertTrue(hasattr(__lowerCamelCase , "sequential" ) ) self.assertTrue(hasattr(__lowerCamelCase , "cumulative" ) ) self.assertTrue(hasattr(__lowerCamelCase , "current" ) ) self.assertTrue(hasattr(__lowerCamelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt" ) , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , eager_mode=__lowerCamelCase , multi_process=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = TensorFlowBenchmark(__lowerCamelCase ) SCREAMING_SNAKE_CASE = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt" ) ).exists() )
698
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : List[str] = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
def __a ( A__ : int ): SCREAMING_SNAKE_CASE = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
from __future__ import annotations class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : int = 0 ): SCREAMING_SNAKE_CASE = key def _snake_case ( self : str , __lowerCamelCase : str , __lowerCamelCase : int ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__lowerCamelCase ) ^ key ) for ch in content] def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : int ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__lowerCamelCase ) ^ key ) for ch in content] def _snake_case ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : int = 0 ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE = "" for ch in content: ans += chr(ord(__lowerCamelCase ) ^ key ) return ans def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int = 0 ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned SCREAMING_SNAKE_CASE = "" for ch in content: ans += chr(ord(__lowerCamelCase ) ^ key ) return ans def _snake_case ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int = 0 ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) try: with open(__lowerCamelCase ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__lowerCamelCase , __lowerCamelCase ) ) except OSError: return False return True def _snake_case ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : int ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ) try: with open(__lowerCamelCase ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__lowerCamelCase , __lowerCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
698
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Any = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "informer" lowerCamelCase__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Dict , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : str = "student_t" , __lowerCamelCase : str = "nll" , __lowerCamelCase : int = 1 , __lowerCamelCase : List[int] = None , __lowerCamelCase : Optional[Union[str, bool]] = "mean" , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 2 , __lowerCamelCase : bool = True , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.05 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : float = 0.1 , __lowerCamelCase : int = 100 , __lowerCamelCase : float = 0.02 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str = "prob" , __lowerCamelCase : int = 5 , __lowerCamelCase : bool = True , **__lowerCamelCase : List[str] , ): # time series specific configuration SCREAMING_SNAKE_CASE = prediction_length SCREAMING_SNAKE_CASE = context_length or prediction_length SCREAMING_SNAKE_CASE = distribution_output SCREAMING_SNAKE_CASE = loss SCREAMING_SNAKE_CASE = input_size SCREAMING_SNAKE_CASE = num_time_features SCREAMING_SNAKE_CASE = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE = scaling SCREAMING_SNAKE_CASE = num_dynamic_real_features SCREAMING_SNAKE_CASE = num_static_real_features SCREAMING_SNAKE_CASE = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) SCREAMING_SNAKE_CASE = cardinality else: SCREAMING_SNAKE_CASE = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__lowerCamelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) SCREAMING_SNAKE_CASE = embedding_dimension else: SCREAMING_SNAKE_CASE = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = encoder_attention_heads SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = encoder_ffn_dim SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = encoder_layers SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = encoder_layerdrop SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = use_cache # Informer SCREAMING_SNAKE_CASE = attention_type SCREAMING_SNAKE_CASE = sampling_factor SCREAMING_SNAKE_CASE = distil super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _snake_case ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[str] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self._create_example_records() SCREAMING_SNAKE_CASE = Dataset.from_list(__lowerCamelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(__lowerCamelCase ): self.assertDictEqual(__lowerCamelCase , example_records[i] ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self._create_example_records() SCREAMING_SNAKE_CASE = Dataset.from_list(__lowerCamelCase ) SCREAMING_SNAKE_CASE = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _snake_case ( self : List[str] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE = [{"col_1": 1}, {"col_2": "x"}] SCREAMING_SNAKE_CASE = Dataset.from_list(__lowerCamelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def _snake_case ( self : Dict ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE = [{"col_1": []}, {"col_1": [1, 2]}] SCREAMING_SNAKE_CASE = Dataset.from_list(__lowerCamelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Dataset.from_list([] ) self.assertEqual(len(__lowerCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
698
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
1
def __a ( A__ : list , A__ : int = 0 ): SCREAMING_SNAKE_CASE = length or len(A__ ) SCREAMING_SNAKE_CASE = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE = True return list_data if not swapped else bubble_sort(A__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
698
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = GPTSanJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = {"do_clean_text": False, "add_prefix_space": False} def _snake_case ( self : Dict ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on SCREAMING_SNAKE_CASE = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__lowerCamelCase ) ) def _snake_case ( self : List[Any] , **__lowerCamelCase : Dict ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = "こんにちは、世界。 \nこんばんは、㔺界。😀" SCREAMING_SNAKE_CASE = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_input_output_texts(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) return text, ids def _snake_case ( self : str ): pass # TODO add if relevant def _snake_case ( self : List[Any] ): pass # TODO add if relevant def _snake_case ( self : List[Any] ): pass # TODO add if relevant def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE = "こんにちは、世界。 こんばんは、㔺界。" SCREAMING_SNAKE_CASE = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" SCREAMING_SNAKE_CASE = "こんにちは、、、、世界。こんばんは、、、、世界。" SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization SCREAMING_SNAKE_CASE = "こんにちは、世界。" SCREAMING_SNAKE_CASE = "こんばんは、㔺界。😀" SCREAMING_SNAKE_CASE = "こんにちは、世界。こんばんは、世界。😀" SCREAMING_SNAKE_CASE = tokenizer.encode(prefix_text + input_text ) SCREAMING_SNAKE_CASE = tokenizer.encode("" , prefix_text=prefix_text + input_text ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , prefix_text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization SCREAMING_SNAKE_CASE = "こんにちは、世界。" SCREAMING_SNAKE_CASE = "こんばんは、㔺界。😀" SCREAMING_SNAKE_CASE = len(tokenizer.encode(__lowerCamelCase ) ) - 2 SCREAMING_SNAKE_CASE = len(tokenizer.encode(__lowerCamelCase ) ) - 2 SCREAMING_SNAKE_CASE = [1] + [0] * (len_prefix + len_text + 1) SCREAMING_SNAKE_CASE = [1] * (len_prefix + len_text + 1) + [0] SCREAMING_SNAKE_CASE = [1] + [1] * (len_prefix) + [0] * (len_text + 1) SCREAMING_SNAKE_CASE = tokenizer(prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , prefix_text=__lowerCamelCase ).token_type_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) SCREAMING_SNAKE_CASE = tokenizer.encode("あンいワ" ) SCREAMING_SNAKE_CASE = tokenizer.encode("" , prefix_text="あンいワ" ) SCREAMING_SNAKE_CASE = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__lowerCamelCase ) , tokenizer.decode(__lowerCamelCase ) ) self.assertEqual(tokenizer.decode(__lowerCamelCase ) , tokenizer.decode(__lowerCamelCase ) ) self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) SCREAMING_SNAKE_CASE = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_encode_plus(__lowerCamelCase , padding=__lowerCamelCase ) # fmt: off SCREAMING_SNAKE_CASE = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] SCREAMING_SNAKE_CASE = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] SCREAMING_SNAKE_CASE = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowerCamelCase ) self.assertListEqual(x_token.token_type_ids , __lowerCamelCase ) self.assertListEqual(x_token.attention_mask , __lowerCamelCase ) self.assertListEqual(x_token_a.input_ids , __lowerCamelCase ) self.assertListEqual(x_token_a.token_type_ids , __lowerCamelCase ) self.assertListEqual(x_token_a.attention_mask , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _snake_case ( self : Tuple ): # tokenizer has no padding token pass
698
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __a ( A__ : str , A__ : str , A__ : str , A__ : PreTrainedTokenizer , A__ : int , A__ : Optional[int] = None , ): SCREAMING_SNAKE_CASE = {} if train_file is not None: SCREAMING_SNAKE_CASE = [train_file] if eval_file is not None: SCREAMING_SNAKE_CASE = [eval_file] if test_file is not None: SCREAMING_SNAKE_CASE = [test_file] SCREAMING_SNAKE_CASE = datasets.load_dataset("csv" , data_files=A__ ) SCREAMING_SNAKE_CASE = list(ds[list(files.keys() )[0]].features.keys() ) SCREAMING_SNAKE_CASE = features_name.pop(A__ ) SCREAMING_SNAKE_CASE = list(set(ds[list(files.keys() )[0]][label_name] ) ) SCREAMING_SNAKE_CASE = {label: i for i, label in enumerate(A__ )} SCREAMING_SNAKE_CASE = tokenizer.model_input_names SCREAMING_SNAKE_CASE = {} if len(A__ ) == 1: for k in files.keys(): SCREAMING_SNAKE_CASE = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding="max_length" ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): SCREAMING_SNAKE_CASE = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding="max_length" , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: SCREAMING_SNAKE_CASE = {k: v for k, v in ex.items() if k in input_names} SCREAMING_SNAKE_CASE = labelaid[ex[label_name]] yield (d, label) SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: SCREAMING_SNAKE_CASE = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: SCREAMING_SNAKE_CASE = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) SCREAMING_SNAKE_CASE = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: SCREAMING_SNAKE_CASE = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A : Optional[Any] = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field(metadata={"help": "Which column contains the label"} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "The path of the training file"} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "The path of the development file"} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "The path of the test file"} ) lowerCamelCase__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " F"16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer SCREAMING_SNAKE_CASE = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(A__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F" {key} = {value}" ) writer.write(F"{key} = {value}\n" ) results.update(A__ ) return results if __name__ == "__main__": main()
698
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
import re from filelock import FileLock try: import nltk __A : List[str] = True except (ImportError, ModuleNotFoundError): __A : List[str] = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __a ( A__ : str ): re.sub("<n>" , "" , A__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__ ) )
698
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __a ( A__ : np.ndarray , A__ : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(A__ , A__ ) ) ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): if dataset.ndim != value_array.ndim: SCREAMING_SNAKE_CASE = ( "Wrong input data's dimensions... " F"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(A__ ) try: if dataset.shape[1] != value_array.shape[1]: SCREAMING_SNAKE_CASE = ( "Wrong input data's shape... " F"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(A__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: SCREAMING_SNAKE_CASE = ( "Input data have different datatype... " F"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(A__ ) SCREAMING_SNAKE_CASE = [] for value in value_array: SCREAMING_SNAKE_CASE = euclidean(A__ , dataset[0] ) SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: SCREAMING_SNAKE_CASE = euclidean(A__ , A__ ) if dist > temp_dist: SCREAMING_SNAKE_CASE = temp_dist SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def __a ( A__ : np.ndarray , A__ : np.ndarray ): return np.dot(A__ , A__ ) / (norm(A__ ) * norm(A__ )) if __name__ == "__main__": import doctest doctest.testmod()
698
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = GPTaTokenizer lowerCamelCase__ = GPTaTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {"add_prefix_space": True} lowerCamelCase__ = False def _snake_case ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def _snake_case ( self : List[str] , **__lowerCamelCase : List[str] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Tuple , **__lowerCamelCase : List[Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing the unknown token SCREAMING_SNAKE_CASE = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Tuple ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # Simple input SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE = tokenizer.pad_token_id SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding="max_length" , max_length=30 , return_tensors="np" ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=60 , return_tensors="np" ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = "$$$" SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE = tokenizer.bos_token_id SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : str ): # TODO: change to self.get_tokenizers() when the fast version is implemented SCREAMING_SNAKE_CASE = [self.get_tokenizer(do_lower_case=__lowerCamelCase , add_bos_token=__lowerCamelCase )] for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE = "Encode this." SCREAMING_SNAKE_CASE = "This one too please." SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) encoded_sequence += tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode_plus( __lowerCamelCase , __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , ) SCREAMING_SNAKE_CASE = encoded_sequence_dict["input_ids"] SCREAMING_SNAKE_CASE = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__lowerCamelCase ) ] SCREAMING_SNAKE_CASE = [x for x in filtered_sequence if x is not None] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A photo of a cat" SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("test_opt" ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("./test_opt" ) SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [2, 250, 1345, 9, 10, 4758] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "A photo of a cat" SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) # Same as above self.assertEqual(__lowerCamelCase , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "bos" SCREAMING_SNAKE_CASE = tokenizer.get_vocab()["bos"] SCREAMING_SNAKE_CASE = "A photo of a cat" SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) # We changed the bos token self.assertEqual(__lowerCamelCase , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("./tok" ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) SCREAMING_SNAKE_CASE = tokenizer.encode( __lowerCamelCase , ) self.assertEqual(__lowerCamelCase , [31957, 250, 1345, 9, 10, 4758] )
698
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
1
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
698
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( A__ : Optional[Any] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = checkpoint SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_in.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_in.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.conv_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.norm_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["encoder.norm_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_in.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_in.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.conv_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.norm_out.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["decoder.norm_out.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["quant_conv.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["quant_conv.bias"] SCREAMING_SNAKE_CASE = vae_state_dict["post_quant_conv.weight"] SCREAMING_SNAKE_CASE = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(A__ ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(A__ ) } for i in range(A__ ): SCREAMING_SNAKE_CASE = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) SCREAMING_SNAKE_CASE = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "encoder.mid.block" in key] SCREAMING_SNAKE_CASE = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "encoder.mid.attn" in key] SCREAMING_SNAKE_CASE = renew_vae_attention_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) conv_attn_to_linear(A__ ) for i in range(A__ ): SCREAMING_SNAKE_CASE = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] SCREAMING_SNAKE_CASE = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "decoder.mid.block" in key] SCREAMING_SNAKE_CASE = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE = renew_vae_resnet_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) SCREAMING_SNAKE_CASE = [key for key in vae_state_dict if "decoder.mid.attn" in key] SCREAMING_SNAKE_CASE = renew_vae_attention_paths(A__ ) SCREAMING_SNAKE_CASE = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) conv_attn_to_linear(A__ ) return new_checkpoint def __a ( A__ : str , A__ : str , ): # Only support V1 SCREAMING_SNAKE_CASE = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) SCREAMING_SNAKE_CASE = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE = OmegaConf.load(A__ ) SCREAMING_SNAKE_CASE = 512 SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open SCREAMING_SNAKE_CASE = {} with safe_open(A__ , framework="pt" , device="cpu" ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE = f.get_tensor(A__ ) else: SCREAMING_SNAKE_CASE = torch.load(A__ , map_location=A__ )["state_dict"] # Convert the VAE model. SCREAMING_SNAKE_CASE = create_vae_diffusers_config(A__ , image_size=A__ ) SCREAMING_SNAKE_CASE = custom_convert_ldm_vae_checkpoint(A__ , A__ ) SCREAMING_SNAKE_CASE = AutoencoderKL(**A__ ) vae.load_state_dict(A__ ) vae.save_pretrained(A__ ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __A : int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
698
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = XLMTokenizer lowerCamelCase__ = False def _snake_case ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = ["l o 123", "lo w 1456", "e r</w> 1789", ""] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def _snake_case ( self : Tuple , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = "lower newer" return input_text, output_text def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = XLMTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE = "lower" SCREAMING_SNAKE_CASE = ["low", "er</w>"] SCREAMING_SNAKE_CASE = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = tokens + ["<unk>"] SCREAMING_SNAKE_CASE = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
698
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = 2 @register_to_config def __init__( self : Tuple , __lowerCamelCase : float = 0.02 , __lowerCamelCase : float = 100 , __lowerCamelCase : float = 1.007 , __lowerCamelCase : float = 80 , __lowerCamelCase : float = 0.05 , __lowerCamelCase : float = 50 , ): # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE = sigma_max # setable values SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None # sigma(t_i) def _snake_case ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ): return sample def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ): SCREAMING_SNAKE_CASE = num_inference_steps SCREAMING_SNAKE_CASE = np.arange(0 , self.num_inference_steps )[::-1].copy() SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase , dtype=torch.floataa , device=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE = self.config.s_noise * randn_tensor(sample.shape , generator=__lowerCamelCase ).to(sample.device ) SCREAMING_SNAKE_CASE = sigma + gamma * sigma SCREAMING_SNAKE_CASE = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : str , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def _snake_case ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): raise NotImplementedError()
698
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
1
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __A : str = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=1 ): SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE = n_copies def __iter__( self : Optional[Any] ): SCREAMING_SNAKE_CASE = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = start_length SCREAMING_SNAKE_CASE = eof_strings SCREAMING_SNAKE_CASE = tokenizer def __call__( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , **__lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__lowerCamelCase ) def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = re.split("(%s)" % "|".join(A__ ) , A__ ) # last string should be "" return "".join(string_list[:-2] ) def __a ( A__ : Any , A__ : Tuple , A__ : Any , A__ : Dict , A__ : str , A__ : Dict=20 , **A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = defaultdict(A__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(A__ ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE = accelerator.unwrap_model(A__ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=A__ , **A__ ) # each task is generated batch_size times SCREAMING_SNAKE_CASE = batch["task_id"].repeat(A__ ) SCREAMING_SNAKE_CASE = accelerator.pad_across_processes( A__ , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE = generated_tasks.cpu().numpy() for task, generated_tokens in zip(A__ , A__ ): gen_token_dict[task].append(A__ ) SCREAMING_SNAKE_CASE = [[] for _ in range(A__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE = tokenizer.decode(A__ , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) code_gens[task].append(remove_last_block(A__ ) ) return code_gens def __a ( ): # Setup configuration SCREAMING_SNAKE_CASE = HfArgumentParser(A__ ) SCREAMING_SNAKE_CASE = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE = Accelerator() set_seed(args.seed , device_specific=A__ ) # Load model and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE = tokenizer.eos_token SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , A__ , A__ )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE = load_metric("code_eval" ) SCREAMING_SNAKE_CASE = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE = TokenizedDataset(A__ , human_eval["test"] , n_copies=A__ , n_tasks=A__ ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE = DataLoader(A__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(A__ , A__ ) SCREAMING_SNAKE_CASE = complete_code( A__ , A__ , A__ , A__ , n_tasks=A__ , batch_size=args.batch_size , **A__ , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE = [] for task in tqdm(range(A__ ) ): SCREAMING_SNAKE_CASE = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE = F"check({human_eval['test'][task]['entry_point']})" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = code_eval_metric.compute( references=A__ , predictions=A__ , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(A__ , A__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
698
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
698
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A : List[str] = logging.get_logger(__name__) __A : Optional[int] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "instructblip_vision_model" def __init__( self : str , __lowerCamelCase : Union[str, Any]=1408 , __lowerCamelCase : str=6144 , __lowerCamelCase : Any=39 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : str=224 , __lowerCamelCase : List[str]=14 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Optional[int]=1e-6 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Any=1e-10 , __lowerCamelCase : Any=True , **__lowerCamelCase : Tuple , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = qkv_bias @classmethod def _snake_case ( cls : Optional[int] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Any ): cls._set_token_in_kwargs(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": SCREAMING_SNAKE_CASE = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "instructblip_qformer" def __init__( self : List[Any] , __lowerCamelCase : Tuple=30522 , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Union[str, Any]="absolute" , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=1408 , **__lowerCamelCase : Optional[Any] , ): super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = cross_attention_frequency SCREAMING_SNAKE_CASE = encoder_hidden_size @classmethod def _snake_case ( cls : Optional[int] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Dict ): cls._set_token_in_kwargs(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": SCREAMING_SNAKE_CASE = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "instructblip" lowerCamelCase__ = True def __init__( self : int , __lowerCamelCase : int=None , __lowerCamelCase : Any=None , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=32 , **__lowerCamelCase : List[Any] ): super().__init__(**__lowerCamelCase ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: SCREAMING_SNAKE_CASE = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) SCREAMING_SNAKE_CASE = InstructBlipVisionConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = InstructBlipQFormerConfig(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = text_config["model_type"] if "model_type" in text_config else "opt" SCREAMING_SNAKE_CASE = CONFIG_MAPPING[text_model_type](**__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE = num_query_tokens SCREAMING_SNAKE_CASE = self.vision_config.hidden_size SCREAMING_SNAKE_CASE = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.02 @classmethod def _snake_case ( cls : List[str] , __lowerCamelCase : InstructBlipVisionConfig , __lowerCamelCase : InstructBlipQFormerConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : Union[str, Any] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__lowerCamelCase , ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
698
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ = ["transformers", "torch", "note_seq"] def __init__( self : Optional[int] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _snake_case ( cls : Tuple , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Union[str, Any] ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _snake_case ( cls : Tuple , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
698
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
1
import os def __a ( ): with open(os.path.dirname(A__ ) + "/grid.txt" ) as f: SCREAMING_SNAKE_CASE = [] # noqa: E741 for _ in range(20 ): l.append([int(A__ ) for x in f.readline().split()] ) SCREAMING_SNAKE_CASE = 0 # right for i in range(20 ): for j in range(17 ): SCREAMING_SNAKE_CASE = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: SCREAMING_SNAKE_CASE = temp # down for i in range(17 ): for j in range(20 ): SCREAMING_SNAKE_CASE = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: SCREAMING_SNAKE_CASE = temp # diagonal 1 for i in range(17 ): for j in range(17 ): SCREAMING_SNAKE_CASE = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: SCREAMING_SNAKE_CASE = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): SCREAMING_SNAKE_CASE = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: SCREAMING_SNAKE_CASE = temp return maximum if __name__ == "__main__": print(solution())
698
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
1
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
1
from __future__ import annotations import math def __a ( A__ : float , A__ : int ): SCREAMING_SNAKE_CASE = u for i in range(1 , A__ ): SCREAMING_SNAKE_CASE = temp * (u - i) return temp def __a ( ): SCREAMING_SNAKE_CASE = int(input("enter the numbers of values: " ) ) SCREAMING_SNAKE_CASE = [] for _ in range(A__ ): y.append([] ) for i in range(A__ ): for j in range(A__ ): y[i].append(A__ ) SCREAMING_SNAKE_CASE = 0 print("enter the values of parameters in a list: " ) SCREAMING_SNAKE_CASE = list(map(A__ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(A__ ): SCREAMING_SNAKE_CASE = float(input() ) SCREAMING_SNAKE_CASE = int(input("enter the value to interpolate: " ) ) SCREAMING_SNAKE_CASE = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , A__ ): for j in range(n - i ): SCREAMING_SNAKE_CASE = y[j + 1][i - 1] - y[j][i - 1] SCREAMING_SNAKE_CASE = y[0][0] for i in range(1 , A__ ): summ += (ucal(A__ , A__ ) * y[0][i]) / math.factorial(A__ ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
698
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : int = logging.get_logger(__name__) __A : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "bit" lowerCamelCase__ = ["preactivation", "bottleneck"] lowerCamelCase__ = ["SAME", "VALID"] def __init__( self : List[str] , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=64 , __lowerCamelCase : int=[256, 512, 1024, 2048] , __lowerCamelCase : int=[3, 4, 6, 3] , __lowerCamelCase : Tuple="preactivation" , __lowerCamelCase : Any="relu" , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: SCREAMING_SNAKE_CASE = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = global_padding SCREAMING_SNAKE_CASE = num_groups SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = embedding_dynamic_padding SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = width_factor SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
698
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : Dict = random.Random() if is_torch_available(): import torch def __a ( A__ : List[str] , A__ : Tuple=1.0 , A__ : List[str]=None , A__ : Union[str, Any]=None ): if rng is None: SCREAMING_SNAKE_CASE = global_rng SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=400 , __lowerCamelCase : Tuple=2000 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Any=16000 , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = min_seq_length SCREAMING_SNAKE_CASE = max_seq_length SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = padding_value SCREAMING_SNAKE_CASE = sampling_rate SCREAMING_SNAKE_CASE = return_attention_mask SCREAMING_SNAKE_CASE = do_normalize def _snake_case ( self : Optional[int] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _snake_case ( self : int , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False ): def _flatten(__lowerCamelCase : Optional[int] ): return list(itertools.chain(*__lowerCamelCase ) ) if equal_length: SCREAMING_SNAKE_CASE = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ASTFeatureExtractor def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = ASTFeatureExtractionTester(self ) def _snake_case ( self : Optional[int] ): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE = [np.asarray(__lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values SCREAMING_SNAKE_CASE = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ).input_values SCREAMING_SNAKE_CASE = feat_extract(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE = np.asarray(__lowerCamelCase ) SCREAMING_SNAKE_CASE = feat_extract(__lowerCamelCase , return_tensors="np" ).input_values SCREAMING_SNAKE_CASE = feat_extract(__lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) @require_torch def _snake_case ( self : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Tuple ): from datasets import load_dataset SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE = ds.sort("id" ).select(range(__lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def _snake_case ( self : List[Any] ): # fmt: off SCREAMING_SNAKE_CASE = torch.tensor( [-0.9_894, -1.2_776, -0.9_066, -1.2_776, -0.9_349, -1.2_609, -1.0_386, -1.2_776, -1.1_561, -1.2_776, -1.2_052, -1.2_723, -1.2_190, -1.2_132, -1.2_776, -1.1_133, -1.1_953, -1.1_343, -1.1_584, -1.2_203, -1.1_770, -1.2_474, -1.2_381, -1.1_936, -0.9_270, -0.8_317, -0.8_049, -0.7_706, -0.7_565, -0.7_869] ) # fmt: on SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE = ASTFeatureExtractor() SCREAMING_SNAKE_CASE = feature_extractor(__lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __lowerCamelCase , atol=1e-4 ) )
698
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : List[Any] = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "swinv2" lowerCamelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , __lowerCamelCase : Optional[Any]=224 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Dict=96 , __lowerCamelCase : List[str]=[2, 2, 6, 2] , __lowerCamelCase : List[str]=[3, 6, 12, 24] , __lowerCamelCase : Any=7 , __lowerCamelCase : Any=4.0 , __lowerCamelCase : str=True , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Dict=False , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Optional[int]=1e-5 , __lowerCamelCase : str=32 , **__lowerCamelCase : Tuple , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = use_absolute_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) SCREAMING_SNAKE_CASE = (0, 0, 0, 0)
698
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(A__ ) , A__ ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A__ ) , x.transpose() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , transpose(A__ ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , transpose(A__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ ) , np.asarray(transpose(A__ ) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(transpose(A__ , axes=(1, 2, 0) ) , np.asarray(transpose(A__ , axes=(1, 2, 0) ) ) ) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.reshape(A__ , (4, 3) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.reshape(A__ , (12, 5) ) ) ) @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_tf def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , reshape(A__ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , reshape(A__ , (12, 5) ).numpy() ) ) @require_flax def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (4, 3) ) , np.asarray(reshape(A__ , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(reshape(A__ , (12, 5) ) , np.asarray(reshape(A__ , (12, 5) ) ) ) ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A__ ) , np.squeeze(A__ ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.squeeze(A__ , axis=2 ) ) ) @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , squeeze(A__ ).numpy() ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , squeeze(A__ , axis=2 ).numpy() ) ) @require_flax def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ ) , np.asarray(squeeze(A__ ) ) ) ) SCREAMING_SNAKE_CASE = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(squeeze(A__ , axis=2 ) , np.asarray(squeeze(A__ , axis=2 ) ) ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.expand_dims(A__ , axis=1 ) ) ) @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = torch.tensor(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_tf def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = tf.constant(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , expand_dims(A__ , axis=1 ).numpy() ) ) @require_flax def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE = jnp.array(A__ ) self.assertTrue(np.allclose(expand_dims(A__ , axis=1 ) , np.asarray(expand_dims(A__ , axis=1 ) ) ) )
700
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : str=10 , __lowerCamelCase : Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase : List[str]=[1, 1, 2, 1] , __lowerCamelCase : List[Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : str=3 , __lowerCamelCase : Optional[int]=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Any ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = TFResNetModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFResNetForImageClassification(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = TFResNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _snake_case ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Optional[Any] ): return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def _snake_case ( self : int ): pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def _snake_case ( self : str ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _snake_case ( self : Union[str, Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Optional[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors="tf" ) # forward pass SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1e-4 ) )
701
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
0
from __future__ import annotations from typing import Any class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float = 0 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = row, column SCREAMING_SNAKE_CASE = [[default_value for c in range(UpperCAmelCase_ )] for r in range(UpperCAmelCase_ )] def __str__( self : Optional[int] ): SCREAMING_SNAKE_CASE = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier SCREAMING_SNAKE_CASE = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE = max(UpperCAmelCase_ , len(str(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE = f"%{max_element_length}s" # Make string and return def single_line(__lowerCamelCase : list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_ ) for row_vector in self.array ) return s def __repr__( self : Tuple ): return str(self ) def _snake_case ( self : List[str] , __lowerCamelCase : tuple[int, int] ): if not (isinstance(UpperCAmelCase_ , (list, tuple) ) and len(UpperCAmelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Union[str, Any] , __lowerCamelCase : tuple[int, int] ): assert self.validate_indicies(UpperCAmelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Dict , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : float ): assert self.validate_indicies(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = value def __add__( self : Optional[int] , __lowerCamelCase : Matrix ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE = self[r, c] + another[r, c] return result def __neg__( self : int ): SCREAMING_SNAKE_CASE = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE = -self[r, c] return result def __sub__( self : Optional[Any] , __lowerCamelCase : Matrix ): return self + (-another) def __mul__( self : List[str] , __lowerCamelCase : int | float | Matrix ): if isinstance(UpperCAmelCase_ , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE = self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE = f"Unsupported type given for another ({type(UpperCAmelCase_ )})" raise TypeError(UpperCAmelCase_ ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE = self[r, c] return result def _snake_case ( self : str , __lowerCamelCase : Matrix , __lowerCamelCase : Matrix ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE = v.transpose() SCREAMING_SNAKE_CASE = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __a ( ): # a^(-1) SCREAMING_SNAKE_CASE = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE = 1 print(F"a^(-1) is {ainv}" ) # u, v SCREAMING_SNAKE_CASE = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1, 2, -3 SCREAMING_SNAKE_CASE = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}" ) def __a ( ): import doctest doctest.testmod() testa()
702
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __a ( A__ : Optional[int] , A__ : List[Any] , A__ : Any ): SCREAMING_SNAKE_CASE = BertConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
704
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
705
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = UnCLIPImageVariationPipeline lowerCamelCase__ = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} lowerCamelCase__ = IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] lowerCamelCase__ = False @property def _snake_case ( self : Tuple ): return 32 @property def _snake_case ( self : Tuple ): return 32 @property def _snake_case ( self : int ): return self.time_input_dim @property def _snake_case ( self : Any ): return self.time_input_dim * 4 @property def _snake_case ( self : List[Any] ): return 100 @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCAmelCase_ ) @property def _snake_case ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCAmelCase_ ) @property def _snake_case ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } SCREAMING_SNAKE_CASE = UnCLIPTextProjModel(**UpperCAmelCase_ ) return model @property def _snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _snake_case ( self : List[str] ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _snake_case ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _snake_case ( self : Optional[Any] ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) SCREAMING_SNAKE_CASE = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.dummy_decoder SCREAMING_SNAKE_CASE = self.dummy_text_proj SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = self.dummy_tokenizer SCREAMING_SNAKE_CASE = self.dummy_super_res_first SCREAMING_SNAKE_CASE = self.dummy_super_res_last SCREAMING_SNAKE_CASE = UnCLIPScheduler( variance_type="learned_range" , prediction_type="epsilon" , num_train_timesteps=1000 , ) SCREAMING_SNAKE_CASE = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="epsilon" , num_train_timesteps=1000 , ) SCREAMING_SNAKE_CASE = CLIPImageProcessor(crop_size=32 , size=32 ) SCREAMING_SNAKE_CASE = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Dict=True ): SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) if pil_image: SCREAMING_SNAKE_CASE = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE = DiffusionPipeline.numpy_to_pil(UpperCAmelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = [ pipeline_inputs['image'], pipeline_inputs['image'], ] SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] SCREAMING_SNAKE_CASE = pipe( **UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = torch.device("cpu" ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = 1 SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe.decoder.dtype SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) SCREAMING_SNAKE_CASE = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) SCREAMING_SNAKE_CASE = pipe.prepare_latents( UpperCAmelCase_ , dtype=UpperCAmelCase_ , device=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ ).images SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ , pil_image=UpperCAmelCase_ ) # Don't pass image, instead pass embedding SCREAMING_SNAKE_CASE = pipeline_inputs.pop("image" ) SCREAMING_SNAKE_CASE = pipe.image_encoder(UpperCAmelCase_ ).image_embeds SCREAMING_SNAKE_CASE = pipe( **UpperCAmelCase_ , decoder_latents=UpperCAmelCase_ , super_res_latents=UpperCAmelCase_ , image_embeddings=UpperCAmelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor SCREAMING_SNAKE_CASE = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase_ , expected_max_diff=UpperCAmelCase_ ) @skip_mps def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = torch_device == 'cpu' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes SCREAMING_SNAKE_CASE = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCAmelCase_ , additional_params_copy_to_batched_inputs=UpperCAmelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCAmelCase_ ) @skip_mps def _snake_case ( self : List[Any] ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self : str ): return super().test_save_load_local() @skip_mps def _snake_case ( self : Optional[Any] ): return super().test_save_load_optional_components() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) SCREAMING_SNAKE_CASE = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipeline( UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type="np" , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ , 15 )
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Tuple = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ["ConvNextFeatureExtractor"] __A : Dict = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
707
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
0
def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = [0] * len(__A ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [1] * len(__A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__A ) ): if indegree[i] == 0: queue.append(__A ) while queue: SCREAMING_SNAKE_CASE = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__A ) print(max(__A ) ) # Adjacency list of Graph __A : List[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
708
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[str] , *__lowerCamelCase : Dict , __lowerCamelCase : str=None , __lowerCamelCase : int=None , **__lowerCamelCase : Optional[int] ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE = eval_examples SCREAMING_SNAKE_CASE = post_process_function def _snake_case ( self : int , __lowerCamelCase : List[str] = None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str] = None , __lowerCamelCase : Tuple = "eval" , **__lowerCamelCase : str , ): SCREAMING_SNAKE_CASE = gen_kwargs.copy() SCREAMING_SNAKE_CASE = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE = gen_kwargs SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE = self.get_eval_dataloader(_lowerCAmelCase ) SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE = eval_loop( _lowerCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: SCREAMING_SNAKE_CASE = compute_metrics SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCAmelCase ) return metrics def _snake_case ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any] = "test" , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = gen_kwargs.copy() SCREAMING_SNAKE_CASE = self.get_test_dataloader(_lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE = self.compute_metrics SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = time.time() SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE = eval_loop( _lowerCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCAmelCase , metric_key_prefix=_lowerCAmelCase , ) finally: SCREAMING_SNAKE_CASE = compute_metrics SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( _lowerCAmelCase , _lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE = self.post_process_function(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , "predict" ) SCREAMING_SNAKE_CASE = self.compute_metrics(_lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"{metric_key_prefix}_" ): SCREAMING_SNAKE_CASE = metrics.pop(_lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCAmelCase )
709
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ShapEPipeline lowerCamelCase__ = ["prompt"] lowerCamelCase__ = ["prompt"] lowerCamelCase__ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowerCamelCase__ = False @property def _snake_case ( self : List[str] ): return 32 @property def _snake_case ( self : str ): return 32 @property def _snake_case ( self : str ): return self.time_input_dim * 4 @property def _snake_case ( self : str ): return 8 @property def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self : List[str] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def _snake_case ( self : int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE = PriorTransformer(**UpperCamelCase_ ) return model @property def _snake_case ( self : List[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE = ShapERenderer(**UpperCamelCase_ ) return model def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.dummy_prior SCREAMING_SNAKE_CASE = self.dummy_text_encoder SCREAMING_SNAKE_CASE = self.dummy_tokenizer SCREAMING_SNAKE_CASE = self.dummy_renderer SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _snake_case ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any=0 ): if str(UpperCamelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = "cpu" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE = output.images[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : int ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = torch_device == "cpu" SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) SCREAMING_SNAKE_CASE = ShapEPipeline.from_pretrained("openai/shap-e" ) SCREAMING_SNAKE_CASE = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( "a shark" , generator=UpperCamelCase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
710
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = 4_2 lowerCamelCase__ = None def __a ( A__ : Optional[int] , A__ : List[Any]=0.9_9_9 , A__ : Any="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) SCREAMING_SNAKE_CASE = [] for i in range(_lowerCAmelCase ): SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self : Any , __lowerCamelCase : int = 1000 , __lowerCamelCase : str = "fixed_small_log" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[float] = 1.0 , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) SCREAMING_SNAKE_CASE = betas_for_alpha_bar(__A ) SCREAMING_SNAKE_CASE = 1.0 - self.betas SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0 ) SCREAMING_SNAKE_CASE = torch.tensor(1.0 ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE = 1.0 # setable values SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = torch.from_numpy(np.arange(0 , __A )[::-1].copy() ) SCREAMING_SNAKE_CASE = variance_type def _snake_case ( self : Union[str, Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ): return sample def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ): SCREAMING_SNAKE_CASE = num_inference_steps SCREAMING_SNAKE_CASE = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) SCREAMING_SNAKE_CASE = (np.arange(0 , __A ) * step_ratio).round()[::-1].copy().astype(np.intaa ) SCREAMING_SNAKE_CASE = torch.from_numpy(__A ).to(__A ) def _snake_case ( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str=None , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=None ): if prev_timestep is None: SCREAMING_SNAKE_CASE = t - 1 SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one SCREAMING_SNAKE_CASE = 1 - alpha_prod_t SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev if prev_timestep == t - 1: SCREAMING_SNAKE_CASE = self.betas[t] else: SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample SCREAMING_SNAKE_CASE = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: SCREAMING_SNAKE_CASE = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE = torch.log(torch.clamp(__A , min=1e-20 ) ) SCREAMING_SNAKE_CASE = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler SCREAMING_SNAKE_CASE = variance.log() SCREAMING_SNAKE_CASE = beta.log() SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2 SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log return variance def _snake_case ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : bool = True , ): SCREAMING_SNAKE_CASE = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": SCREAMING_SNAKE_CASE = torch.split(__A , sample.shape[1] , dim=1 ) else: SCREAMING_SNAKE_CASE = None # 1. compute alphas, betas if prev_timestep is None: SCREAMING_SNAKE_CASE = t - 1 SCREAMING_SNAKE_CASE = self.alphas_cumprod[t] SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one SCREAMING_SNAKE_CASE = 1 - alpha_prod_t SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev if prev_timestep == t - 1: SCREAMING_SNAKE_CASE = self.betas[t] SCREAMING_SNAKE_CASE = self.alphas[t] else: SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev SCREAMING_SNAKE_CASE = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE = torch.clamp( __A , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t SCREAMING_SNAKE_CASE = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise SCREAMING_SNAKE_CASE = 0 if t > 0: SCREAMING_SNAKE_CASE = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__A , device=model_output.device ) SCREAMING_SNAKE_CASE = self._get_variance( __A , predicted_variance=__A , prev_timestep=__A , ) if self.variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE = variance elif self.variance_type == "learned_range": SCREAMING_SNAKE_CASE = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" " for the UnCLIPScheduler." ) SCREAMING_SNAKE_CASE = variance * variance_noise SCREAMING_SNAKE_CASE = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__A , pred_original_sample=__A ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples SCREAMING_SNAKE_CASE = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE = alphas_cumprod[timesteps] ** 0.5 SCREAMING_SNAKE_CASE = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE = sqrt_alpha_prod.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = (1 - alphas_cumprod[timesteps]) ** 0.5 SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) SCREAMING_SNAKE_CASE = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
711
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
0
from random import shuffle import tensorflow as tf from numpy import array def __a ( A__ : Union[str, Any] , A__ : Any ): SCREAMING_SNAKE_CASE = int(__lowerCAmelCase ) assert noofclusters < len(__lowerCAmelCase ) # Find out the dimensionality SCREAMING_SNAKE_CASE = len(vectors[0] ) # Will help select random centroids from among the available vectors SCREAMING_SNAKE_CASE = list(range(len(__lowerCAmelCase ) ) ) shuffle(__lowerCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. SCREAMING_SNAKE_CASE = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION SCREAMING_SNAKE_CASE = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points SCREAMING_SNAKE_CASE = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__lowerCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values SCREAMING_SNAKE_CASE = tf.placeholder("float64" , [dim] ) SCREAMING_SNAKE_CASE = [] for centroid in centroids: cent_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) SCREAMING_SNAKE_CASE = [tf.Variable(0 ) for i in range(len(__lowerCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value SCREAMING_SNAKE_CASE = tf.placeholder("int32" ) SCREAMING_SNAKE_CASE = [] for assignment in assignments: cluster_assigns.append(tf.assign(__lowerCAmelCase , __lowerCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input SCREAMING_SNAKE_CASE = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors SCREAMING_SNAKE_CASE = tf.reduce_mean(__lowerCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input SCREAMING_SNAKE_CASE = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE = tf.placeholder("float" , [dim] ) SCREAMING_SNAKE_CASE = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__lowerCAmelCase , __lowerCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input SCREAMING_SNAKE_CASE = tf.placeholder("float" , [noofclusters] ) SCREAMING_SNAKE_CASE = tf.argmin(__lowerCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. SCREAMING_SNAKE_CASE = tf.initialize_all_variables() # Initialize all variables sess.run(__lowerCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. SCREAMING_SNAKE_CASE = 100 for _ in range(__lowerCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. SCREAMING_SNAKE_CASE = [ sess.run(__lowerCAmelCase , feed_dict={va: vect, va: sess.run(__lowerCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input SCREAMING_SNAKE_CASE = sess.run( __lowerCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__lowerCAmelCase ): # Collect all the vectors assigned to this cluster SCREAMING_SNAKE_CASE = [ vectors[i] for i in range(len(__lowerCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location SCREAMING_SNAKE_CASE = sess.run( __lowerCAmelCase , feed_dict={mean_input: array(__lowerCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments SCREAMING_SNAKE_CASE = sess.run(__lowerCAmelCase ) SCREAMING_SNAKE_CASE = sess.run(__lowerCAmelCase ) return centroids, assignments
712
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __a ( ): SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=__UpperCAmelCase , default=__UpperCAmelCase , required=__UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=__UpperCAmelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=__UpperCAmelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=__UpperCAmelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=__UpperCAmelCase , default=0 , help="cuda_id." , ) SCREAMING_SNAKE_CASE = parser.parse_args() return args def __a ( A__ : str , A__ : Optional[Any] , A__ : Optional[Any] ): if not len(__UpperCAmelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = imgs[0].size SCREAMING_SNAKE_CASE = Image.new("RGB" , size=(cols * w, rows * h) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = grid.size for i, img in enumerate(__UpperCAmelCase ): grid.paste(__UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __a ( A__ : str , A__ : Tuple="robotic cat with wings" , A__ : Union[str, Any]=7.5 , A__ : Tuple=50 , A__ : Optional[int]=1 , A__ : Any=42 , ): SCREAMING_SNAKE_CASE = torch.Generator(pipeline.device ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE = pipeline( __UpperCAmelCase , guidance_scale=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , generator=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , ).images SCREAMING_SNAKE_CASE = int(math.sqrt(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE = image_grid(__UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __A : Optional[int] = parse_args() # Load models and create wrapper for stable diffusion __A : Any = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __A : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __A : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __A : Optional[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __A : Any = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __A : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __A : Union[str, Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __A : Tuple = unet.to(torch.device('cuda', args.cuda_id)) __A : str = pipeline.to(unet.device) __A , __A : Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __A : List[str] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
713
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = JukeboxTokenizer lowerCamelCase__ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _snake_case ( self : int ): import torch SCREAMING_SNAKE_CASE = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) SCREAMING_SNAKE_CASE = tokenizer(**self.metas )["input_ids"] # fmt: off SCREAMING_SNAKE_CASE = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _snake_case ( self : Tuple ): import torch SCREAMING_SNAKE_CASE = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) SCREAMING_SNAKE_CASE = tokenizer(**self.metas )["input_ids"] # fmt: off SCREAMING_SNAKE_CASE = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
714
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
0
from ...configuration_utils import PretrainedConfig __A : str = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = "tapas" def __init__( self : Optional[Any] , __lowerCamelCase : Dict=30522 , __lowerCamelCase : int=768 , __lowerCamelCase : int=12 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : List[Any]=3072 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Tuple=1024 , __lowerCamelCase : str=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Union[str, Any]=1e-12 , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=10.0 , __lowerCamelCase : Dict=0 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=1.0 , __lowerCamelCase : Any=1.0 , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Any="ratio" , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Dict=64 , __lowerCamelCase : int=32 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : int=False , __lowerCamelCase : Dict=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : int , ): super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_sizes SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE = positive_label_weight SCREAMING_SNAKE_CASE = num_aggregation_labels SCREAMING_SNAKE_CASE = aggregation_loss_weight SCREAMING_SNAKE_CASE = use_answer_as_supervision SCREAMING_SNAKE_CASE = answer_loss_importance SCREAMING_SNAKE_CASE = use_normalized_answer_loss SCREAMING_SNAKE_CASE = huber_loss_delta SCREAMING_SNAKE_CASE = temperature SCREAMING_SNAKE_CASE = aggregation_temperature SCREAMING_SNAKE_CASE = use_gumbel_for_cells SCREAMING_SNAKE_CASE = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE = average_approximation_function SCREAMING_SNAKE_CASE = cell_selection_preference SCREAMING_SNAKE_CASE = answer_loss_cutoff SCREAMING_SNAKE_CASE = max_num_rows SCREAMING_SNAKE_CASE = max_num_columns SCREAMING_SNAKE_CASE = average_logits_per_cell SCREAMING_SNAKE_CASE = select_one_column SCREAMING_SNAKE_CASE = allow_empty_column_selection SCREAMING_SNAKE_CASE = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE = reset_position_index_per_cell SCREAMING_SNAKE_CASE = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE = aggregation_labels SCREAMING_SNAKE_CASE = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCamelCase ): SCREAMING_SNAKE_CASE = {int(_UpperCamelCase ): v for k, v in aggregation_labels.items()}
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
import numpy as np def __a ( A__ : List[str] ): return 1 / (1 + np.exp(-vector )) def __a ( A__ : int ): return vector * sigmoid(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
716
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
0
from math import factorial def __a ( A__ : Optional[Any] = 100 ): return sum(map(_lowerCamelCase , str(factorial(_lowerCamelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
717
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ = (UnCLIPScheduler,) def _snake_case ( self : str , **__lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**lowerCamelCase_ ) return config def _snake_case ( self : Tuple ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def _snake_case ( self : Optional[Any] ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def _snake_case ( self : str ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCamelCase_ ) def _snake_case ( self : Dict ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase_ , prev_timestep=lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="fixed_small_log" ) SCREAMING_SNAKE_CASE = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="learned_range" ) SCREAMING_SNAKE_CASE = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCamelCase_ ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=lowerCamelCase_ ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=lowerCamelCase_ ) - -0.0_010_011 < 1e-5 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE = scheduler.timesteps SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual SCREAMING_SNAKE_CASE = model(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE = pred_prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(25 ) SCREAMING_SNAKE_CASE = scheduler.timesteps SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase_ ): # 1. predict noise residual SCREAMING_SNAKE_CASE = model(lowerCamelCase_ , lowerCamelCase_ ) if i + 1 == timesteps.shape[0]: SCREAMING_SNAKE_CASE = None else: SCREAMING_SNAKE_CASE = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 SCREAMING_SNAKE_CASE = scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , prev_timestep=lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE = pred_prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _snake_case ( self : Tuple ): pass def _snake_case ( self : Optional[int] ): pass
718
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
0
import os import re import shutil import sys import tempfile import unittest import black __A : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __A : List[str] = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) SCREAMING_SNAKE_CASE = self.diffusers_dir shutil.copy( os.path.join(__UpperCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def _snake_case ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None ): SCREAMING_SNAKE_CASE = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE = black.format_str(__UpperCamelCase , mode=__UpperCamelCase ) SCREAMING_SNAKE_CASE = os.path.join(self.diffusers_dir , "new_code.py" ) with open(__UpperCamelCase , "w" , newline="\n" ) as f: f.write(__UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCamelCase ) with open(__UpperCamelCase , "r" ) as f: self.assertTrue(f.read() , __UpperCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : List[Any] ): self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , __UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , __UpperCamelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub("Bert" , __UpperCamelCase , __UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , __UpperCamelCase , overwrite_result=re.sub("DDPM" , "Test" , __UpperCamelCase ) , )
719
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __A : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __A : list[int] = [ord(letter) for letter in string.ascii_lowercase] __A : set[int] = {ord(char) for char in VALID_CHARS} __A : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __a ( A__ : Any , A__ : str ): SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 for keychar, cipherchar in zip(cycle(A__ ) , A__ ): SCREAMING_SNAKE_CASE = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(A__ ) return decoded def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = [] for key in product(A__ , repeat=3 ): SCREAMING_SNAKE_CASE = try_key(A__ , A__ ) if encoded is not None: possibles.append(A__ ) return possibles def __a ( A__ : Dict , A__ : Union[str, Any] ): return [possible for possible in possibles if common_word in possible.lower()] def __a ( A__ : Optional[Any] = "p059_cipher.txt" ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Path(A__ ).parent.joinpath(A__ ).read_text(encoding="utf-8" ) SCREAMING_SNAKE_CASE = [int(A__ ) for number in data.strip().split("," )] SCREAMING_SNAKE_CASE = filter_valid_chars(A__ ) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE = filter_common_word(A__ , A__ ) if len(A__ ) == 1: break SCREAMING_SNAKE_CASE = possibles[0] return sum(ord(A__ ) for char in decoded_text ) if __name__ == "__main__": print(f'{solution() = }')
720
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
0
def __a ( A__ : int , A__ : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) SCREAMING_SNAKE_CASE = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __A : Any = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowercase ): '''simple docstring''' lowerCamelCase__ = '''albert''' def __init__( self : Any , __lowerCamelCase : List[str]=30000 , __lowerCamelCase : Tuple=128 , __lowerCamelCase : Tuple=4096 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : str=16384 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : List[Any]="gelu_new" , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Any=0 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[int]=1e-12 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[Any]="absolute" , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=3 , **__lowerCamelCase : List[Any] , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_hidden_groups SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = inner_group_num SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = classifier_dropout_prob SCREAMING_SNAKE_CASE = position_embedding_type class _SCREAMING_SNAKE_CASE ( _lowercase ): '''simple docstring''' @property def _snake_case ( self : List[str] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
700
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Any = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
0
__A : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : int = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
702
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
0
from ...processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): '''simple docstring''' lowerCamelCase__ = "SpeechT5FeatureExtractor" lowerCamelCase__ = "SpeechT5Tokenizer" def __init__( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Any ): super().__init__(__A , __A ) def __call__( self : Any , *__lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("audio" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("text" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("text_target" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("audio_target" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("sampling_rate" , __A ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: SCREAMING_SNAKE_CASE = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) elif text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(__A , **__A ) else: SCREAMING_SNAKE_CASE = None if audio_target is not None: SCREAMING_SNAKE_CASE = self.feature_extractor(audio_target=__A , *__A , sampling_rate=__A , **__A ) SCREAMING_SNAKE_CASE = targets["input_values"] elif text_target is not None: SCREAMING_SNAKE_CASE = self.tokenizer(__A , **__A ) SCREAMING_SNAKE_CASE = targets["input_ids"] else: SCREAMING_SNAKE_CASE = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE = labels SCREAMING_SNAKE_CASE = targets.get("attention_mask" ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE = decoder_attention_mask return inputs def _snake_case ( self : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("input_values" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("input_ids" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("labels" , __A ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: SCREAMING_SNAKE_CASE = self.feature_extractor.pad(__A , *__A , **__A ) elif input_ids is not None: SCREAMING_SNAKE_CASE = self.tokenizer.pad(__A , **__A ) else: SCREAMING_SNAKE_CASE = None if labels is not None: if "input_ids" in labels or (isinstance(__A , __A ) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE = self.tokenizer.pad(__A , **__A ) SCREAMING_SNAKE_CASE = targets["input_ids"] else: SCREAMING_SNAKE_CASE = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE = self.feature_extractor.pad(__A , *__A , **__A ) SCREAMING_SNAKE_CASE = feature_size_hack SCREAMING_SNAKE_CASE = targets["input_values"] else: SCREAMING_SNAKE_CASE = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE = labels SCREAMING_SNAKE_CASE = targets.get("attention_mask" ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE = decoder_attention_mask return inputs def _snake_case ( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Tuple ): return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self : str , *__lowerCamelCase : Dict , **__lowerCamelCase : List[Any] ): return self.tokenizer.decode(*__A , **__A )
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
704
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __A : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __A : int = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) __A : Tuple = BeautifulSoup(res.text, 'html.parser') __A : List[str] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'https://google.com{link.get("href")}')
705
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __A : Dict = logging.get_logger('transformers.models.speecht5') def __a ( A__ : int , A__ : int , A__ : Tuple ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE = checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE = checkpoint[F"upsamples.{i}.1.weight_g"] SCREAMING_SNAKE_CASE = checkpoint[F"upsamples.{i}.1.weight_v"] SCREAMING_SNAKE_CASE = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] SCREAMING_SNAKE_CASE = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] SCREAMING_SNAKE_CASE = checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE = checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __a ( A__ : List[Any] , A__ : Union[str, Any] , A__ : int , A__ : str=None , A__ : Dict=None , ): if config_path is not None: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig.from_pretrained(snake_case__ ) else: SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = torch.load(snake_case__ ) load_weights(orig_checkpoint["model"]["generator"] , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = np.load(snake_case__ ) SCREAMING_SNAKE_CASE = stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE = stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).float() SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).float() model.save_pretrained(snake_case__ ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __A : int = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "ZinengTang/tvlt-base" SCREAMING_SNAKE_CASE = tempfile.mkdtemp() def _snake_case ( self : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): return TvltImageProcessor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _snake_case ( self : Any , **__lowerCamelCase : Optional[int] ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = np.ones([12000] ) SCREAMING_SNAKE_CASE = feature_extractor(__lowerCAmelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(audio=__lowerCAmelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = np.ones([3, 224, 224] ) SCREAMING_SNAKE_CASE = image_processor(__lowerCAmelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCAmelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) SCREAMING_SNAKE_CASE = np.ones([12000] ) SCREAMING_SNAKE_CASE = np.ones([3, 224, 224] ) SCREAMING_SNAKE_CASE = processor(audio=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_feature_extractor() SCREAMING_SNAKE_CASE = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
707
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : List[Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=lowercase_ , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=lowercase_ , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(lowercase_ ) == 512 for x in inputs.input_ids ) assert all(len(lowercase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : str ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowercase_ ) )] ) / len(lowercase_ ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=lowercase_ , per_device_train_batch_size=lowercase_ , per_device_eval_batch_size=lowercase_ , predict_with_generate=lowercase_ , evaluation_strategy="steps" , do_train=lowercase_ , do_eval=lowercase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , compute_metrics=_compute_metrics , train_dataset=lowercase_ , eval_dataset=lowercase_ , tokenizer=lowercase_ , ) # start training trainer.train()
708
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
0
import random def __a ( A__ : list , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = [], [], [] for element in data: if element < pivot: less.append(_lowercase ) elif element > pivot: greater.append(_lowercase ) else: equal.append(_lowercase ) return less, equal, greater def __a ( A__ : list , A__ : int ): if index >= len(_lowercase ) or index < 0: return None SCREAMING_SNAKE_CASE = items[random.randint(0 , len(_lowercase ) - 1 )] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = _partition(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE = len(_lowercase ) SCREAMING_SNAKE_CASE = len(_lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowercase , _lowercase ) # must be in larger else: return quick_select(_lowercase , index - (m + count) )
709
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
0
def __a ( A__ : int = 2000000 ): SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 for i in range(UpperCAmelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'{solution() = }')
710
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = OpenAIGPTTokenizer lowerCamelCase__ = OpenAIGPTTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = False def _snake_case ( self : List[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _snake_case ( self : str , __lowerCamelCase : Tuple ): return "lower newer", "lower newer" def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE = "lower" SCREAMING_SNAKE_CASE = ["low", "er</w>"] SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE = tokens + ["<unk>"] SCREAMING_SNAKE_CASE = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _snake_case ( self : List[str] , __lowerCamelCase : Tuple=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # Simple input SCREAMING_SNAKE_CASE = "This is a simple input" SCREAMING_SNAKE_CASE = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Simple input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Simple input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" ) # Pair input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding="max_length" , ) def _snake_case ( self : List[Any] ): pass @require_ftfy @require_spacy @require_tokenizers class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): '''simple docstring''' pass
711
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __A : Optional[int] = pytest.mark.integration __A : int = {'comet'} __A : Optional[int] = importlib.util.find_spec('fairseq') is not None __A : Optional[Any] = {'code_eval'} __A : List[str] = os.name == 'nt' __A : Optional[Any] = {'bertscore', 'frugalscore', 'perplexity'} __A : Dict = importlib.util.find_spec('transformers') is not None def __a ( A__ : Any ): @wraps(_lowercase ) def wrapper(self : Optional[Any] , A__ : Dict ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , _lowercase ) return wrapper def __a ( A__ : int ): @wraps(_lowercase ) def wrapper(self : List[str] , A__ : Any ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , _lowercase ) return wrapper def __a ( A__ : Union[str, Any] ): @wraps(_lowercase ) def wrapper(self : Optional[int] , A__ : Any ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , _lowercase ) return wrapper def __a ( ): SCREAMING_SNAKE_CASE = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @local class _SCREAMING_SNAKE_CASE ( parameterized.TestCase ): '''simple docstring''' lowerCamelCase__ = {} lowerCamelCase__ = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def _snake_case ( self : Dict , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = '''[...]''' SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , UpperCamelCase__ ) ).module_path ) SCREAMING_SNAKE_CASE = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCamelCase__ ) # check parameters SCREAMING_SNAKE_CASE = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCamelCase__ , metric_module.__name__ ): with self.use_local_metrics(): try: SCREAMING_SNAKE_CASE = doctest.testmod(UpperCamelCase__ , verbose=UpperCamelCase__ , raise_on_error=UpperCamelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = '''[...]''' SCREAMING_SNAKE_CASE = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , UpperCamelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): SCREAMING_SNAKE_CASE = doctest.testmod(UpperCamelCase__ , verbose=UpperCamelCase__ , raise_on_error=UpperCamelCase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def _snake_case ( self : int , __lowerCamelCase : Any , __lowerCamelCase : List[str] ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCamelCase__ ): yield else: yield @contextmanager def _snake_case ( self : Optional[Any] ): def load_local_metric(__lowerCamelCase : List[Any] , *__lowerCamelCase : str , **__lowerCamelCase : Any ): return load_metric(os.path.join("metrics" , UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ ) with patch("datasets.load_metric" ) as mock_load_metric: SCREAMING_SNAKE_CASE = load_local_metric yield @classmethod def _snake_case ( cls : str , __lowerCamelCase : Dict ): def wrapper(__lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = contextmanager(UpperCamelCase__ ) SCREAMING_SNAKE_CASE = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def __a ( A__ : List[Any] ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): '''simple docstring''' def _snake_case ( self : Optional[int] , __lowerCamelCase : str ): assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: SCREAMING_SNAKE_CASE = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def __a ( A__ : Optional[int] ): import torch def bert_cos_score_idf(A__ : Union[str, Any] , A__ : Any , *A__ : str , **A__ : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_lowercase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: SCREAMING_SNAKE_CASE = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def __a ( A__ : Optional[int] ): def load_from_checkpoint(A__ : List[Any] ): class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Any , __lowerCamelCase : Optional[int] , *__lowerCamelCase : List[str] , **__lowerCamelCase : int ): assert len(UpperCamelCase__ ) == 2 SCREAMING_SNAKE_CASE = [0.19, 0.92] return scores, sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: SCREAMING_SNAKE_CASE = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: SCREAMING_SNAKE_CASE = load_from_checkpoint yield def __a ( ): SCREAMING_SNAKE_CASE = load_metric(os.path.join("metrics" , "seqeval" ) ) SCREAMING_SNAKE_CASE = '''ERROR''' SCREAMING_SNAKE_CASE = F"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}" with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): metric.compute(predictions=[] , references=[] , scheme=_lowercase )
712
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
0
'''simple docstring''' import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __A : List[str] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def __a ( A__ : Tuple=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("tpu-config" , description=_description ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments SCREAMING_SNAKE_CASE = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=__UpperCamelCase , default=__UpperCamelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=__UpperCamelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=__UpperCamelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) SCREAMING_SNAKE_CASE = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=__UpperCamelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): SCREAMING_SNAKE_CASE = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: SCREAMING_SNAKE_CASE = defaults.command_file if not args.command and defaults.commands is not None: SCREAMING_SNAKE_CASE = defaults.commands if not args.tpu_name: SCREAMING_SNAKE_CASE = defaults.tpu_name if not args.tpu_zone: SCREAMING_SNAKE_CASE = defaults.tpu_zone if args.accelerate_version == "dev": SCREAMING_SNAKE_CASE = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": SCREAMING_SNAKE_CASE = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , __UpperCamelCase ): SCREAMING_SNAKE_CASE = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: SCREAMING_SNAKE_CASE = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCamelCase ): SCREAMING_SNAKE_CASE = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate SCREAMING_SNAKE_CASE = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command SCREAMING_SNAKE_CASE = "; ".join(__UpperCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess SCREAMING_SNAKE_CASE = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__UpperCamelCase )}" ) return subprocess.run(__UpperCamelCase ) print("Successfully setup pod." ) def __a ( ): SCREAMING_SNAKE_CASE = tpu_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() tpu_command_launcher(__UpperCamelCase )
713
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase__ = ['pixel_values'] def __init__( self : Optional[Any] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 224} SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="crop_size" ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE = do_convert_rgb def _snake_case ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ): SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ): return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ): return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Dict , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : List[str] , ): SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , param_name="size" , default_to_square=__lowerCamelCase ) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , param_name="crop_size" , default_to_square=__lowerCamelCase ) SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
714
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict="resnet50" , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]=True , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE = stage_names SCREAMING_SNAKE_CASE = out_features SCREAMING_SNAKE_CASE = backbone SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = use_pretrained_backbone SCREAMING_SNAKE_CASE = is_training def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def _snake_case ( self : int ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _snake_case ( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = TimmBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(__lowercase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class _SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (TimmBackbone,) if is_torch_available() else () lowerCamelCase__ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def _snake_case ( self : Union[str, Any] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = "resnet18" SCREAMING_SNAKE_CASE = "microsoft/resnet-18" SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase ) SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(__lowercase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(__lowercase , use_timm_backbone=__lowercase , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE = AutoBackbone.from_pretrained(__lowercase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def _snake_case ( self : Optional[Any] ): pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def _snake_case ( self : Optional[int] ): pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def _snake_case ( self : Optional[int] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _snake_case ( self : Optional[Any] ): pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _snake_case ( self : Dict ): pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def _snake_case ( self : Optional[int] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _snake_case ( self : Dict ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _snake_case ( self : List[Any] ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _snake_case ( self : str ): pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _snake_case ( self : List[str] ): pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def _snake_case ( self : Any ): pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def _snake_case ( self : Dict ): pass @unittest.skip("Safetensors is not supported by timm." ) def _snake_case ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Dict ): pass def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowercase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowercase ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE = self.all_model_classes[0] SCREAMING_SNAKE_CASE = model_class(__lowercase ) model.to(__lowercase ) SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE = model(**__lowercase ) SCREAMING_SNAKE_CASE = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__lowercase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE = copy.deepcopy(__lowercase ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = model_class(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(**__lowercase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE = copy.deepcopy(__lowercase ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = model_class(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(**__lowercase )
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = ['image_processor'] lowerCamelCase__ = 'SamImageProcessor' def __init__( self : List[Any] , __lowerCamelCase : Dict ): super().__init__(A_ ) SCREAMING_SNAKE_CASE = self.image_processor SCREAMING_SNAKE_CASE = -10 SCREAMING_SNAKE_CASE = self.image_processor.size["longest_edge"] def __call__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : int=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int] = None , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = self.image_processor( A_ , return_tensors=A_ , **A_ , ) # pop arguments that are not used in the foward but used nevertheless SCREAMING_SNAKE_CASE = encoding_image_processor["original_sizes"] if hasattr(A_ , "numpy" ): # Checks if Torch or TF tensor SCREAMING_SNAKE_CASE = original_sizes.numpy() SCREAMING_SNAKE_CASE = self._check_and_preprocess_points( input_points=A_ , input_labels=A_ , input_boxes=A_ , ) SCREAMING_SNAKE_CASE = self._normalize_and_convert( A_ , A_ , input_points=A_ , input_labels=A_ , input_boxes=A_ , return_tensors=A_ , ) return encoding_image_processor def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : int=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple="pt" , ): if input_points is not None: if len(A_ ) != len(A_ ): SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , A_ , original_sizes[0] ) for point in input_points ] else: SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , A_ , A_ ) for point, original_size in zip(A_ , A_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: SCREAMING_SNAKE_CASE = self._pad_points_and_labels(A_ , A_ ) SCREAMING_SNAKE_CASE = np.array(A_ ) if input_labels is not None: SCREAMING_SNAKE_CASE = np.array(A_ ) if input_boxes is not None: if len(A_ ) != len(A_ ): SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , A_ , original_sizes[0] , is_bounding_box=A_ ) for box in input_boxes ] else: SCREAMING_SNAKE_CASE = [ self._normalize_coordinates(self.target_size , A_ , A_ , is_bounding_box=A_ ) for box, original_size in zip(A_ , A_ ) ] SCREAMING_SNAKE_CASE = np.array(A_ ) if input_boxes is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE = torch.from_numpy(A_ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A_ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE = tf.expand_dims(A_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE = torch.from_numpy(A_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = tf.expand_dims(A_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE = torch.from_numpy(A_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A_ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE = tf.expand_dims(A_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = max([point.shape[0] for point in input_points] ) SCREAMING_SNAKE_CASE = [] for i, point in enumerate(A_ ): if point.shape[0] != expected_nb_points: SCREAMING_SNAKE_CASE = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) SCREAMING_SNAKE_CASE = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(A_ ) SCREAMING_SNAKE_CASE = processed_input_points return input_points, input_labels def _snake_case ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=False ): SCREAMING_SNAKE_CASE = original_size SCREAMING_SNAKE_CASE = self.image_processor._get_preprocess_shape(A_ , longest_edge=A_ ) SCREAMING_SNAKE_CASE = deepcopy(A_ ).astype(A_ ) if is_bounding_box: SCREAMING_SNAKE_CASE = coords.reshape(-1 , 2 , 2 ) SCREAMING_SNAKE_CASE = coords[..., 0] * (new_w / old_w) SCREAMING_SNAKE_CASE = coords[..., 1] * (new_h / old_h) if is_bounding_box: SCREAMING_SNAKE_CASE = coords.reshape(-1 , 4 ) return coords def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , ): if input_points is not None: if hasattr(A_ , "numpy" ): # Checks for TF or Torch tensor SCREAMING_SNAKE_CASE = input_points.numpy().tolist() if not isinstance(A_ , A_ ) or not isinstance(input_points[0] , A_ ): raise ValueError("Input points must be a list of list of floating points." ) SCREAMING_SNAKE_CASE = [np.array(A_ ) for input_point in input_points] else: SCREAMING_SNAKE_CASE = None if input_labels is not None: if hasattr(A_ , "numpy" ): SCREAMING_SNAKE_CASE = input_labels.numpy().tolist() if not isinstance(A_ , A_ ) or not isinstance(input_labels[0] , A_ ): raise ValueError("Input labels must be a list of list integers." ) SCREAMING_SNAKE_CASE = [np.array(A_ ) for label in input_labels] else: SCREAMING_SNAKE_CASE = None if input_boxes is not None: if hasattr(A_ , "numpy" ): SCREAMING_SNAKE_CASE = input_boxes.numpy().tolist() if ( not isinstance(A_ , A_ ) or not isinstance(input_boxes[0] , A_ ) or not isinstance(input_boxes[0][0] , A_ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) SCREAMING_SNAKE_CASE = [np.array(A_ ).astype(np.floataa ) for box in input_boxes] else: SCREAMING_SNAKE_CASE = None return input_points, input_labels, input_boxes @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(A_ ) ) def _snake_case ( self : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : int ): return self.image_processor.post_process_masks(*A_ , **A_ )
716
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Optional[Any] = logging.get_logger(__name__) __A : Optional[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A : str = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } __A : Optional[Any] = { '''squeezebert/squeezebert-uncased''': 5_1_2, '''squeezebert/squeezebert-mnli''': 5_1_2, '''squeezebert/squeezebert-mnli-headless''': 5_1_2, } __A : Tuple = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class _SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = SqueezeBertTokenizer def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Any="[UNK]" , __lowerCamelCase : List[str]="[SEP]" , __lowerCamelCase : List[str]="[PAD]" , __lowerCamelCase : List[Any]="[CLS]" , __lowerCamelCase : Optional[int]="[MASK]" , __lowerCamelCase : Any=True , __lowerCamelCase : Any=None , **__lowerCamelCase : List[str] , ): super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def _snake_case ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str]=None ): SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any = None ): SCREAMING_SNAKE_CASE = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
717
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __A : str = logging.get_logger(__name__) __A : List[Any] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' lowerCamelCase__ = "gptj" lowerCamelCase__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , __lowerCamelCase : str=50400 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : List[str]=4096 , __lowerCamelCase : List[str]=28 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : List[str]=64 , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]="gelu_new" , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Tuple=50256 , __lowerCamelCase : Dict=50256 , __lowerCamelCase : List[str]=False , **__lowerCamelCase : Optional[int] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = rotary_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , tie_word_embeddings=lowerCamelCase__ , **lowerCamelCase__ ) class _SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : str = "default" , __lowerCamelCase : List[PatchingSpec] = None , __lowerCamelCase : bool = False , ): super().__init__(lowerCamelCase__ , task=lowerCamelCase__ , patching_specs=lowerCamelCase__ , use_past=lowerCamelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCamelCase__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE = 0 @property def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : List[str] ): return self._config.n_layer @property def _snake_case ( self : Dict ): return self._config.n_head def _snake_case ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(lowerCamelCase__ , self ).generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCamelCase__ , lowerCamelCase__ , dtype=lowerCamelCase__ )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : List[str] ): return 13
718
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Any , A__ : Tuple="facebook/mbart-large-en-ro" , A__ : List[str]=False , A__ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE = torch.load(lowercase__ , map_location="cpu" )["model"] remove_ignore_keys_(lowercase__ ) SCREAMING_SNAKE_CASE = state_dict["encoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE = MBartConfig.from_pretrained(lowercase__ , vocab_size=lowercase__ ) if mbart_aa and finetuned: SCREAMING_SNAKE_CASE = "relu" SCREAMING_SNAKE_CASE = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE = MBartForConditionalGeneration(lowercase__ ) model.model.load_state_dict(lowercase__ ) if finetuned: SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') __A : Union[str, Any] = parser.parse_args() __A : List[Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
719
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 SCREAMING_SNAKE_CASE = test_metrics @require_cpu def _snake_case ( self : Tuple ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _snake_case ( self : int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _snake_case ( self : Dict ): self.test_metrics.main() @require_multi_gpu def _snake_case ( self : str ): print(f"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
720
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __a ( A__ : Dataset , A__ : Dict[str, str] ): '''simple docstring''' SCREAMING_SNAKE_CASE = args.log_outputs SCREAMING_SNAKE_CASE = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric SCREAMING_SNAKE_CASE = load_metric("wer" ) SCREAMING_SNAKE_CASE = load_metric("cer" ) # compute metrics SCREAMING_SNAKE_CASE = wer.compute(references=result["target"] , predictions=result["prediction"] ) SCREAMING_SNAKE_CASE = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results SCREAMING_SNAKE_CASE = F"WER: {wer_result}\nCER: {cer_result}" print(_UpperCamelCase ) with open(F"{dataset_id}_eval_results.txt" , "w" ) as f: f.write(_UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: SCREAMING_SNAKE_CASE = F"log_{dataset_id}_predictions.txt" SCREAMING_SNAKE_CASE = F"log_{dataset_id}_targets.txt" with open(_UpperCamelCase , "w" ) as p, open(_UpperCamelCase , "w" ) as t: # mapping function to write output def write_to_file(A__ : Optional[Any] , A__ : List[Any] ): p.write(F"{i}" + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(F"{i}" + "\n" ) t.write(batch["target"] + "\n" ) result.map(_UpperCamelCase , with_indices=_UpperCamelCase ) def __a ( A__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training SCREAMING_SNAKE_CASE = re.sub(_UpperCamelCase , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! SCREAMING_SNAKE_CASE = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: SCREAMING_SNAKE_CASE = " ".join(text.split(_UpperCamelCase ) ) return text def __a ( A__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(args.model_id ) SCREAMING_SNAKE_CASE = feature_extractor.sampling_rate # resample audio SCREAMING_SNAKE_CASE = dataset.cast_column("audio" , Audio(sampling_rate=_UpperCamelCase ) ) # load eval pipeline if args.device is None: SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else -1 SCREAMING_SNAKE_CASE = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(A__ : List[str] ): SCREAMING_SNAKE_CASE = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) SCREAMING_SNAKE_CASE = prediction["text"] SCREAMING_SNAKE_CASE = normalize_text(batch["sentence"] ) return batch # run inference on all examples SCREAMING_SNAKE_CASE = dataset.map(_UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) __A : Union[str, Any] = parser.parse_args() main(args)
721
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = StableDiffusionSAGPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = False def _snake_case ( self : Union[str, Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(A__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=0 ): if str(A__ ).startswith("mps" ): SCREAMING_SNAKE_CASE = torch.manual_seed(A__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=A__ ).manual_seed(A__ ) SCREAMING_SNAKE_CASE = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def _snake_case ( self : List[str] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE = sag_pipe.to(A__ ) sag_pipe.set_progress_bar_config(disable=A__ ) SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , generator=A__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE = sag_pipe.to(A__ ) sag_pipe.set_progress_bar_config(disable=A__ ) SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , generator=A__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE = sag_pipe.to(A__ ) sag_pipe.set_progress_bar_config(disable=A__ ) SCREAMING_SNAKE_CASE = "." SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , width=768 , height=512 , generator=A__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) SCREAMING_SNAKE_CASE = output.images assert image.shape == (1, 512, 768, 3)
700
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __A : List[str] = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __A : int = logging.WARNING def __a ( ): SCREAMING_SNAKE_CASE = os.getenv("DATASETS_VERBOSITY" , _SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __a ( ): return __name__.split("." )[0] def __a ( ): return logging.getLogger(_get_library_name() ) def __a ( ): # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def __a ( ): SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def __a ( A__ : Optional[int] = None ): if name is None: SCREAMING_SNAKE_CASE = _get_library_name() return logging.getLogger(_SCREAMING_SNAKE_CASE ) def __a ( ): return _get_library_root_logger().getEffectiveLevel() def __a ( A__ : List[Any] ): _get_library_root_logger().setLevel(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): return set_verbosity(_SCREAMING_SNAKE_CASE ) def __a ( ): SCREAMING_SNAKE_CASE = False def __a ( ): SCREAMING_SNAKE_CASE = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): # pylint: disable=unused-argument SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self : Dict ): return iter(self._iterator ) def __getattr__( self : Union[str, Any] , __lowerCamelCase : Any ): def empty_fn(*__lowerCamelCase : Optional[int] , **__lowerCamelCase : Dict ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[Any] ): return self def __exit__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Any ): return __A : Union[str, Any] = True class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : Optional[int] , *__lowerCamelCase : List[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Optional[int] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() __A : Dict = _tqdm_cls() def __a ( ): global _tqdm_active return bool(_tqdm_active ) def __a ( ): global _tqdm_active SCREAMING_SNAKE_CASE = True def __a ( ): global _tqdm_active SCREAMING_SNAKE_CASE = False
701
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __A : int = ['gpt2'] __A : List[str] = 'gpt2' if is_tf_available(): class _SCREAMING_SNAKE_CASE ( tf.Module ): '''simple docstring''' def __init__( self : Any , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE = TFGPTaLMHeadModel.from_config(__UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _snake_case ( self : Any , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.tokenizer(__UpperCamelCase ) SCREAMING_SNAKE_CASE = tokenized["input_ids"].to_tensor() SCREAMING_SNAKE_CASE = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE = self.model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )["logits"] return outputs @require_tf @require_keras_nlp class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): super().setUp() SCREAMING_SNAKE_CASE = [GPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we\'re going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] SCREAMING_SNAKE_CASE = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self : Any ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE = tokenizer([test_inputs] , return_tensors="tf" ) SCREAMING_SNAKE_CASE = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE = python_outputs[key].numpy() SCREAMING_SNAKE_CASE = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case ( self : int ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE = tf.function(__UpperCamelCase ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE = tf.constant(__UpperCamelCase ) SCREAMING_SNAKE_CASE = compiled_tokenizer(__UpperCamelCase ) SCREAMING_SNAKE_CASE = tf_tokenizer(__UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self : int ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE = ModelToSave(tokenizer=__UpperCamelCase ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE = model.serving(__UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__UpperCamelCase ) / "saved.model" tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={"serving_default": model.serving} ) SCREAMING_SNAKE_CASE = tf.saved_model.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE = loaded_model.signatures["serving_default"](__UpperCamelCase )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case ( self : str ): for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE = tf_tokenizer(__UpperCamelCase ) # Build model with some sample inputs SCREAMING_SNAKE_CASE = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE = TFGPTaTokenizer.from_config(__UpperCamelCase ) SCREAMING_SNAKE_CASE = model_from_config(__UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case ( self : Optional[int] ): for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE = 123123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE = tf_tokenizer(__UpperCamelCase , max_length=__UpperCamelCase ) SCREAMING_SNAKE_CASE = out["input_ids"].numpy().shape[1] assert out_length == max_length
702
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : List[Any] = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name __A : List[str] = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ = 42 class _SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , ): super().__init__() self.register_modules( prior=lowercase__ , image_encoder=lowercase__ , image_processor=lowercase__ , scheduler=lowercase__ , renderer=lowercase__ , ) def _snake_case ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ): if latents is None: SCREAMING_SNAKE_CASE = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE = latents.to(lowercase__ ) SCREAMING_SNAKE_CASE = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : Optional[Any] , __lowerCamelCase : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) @property def _snake_case ( self : str ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _snake_case ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , ): if isinstance(lowercase__ , lowercase__ ) and isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE = torch.cat(lowercase__ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase__ , axis=0 ) if not isinstance(lowercase__ , torch.Tensor ): SCREAMING_SNAKE_CASE = self.image_processor(lowercase__ , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) SCREAMING_SNAKE_CASE = image.to(dtype=self.image_encoder.dtype , device=lowercase__ ) SCREAMING_SNAKE_CASE = self.image_encoder(lowercase__ )["""last_hidden_state"""] SCREAMING_SNAKE_CASE = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 SCREAMING_SNAKE_CASE = image_embeds.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE = torch.zeros_like(lowercase__ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple = 1 , __lowerCamelCase : Tuple = 25 , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : int = 4.0 , __lowerCamelCase : str = 64 , __lowerCamelCase : Any = "pil" , __lowerCamelCase : Optional[int] = True , ): if isinstance(lowercase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE = 1 elif isinstance(lowercase__ , torch.Tensor ): SCREAMING_SNAKE_CASE = image.shape[0] elif isinstance(lowercase__ , lowercase__ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): SCREAMING_SNAKE_CASE = len(lowercase__ ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase__ )}" ) SCREAMING_SNAKE_CASE = self._execution_device SCREAMING_SNAKE_CASE = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE = guidance_scale > 1.0 SCREAMING_SNAKE_CASE = self._encode_image(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # prior self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) SCREAMING_SNAKE_CASE = self.scheduler.timesteps SCREAMING_SNAKE_CASE = self.prior.config.num_embeddings SCREAMING_SNAKE_CASE = self.prior.config.embedding_dim SCREAMING_SNAKE_CASE = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim SCREAMING_SNAKE_CASE = latents.reshape(latents.shape[0] , lowercase__ , lowercase__ ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = self.prior( lowercase__ , timestep=lowercase__ , proj_embedding=lowercase__ , ).predicted_image_embedding # remove the variance SCREAMING_SNAKE_CASE = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) SCREAMING_SNAKE_CASE = self.scheduler.step( lowercase__ , timestep=lowercase__ , sample=lowercase__ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase__ ) SCREAMING_SNAKE_CASE = [] for i, latent in enumerate(lowercase__ ): print() SCREAMING_SNAKE_CASE = self.renderer.decode( latent[None, :] , lowercase__ , size=lowercase__ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase__ ) SCREAMING_SNAKE_CASE = torch.stack(lowercase__ ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) SCREAMING_SNAKE_CASE = images.cpu().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE = [self.numpy_to_pil(lowercase__ ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase__ )
704
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = "camembert" def __init__( self : int , __lowerCamelCase : Union[str, Any]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Union[str, Any]="absolute" , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Any , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _snake_case ( self : Dict ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
705
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __a ( A__ : List[str] ): if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def __a ( A__ : str ): for char in word: SCREAMING_SNAKE_CASE = ord(A__ ) if not _is_chinese_char(A__ ): return 0 return 1 def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = set() for token in tokens: SCREAMING_SNAKE_CASE = len(A__ ) > 1 and is_chinese(A__ ) if chinese_word: word_set.add(A__ ) SCREAMING_SNAKE_CASE = list(A__ ) return word_list def __a ( A__ : List[str] , A__ : set() ): if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE = max([len(A__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0, len(A__ ) while start < end: SCREAMING_SNAKE_CASE = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE = min(end - start , A__ ) for i in range(A__ , 1 , -1 ): SCREAMING_SNAKE_CASE = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE = "##" + bert_word[j] SCREAMING_SNAKE_CASE = start + i SCREAMING_SNAKE_CASE = False break if single_word: start += 1 return bert_word def __a ( A__ : List[str] , A__ : LTP , A__ : BertTokenizer ): SCREAMING_SNAKE_CASE = [] for i in range(0 , len(A__ ) , 100 ): SCREAMING_SNAKE_CASE = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws SCREAMING_SNAKE_CASE = [get_chinese_word(A__ ) for r in res] ltp_res.extend(A__ ) assert len(A__ ) == len(A__ ) SCREAMING_SNAKE_CASE = [] for i in range(0 , len(A__ ) , 100 ): SCREAMING_SNAKE_CASE = bert_tokenizer(lines[i : i + 100] , add_special_tokens=A__ , truncation=A__ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(A__ ) == len(A__ ) SCREAMING_SNAKE_CASE = [] for input_ids, chinese_word in zip(A__ , A__ ): SCREAMING_SNAKE_CASE = [] for id in input_ids: SCREAMING_SNAKE_CASE = bert_tokenizer._convert_id_to_token(A__ ) input_tokens.append(A__ ) SCREAMING_SNAKE_CASE = add_sub_symbol(A__ , A__ ) SCREAMING_SNAKE_CASE = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE = token[2:] # save chinese tokens' pos if len(A__ ) == 1 and _is_chinese_char(ord(A__ ) ): ref_id.append(A__ ) ref_ids.append(A__ ) assert len(A__ ) == len(A__ ) return ref_ids def __a ( A__ : List[str] ): with open(args.file_name , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = f.readlines() SCREAMING_SNAKE_CASE = [line.strip() for line in data if len(A__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE = prepare_ref(A__ , A__ , A__ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = [json.dumps(A__ ) + "\n" for ref in ref_ids] f.writelines(A__ ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) __A : Optional[int] = parser.parse_args() main(args)
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: SCREAMING_SNAKE_CASE = 192 SCREAMING_SNAKE_CASE = 768 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = [800, 1333] SCREAMING_SNAKE_CASE = False elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE = 330 SCREAMING_SNAKE_CASE = 14 SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = 1320 elif "yolos_s" in yolos_name: SCREAMING_SNAKE_CASE = 384 SCREAMING_SNAKE_CASE = 1536 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 6 elif "yolos_b" in yolos_name: SCREAMING_SNAKE_CASE = [800, 1344] SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(lowercase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} return config def __a ( A__ : int , A__ : Union[str, Any] , A__ : List[Any] = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[-config.hidden_size :, :] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __a ( A__ : Optional[Any] ): if "backbone" in name: SCREAMING_SNAKE_CASE = name.replace("backbone" , "vit" ) if "cls_token" in name: SCREAMING_SNAKE_CASE = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: SCREAMING_SNAKE_CASE = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: SCREAMING_SNAKE_CASE = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: SCREAMING_SNAKE_CASE = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: SCREAMING_SNAKE_CASE = name.replace("vit.norm" , "vit.layernorm" ) return name def __a ( A__ : Optional[Any] , A__ : Union[str, Any] ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(lowercase_ ) if "qkv" in key: SCREAMING_SNAKE_CASE = key.split("." ) SCREAMING_SNAKE_CASE = int(key_split[2] ) SCREAMING_SNAKE_CASE = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[:dim] SCREAMING_SNAKE_CASE = val[dim : dim * 2] SCREAMING_SNAKE_CASE = val[-dim:] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : Dict , A__ : Dict = False ): SCREAMING_SNAKE_CASE = get_yolos_config(lowercase_ ) # load original state_dict SCREAMING_SNAKE_CASE = torch.load(lowercase_ , map_location="cpu" )["model"] # load 🤗 model SCREAMING_SNAKE_CASE = YolosForObjectDetection(lowercase_ ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by YolosImageProcessor SCREAMING_SNAKE_CASE = 800 if yolos_name != "yolos_ti" else 512 SCREAMING_SNAKE_CASE = YolosImageProcessor(format="coco_detection" , size=lowercase_ ) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**lowercase_ ) SCREAMING_SNAKE_CASE = outputs.logits, outputs.pred_boxes SCREAMING_SNAKE_CASE = None, None if yolos_name == "yolos_ti": SCREAMING_SNAKE_CASE = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": SCREAMING_SNAKE_CASE = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": SCREAMING_SNAKE_CASE = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": SCREAMING_SNAKE_CASE = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , lowercase_ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: SCREAMING_SNAKE_CASE = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) SCREAMING_SNAKE_CASE = model_mapping[yolos_name] image_processor.push_to_hub(lowercase_ , organization="hustvl" ) model.push_to_hub(lowercase_ , organization="hustvl" ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : Union[str, Any] = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
707
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @slow @require_torch def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , ) # start training trainer.train()
698
0
import baseaa def __a ( A__ : List[str] ): return baseaa.baaencode(string.encode("utf-8" ) ) def __a ( A__ : Tuple ): return baseaa.baadecode(__UpperCamelCase ).decode("utf-8" ) if __name__ == "__main__": __A : Any = 'Hello World!' __A : Optional[Any] = baseaa_encode(test) print(encoded) __A : Optional[Any] = baseaa_decode(encoded) print(decoded)
708
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = initializer_range def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = LevitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Any ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Any ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _snake_case ( self : Tuple ): pass @unittest.skip(reason="Levit does not output attentions" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : int ): pass def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ): SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _snake_case ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE = problem_type["title"] SCREAMING_SNAKE_CASE = problem_type["num_labels"] SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def _snake_case ( self : List[Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Dict ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
698
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __A : List[Any] = True from torch.cuda.amp import autocast __A : Tuple = logging.getLogger(__name__) def __a ( A__ : Tuple=None , A__ : Tuple=None ): return field(default_factory=lambda: default , metadata=A__ ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCamelCase__ = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) lowerCamelCase__ = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) lowerCamelCase__ = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) lowerCamelCase__ = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) lowerCamelCase__ = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) lowerCamelCase__ = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCamelCase__ = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) lowerCamelCase__ = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "\'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self : Tuple , __lowerCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ): SCREAMING_SNAKE_CASE = [{"input_values": feature["input_values"]} for feature in features] SCREAMING_SNAKE_CASE = [{"input_ids": feature["labels"]} for feature in features] SCREAMING_SNAKE_CASE = self.processor.pad( _lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = self.processor.pad( labels=_lowerCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly SCREAMING_SNAKE_CASE = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) SCREAMING_SNAKE_CASE = labels return batch class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' def _snake_case ( self : List[Any] , __lowerCamelCase : nn.Module , __lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ): model.train() SCREAMING_SNAKE_CASE = self._prepare_inputs(_lowerCAmelCase ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE = self.compute_loss(_lowerCAmelCase , _lowerCAmelCase ) else: SCREAMING_SNAKE_CASE = self.compute_loss(_lowerCAmelCase , _lowerCAmelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCAmelCase ) else: loss.backward() return loss.detach() def __a ( ): SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: SCREAMING_SNAKE_CASE = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) SCREAMING_SNAKE_CASE = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer SCREAMING_SNAKE_CASE = F"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(A__ : Dict ): SCREAMING_SNAKE_CASE = re.sub(A__ , "" , batch["sentence"] ).lower() + " " return batch SCREAMING_SNAKE_CASE = train_dataset.map(A__ , remove_columns=["sentence"] ) SCREAMING_SNAKE_CASE = eval_dataset.map(A__ , remove_columns=["sentence"] ) def extract_all_chars(A__ : int ): SCREAMING_SNAKE_CASE = " ".join(batch["text"] ) SCREAMING_SNAKE_CASE = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} SCREAMING_SNAKE_CASE = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) SCREAMING_SNAKE_CASE = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) SCREAMING_SNAKE_CASE = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) SCREAMING_SNAKE_CASE = {v: k for k, v in enumerate(A__ )} SCREAMING_SNAKE_CASE = vocab_dict[" "] del vocab_dict[" "] SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = len(A__ ) with open("vocab.json" , "w" ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) SCREAMING_SNAKE_CASE = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = min(len(A__ ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_val_samples ) ) SCREAMING_SNAKE_CASE = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(batch["path"] ) SCREAMING_SNAKE_CASE = resampler(A__ ).squeeze().numpy() SCREAMING_SNAKE_CASE = 16000 SCREAMING_SNAKE_CASE = batch["text"] return batch SCREAMING_SNAKE_CASE = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." SCREAMING_SNAKE_CASE = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(A__ ) return batch SCREAMING_SNAKE_CASE = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) SCREAMING_SNAKE_CASE = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric SCREAMING_SNAKE_CASE = datasets.load_metric("wer" ) def compute_metrics(A__ : Optional[int] ): SCREAMING_SNAKE_CASE = pred.predictions SCREAMING_SNAKE_CASE = np.argmax(A__ , axis=-1 ) SCREAMING_SNAKE_CASE = processor.tokenizer.pad_token_id SCREAMING_SNAKE_CASE = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics SCREAMING_SNAKE_CASE = processor.batch_decode(pred.label_ids , group_tokens=A__ ) SCREAMING_SNAKE_CASE = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator SCREAMING_SNAKE_CASE = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer SCREAMING_SNAKE_CASE = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE = model_args.model_name_or_path else: SCREAMING_SNAKE_CASE = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() SCREAMING_SNAKE_CASE = train_result.metrics SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) SCREAMING_SNAKE_CASE = min(A__ , len(A__ ) ) trainer.log_metrics("train" , A__ ) trainer.save_metrics("train" , A__ ) trainer.save_state() # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) SCREAMING_SNAKE_CASE = min(A__ , len(A__ ) ) trainer.log_metrics("eval" , A__ ) trainer.save_metrics("eval" , A__ ) return results if __name__ == "__main__": main()
709
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): return None class _SCREAMING_SNAKE_CASE : '''simple docstring''' def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ): return None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) @require_torch @slow def _snake_case ( self : Optional[int] ): from transformers import BertModel SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(__lowerCamelCase ) ) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) ) model.save_pretrained(__lowerCamelCase ) self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase ) @require_tf @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Any ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) return path except Exception as e: self.fail(__lowerCamelCase ) @require_torch @require_tokenizers @slow def _snake_case ( self : Dict ): from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : int ): from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" ) def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase ) # Assert all variables are present self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"] SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCamelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
698
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __A : Optional[int] = logging.get_logger(__name__) set_seed(7_7_0) __A : Any = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } __A : Tuple = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } __A : Dict = os.path.dirname(os.path.abspath(__file__)) __A : Dict = os.path.join(os.path.expanduser('~'), '.cache') __A : List[str] = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def __a ( A__ : List[str] , A__ : Any=False ): SCREAMING_SNAKE_CASE = model_type if use_small: key += "_small" return os.path.join(snake_case_ , REMOTE_MODEL_PATHS[key]["file_name"] ) def __a ( A__ : Any , A__ : str ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) hf_hub_download(repo_id=snake_case_ , filename=snake_case_ , local_dir=snake_case_ ) def __a ( A__ : Union[str, Any] , A__ : List[str] , A__ : List[str]=False , A__ : Any="text" ): if model_type == "text": SCREAMING_SNAKE_CASE = BarkSemanticModel SCREAMING_SNAKE_CASE = BarkSemanticConfig SCREAMING_SNAKE_CASE = BarkSemanticGenerationConfig elif model_type == "coarse": SCREAMING_SNAKE_CASE = BarkCoarseModel SCREAMING_SNAKE_CASE = BarkCoarseConfig SCREAMING_SNAKE_CASE = BarkCoarseGenerationConfig elif model_type == "fine": SCREAMING_SNAKE_CASE = BarkFineModel SCREAMING_SNAKE_CASE = BarkFineConfig SCREAMING_SNAKE_CASE = BarkFineGenerationConfig else: raise NotImplementedError() SCREAMING_SNAKE_CASE = F"{model_type}_small" if use_small else model_type SCREAMING_SNAKE_CASE = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case_ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info["repo_id"] , model_info["file_name"] ) SCREAMING_SNAKE_CASE = torch.load(snake_case_ , map_location=snake_case_ ) # this is a hack SCREAMING_SNAKE_CASE = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: SCREAMING_SNAKE_CASE = model_args["""vocab_size"""] SCREAMING_SNAKE_CASE = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments SCREAMING_SNAKE_CASE = model_args.pop("n_head" ) SCREAMING_SNAKE_CASE = model_args.pop("n_embd" ) SCREAMING_SNAKE_CASE = model_args.pop("n_layer" ) SCREAMING_SNAKE_CASE = ConfigClass(**checkpoint["model_args"] ) SCREAMING_SNAKE_CASE = ModelClass(config=snake_case_ ) SCREAMING_SNAKE_CASE = GenerationConfigClass() SCREAMING_SNAKE_CASE = model_generation_config SCREAMING_SNAKE_CASE = checkpoint["""model"""] # fixup checkpoint SCREAMING_SNAKE_CASE = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(snake_case_ ): # replace part of the key with corresponding layer name in HF implementation SCREAMING_SNAKE_CASE = k[len(snake_case_ ) :] for old_layer_name in new_layer_name_dict: SCREAMING_SNAKE_CASE = new_k.replace(snake_case_ , new_layer_name_dict[old_layer_name] ) SCREAMING_SNAKE_CASE = state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE = set(state_dict.keys() ) - set(model.state_dict().keys() ) SCREAMING_SNAKE_CASE = {k for k in extra_keys if not k.endswith(".attn.bias" )} SCREAMING_SNAKE_CASE = set(model.state_dict().keys() ) - set(state_dict.keys() ) SCREAMING_SNAKE_CASE = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(snake_case_ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(snake_case_ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(snake_case_ , strict=snake_case_ ) SCREAMING_SNAKE_CASE = model.num_parameters(exclude_embeddings=snake_case_ ) SCREAMING_SNAKE_CASE = checkpoint["""best_val_loss"""].item() logger.info(F"model loaded: {round(n_params/1E6 , 1 )}M params, {round(snake_case_ , 3 )} loss" ) model.eval() model.to(snake_case_ ) del checkpoint, state_dict return model def __a ( A__ : List[Any] , A__ : Dict=False , A__ : Any="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() SCREAMING_SNAKE_CASE = """cpu""" # do conversion on cpu SCREAMING_SNAKE_CASE = _get_ckpt_path(snake_case_ , use_small=snake_case_ ) SCREAMING_SNAKE_CASE = _load_model(snake_case_ , snake_case_ , model_type=snake_case_ , use_small=snake_case_ ) # load bark initial model SCREAMING_SNAKE_CASE = _bark_load_model(snake_case_ , "cpu" , model_type=snake_case_ , use_small=snake_case_ ) if model_type == "text": SCREAMING_SNAKE_CASE = bark_model["""model"""] if model.num_parameters(exclude_embeddings=snake_case_ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = 10 if model_type in ["text", "coarse"]: SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) SCREAMING_SNAKE_CASE = bark_model(snake_case_ )[0] SCREAMING_SNAKE_CASE = model(snake_case_ ) # take last logits SCREAMING_SNAKE_CASE = output_new_model_total.logits[:, [-1], :] else: SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) SCREAMING_SNAKE_CASE = model(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = bark_model(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) def __a ( A__ : List[Any] , A__ : Optional[int] , A__ : Tuple , A__ : Any , A__ : Any , A__ : Tuple , ): SCREAMING_SNAKE_CASE = os.path.join(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = BarkSemanticConfig.from_pretrained(os.path.join(snake_case_ , "config.json" ) ) SCREAMING_SNAKE_CASE = BarkCoarseConfig.from_pretrained(os.path.join(snake_case_ , "config.json" ) ) SCREAMING_SNAKE_CASE = BarkFineConfig.from_pretrained(os.path.join(snake_case_ , "config.json" ) ) SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) SCREAMING_SNAKE_CASE = BarkSemanticModel.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE = BarkCoarseModel.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE = BarkFineModel.from_pretrained(snake_case_ ) SCREAMING_SNAKE_CASE = EncodecModel.from_pretrained("facebook/encodec_24khz" ) SCREAMING_SNAKE_CASE = BarkConfig.from_sub_model_configs( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) SCREAMING_SNAKE_CASE = BarkModel(snake_case_ ) SCREAMING_SNAKE_CASE = semantic SCREAMING_SNAKE_CASE = coarseAcoustic SCREAMING_SNAKE_CASE = fineAcoustic SCREAMING_SNAKE_CASE = codec SCREAMING_SNAKE_CASE = bark_generation_config Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) bark.save_pretrained(snake_case_ , repo_id=snake_case_ , push_to_hub=snake_case_ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') __A : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
710
from manim import * class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 ) SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) SCREAMING_SNAKE_CASE = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
698
0
import functools def __a ( A__ : str , A__ : str ): SCREAMING_SNAKE_CASE = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE = len(__UpperCamelCase ) @functools.cache def min_distance(A__ : int , A__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa SCREAMING_SNAKE_CASE = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCamelCase ) , 1 + min_distance(__UpperCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
711
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ): pass @is_pipeline_test @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCamelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @require_tf def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], [ {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, {"score": 0.333, "label": ANY(__lowerCamelCase )}, ], ] , ) @slow @require_torch def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCamelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
698
0
__A : List[str] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : Optional[int] = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
712
__A : dict[str, float] = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( A__ : str , A__ : str , A__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: SCREAMING_SNAKE_CASE = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(A__ )}" ) raise ValueError(A__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
698
0
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __A : Union[str, Any] = "scheduler_config.json" class _SCREAMING_SNAKE_CASE ( _A ): '''simple docstring''' lowerCamelCase__ = 1 lowerCamelCase__ = 2 lowerCamelCase__ = 3 lowerCamelCase__ = 4 lowerCamelCase__ = 5 lowerCamelCase__ = 6 lowerCamelCase__ = 7 lowerCamelCase__ = 8 lowerCamelCase__ = 9 lowerCamelCase__ = 1_0 lowerCamelCase__ = 1_1 lowerCamelCase__ = 1_2 lowerCamelCase__ = 1_3 lowerCamelCase__ = 1_4 @dataclass class _SCREAMING_SNAKE_CASE ( _A ): '''simple docstring''' lowerCamelCase__ = 4_2 class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = SCHEDULER_CONFIG_NAME lowerCamelCase__ = [] lowerCamelCase__ = True @classmethod def _snake_case ( cls : Tuple , __lowerCamelCase : Any = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : int=False , **__lowerCamelCase : Any , ): SCREAMING_SNAKE_CASE = cls.load_config( pretrained_model_name_or_path=__lowerCamelCase , subfolder=__lowerCamelCase , return_unused_kwargs=__lowerCamelCase , return_commit_hash=__lowerCamelCase , **__lowerCamelCase , ) return cls.from_config(__lowerCamelCase , return_unused_kwargs=__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict = False , **__lowerCamelCase : str ): self.save_config(save_directory=__lowerCamelCase , push_to_hub=__lowerCamelCase , **__lowerCamelCase ) @property def _snake_case ( self : Union[str, Any] ): return self._get_compatibles() @classmethod def _snake_case ( cls : List[str] ): SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) ) SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split("." )[0] ) SCREAMING_SNAKE_CASE = [ getattr(__lowerCamelCase , __lowerCamelCase ) for c in compatible_classes_str if hasattr(__lowerCamelCase , __lowerCamelCase ) ] return compatible_classes
713
from collections import deque from .hash_table import HashTable class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ): super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.values[key] def _snake_case ( self : Union[str, Any] ): return ( sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0 ): return key return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase )
698
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __lowercase ): '''simple docstring''' lowerCamelCase__ = (EulerDiscreteScheduler,) lowerCamelCase__ = 1_0 def _snake_case ( self : List[Any] , **__lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__A ) return config def _snake_case ( self : Union[str, Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def _snake_case ( self : int ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def _snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def _snake_case ( self : Any ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__A , __A ) SCREAMING_SNAKE_CASE = model(__A , __A ) SCREAMING_SNAKE_CASE = scheduler.step(__A , __A , __A , generator=__A ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__A , __A ) SCREAMING_SNAKE_CASE = model(__A , __A ) SCREAMING_SNAKE_CASE = scheduler.step(__A , __A , __A , generator=__A ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE = sample.to(__A ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__A , __A ) SCREAMING_SNAKE_CASE = model(__A , __A ) SCREAMING_SNAKE_CASE = scheduler.step(__A , __A , __A , generator=__A ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**__A , use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE = sample.to(__A ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__A , __A ) SCREAMING_SNAKE_CASE = model(__A , __A ) SCREAMING_SNAKE_CASE = scheduler.step(__A , __A , __A , generator=__A ) SCREAMING_SNAKE_CASE = output.prev_sample SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__A ) ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
714
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : int = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neo" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_layers SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_dropout SCREAMING_SNAKE_CASE = embed_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = attention_types SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def _snake_case ( __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ): import torch SCREAMING_SNAKE_CASE = input.size() SCREAMING_SNAKE_CASE = len(A__ ) SCREAMING_SNAKE_CASE = shape[dimension] SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ ) SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE = [slice(A__ )] * rank SCREAMING_SNAKE_CASE = indices SCREAMING_SNAKE_CASE = input[s] SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def __a ( A__ : Union[str, Any] , A__ : Optional[int] ): import torch SCREAMING_SNAKE_CASE = torch.arange(1 , A__ ) SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ ) SCREAMING_SNAKE_CASE = remainders == 0 SCREAMING_SNAKE_CASE = candidates[divisor_indices] SCREAMING_SNAKE_CASE = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return common_inputs @property def _snake_case ( self : Optional[int] ): return self._config.num_heads def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE = seqlen + 2 SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self : Optional[int] ): return 13
698
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __A : List[Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def _snake_case ( cls : Dict ): SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(__A ) @classmethod def _snake_case ( cls : str ): try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE = FlaxBertModel(__A ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1e-3 , msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__A , repo_id="test-model-flax" , push_to_hub=__A , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(f"{USER}/test-model-flax" ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1e-3 , msg=f"{key} not identical" ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE = FlaxBertModel(__A ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1e-3 , msg=f"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __A , repo_id="valid_org/test-model-flax-org" , push_to_hub=__A , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__A , 1e-3 , msg=f"{key} not identical" ) def __a ( A__ : str , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE = FlaxBertModel(__A ) SCREAMING_SNAKE_CASE = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__A , __A ) ) with self.assertRaises(__A ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertTrue(check_models_equal(__A , __A ) ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE = FlaxBertModel(__A ) SCREAMING_SNAKE_CASE = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__A , __A ) , max_shard_size="10KB" ) with self.assertRaises(__A ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertTrue(check_models_equal(__A , __A ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = "bert" SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__A ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertIsNotNone(__A ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = "bert" SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__A ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(__A , subfolder=__A ) self.assertIsNotNone(__A )
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : Any = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
def __a ( A__ : List[Any] , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = [1] for i in range(2 , _UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = list(range(_UpperCAmelCase ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE = factorials.pop() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(_UpperCAmelCase , _UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
716
import cmath import math def __a ( A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = math.radians(A__ ) SCREAMING_SNAKE_CASE = math.radians(A__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
698
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = "google/mobilebert-uncased" def _snake_case ( self : List[Any] ): super().setUp() SCREAMING_SNAKE_CASE = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = 'unwanted, running' return input_text, output_text def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def _snake_case ( self : Optional[Any] ): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.tokenize(__a ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) SCREAMING_SNAKE_CASE = tokenizer.encode(__a , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(__a ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=__a ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=__a ) SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.tokenize(__a ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) SCREAMING_SNAKE_CASE = tokenizer.encode(__a , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(__a ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(__a ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _snake_case ( self : List[str] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _snake_case ( self : Any ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _snake_case ( self : Union[str, Any] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__a ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _snake_case ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__a , **__a ) SCREAMING_SNAKE_CASE = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = ['的', '人', '有'] SCREAMING_SNAKE_CASE = ''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__a , **__a ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__a , **__a ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(__a , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(__a , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(__a ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__a , **__a ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__a , **__a ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(__a , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(__a , add_special_tokens=__a ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(__a ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
717
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __a ( A__ : List[str] ): SCREAMING_SNAKE_CASE = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ ) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __a ( A__ : Tuple , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(A__ , exist_ok=A__ ) for expert in range(A__ ): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(A__ ): SCREAMING_SNAKE_CASE = torch.load(A__ )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = os.path.join( A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) torch.save(A__ , A__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A__ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ ) SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A__ ) == 1: SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ ) torch.save(A__ , A__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A__ , A__ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(A__ ): SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" ) SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(A__ , os.path.join(A__ , A__ ) ) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {"total_size": total_size} SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) return metadata, index if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __A : Optional[int] = parser.parse_args() __A , __A : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) __A : Any = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) __A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
698
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : int = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "altclip_text_model" def __init__( self : List[str] , __lowerCamelCase : Union[str, Any]=250002 , __lowerCamelCase : List[str]=1024 , __lowerCamelCase : int=24 , __lowerCamelCase : int=16 , __lowerCamelCase : Dict=4096 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=514 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : int=0.02 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Optional[int]=1e-05 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict="absolute" , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=768 , **__lowerCamelCase : Optional[int] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = project_dim class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "altclip_vision_model" def __init__( self : Any , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : List[Any]=3072 , __lowerCamelCase : str=512 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Tuple=224 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Tuple="quick_gelu" , __lowerCamelCase : List[str]=1e-5 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : str=1.0 , **__lowerCamelCase : str , ): super().__init__(**__A ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def _snake_case ( cls : List[str] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[int] ): cls._set_token_in_kwargs(__A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": SCREAMING_SNAKE_CASE = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__A , **__A ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "altclip" lowerCamelCase__ = True def __init__( self : Optional[int] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=768 , __lowerCamelCase : Optional[Any]=2.6_592 , **__lowerCamelCase : Dict ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). SCREAMING_SNAKE_CASE = kwargs.pop("text_config_dict" , __A ) SCREAMING_SNAKE_CASE = kwargs.pop("vision_config_dict" , __A ) super().__init__(**__A ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: SCREAMING_SNAKE_CASE = {} # This is the complete result when using `text_config_dict`. SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**__A ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: SCREAMING_SNAKE_CASE = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE = ( f"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " f"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(__A ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: SCREAMING_SNAKE_CASE = {} # This is the complete result when using `vision_config_dict`. SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**__A ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: SCREAMING_SNAKE_CASE = { str(__A ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: SCREAMING_SNAKE_CASE = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE = ( f"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " f"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(__A ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) SCREAMING_SNAKE_CASE = AltCLIPTextConfig(**__A ) SCREAMING_SNAKE_CASE = AltCLIPVisionConfig(**__A ) SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = logit_scale_init_value SCREAMING_SNAKE_CASE = 1.0 @classmethod def _snake_case ( cls : str , __lowerCamelCase : AltCLIPTextConfig , __lowerCamelCase : AltCLIPVisionConfig , **__lowerCamelCase : Dict ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.text_config.to_dict() SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
718
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict , **__lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def _snake_case ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" ) SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = "lower newer" SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
698
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A : List[Any] = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "rag" lowerCamelCase__ = True def __init__( self : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : int=" / " , __lowerCamelCase : Optional[int]=" // " , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Any=300 , __lowerCamelCase : int=768 , __lowerCamelCase : Any=8 , __lowerCamelCase : str="wiki_dpr" , __lowerCamelCase : List[str]="train" , __lowerCamelCase : Dict="compressed" , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : str=False , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ): super().__init__( bos_token_id=_lowercase , pad_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , is_encoder_decoder=_lowercase , prefix=_lowercase , vocab_size=_lowercase , **_lowercase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" SCREAMING_SNAKE_CASE = kwargs.pop("question_encoder" ) SCREAMING_SNAKE_CASE = question_encoder_config.pop("model_type" ) SCREAMING_SNAKE_CASE = kwargs.pop("generator" ) SCREAMING_SNAKE_CASE = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE = AutoConfig.for_model(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE = AutoConfig.for_model(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE = reduce_loss SCREAMING_SNAKE_CASE = label_smoothing SCREAMING_SNAKE_CASE = exclude_bos_score SCREAMING_SNAKE_CASE = do_marginalize SCREAMING_SNAKE_CASE = title_sep SCREAMING_SNAKE_CASE = doc_sep SCREAMING_SNAKE_CASE = n_docs SCREAMING_SNAKE_CASE = max_combined_length SCREAMING_SNAKE_CASE = dataset SCREAMING_SNAKE_CASE = dataset_split SCREAMING_SNAKE_CASE = index_name SCREAMING_SNAKE_CASE = retrieval_vector_size SCREAMING_SNAKE_CASE = retrieval_batch_size SCREAMING_SNAKE_CASE = passages_path SCREAMING_SNAKE_CASE = index_path SCREAMING_SNAKE_CASE = use_dummy_dataset SCREAMING_SNAKE_CASE = output_retrieved SCREAMING_SNAKE_CASE = do_deduplication SCREAMING_SNAKE_CASE = use_cache if self.forced_eos_token_id is None: SCREAMING_SNAKE_CASE = getattr(self.generator , "forced_eos_token_id" , _lowercase ) @classmethod def _snake_case ( cls : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_lowercase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.question_encoder.to_dict() SCREAMING_SNAKE_CASE = self.generator.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
719
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=True , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : int=224 , __lowerCamelCase : List[str]=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Optional[Any] ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=A__ , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=A__ ) model.to(A__ ) model.eval() SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() SCREAMING_SNAKE_CASE = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Tuple ): (SCREAMING_SNAKE_CASE) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=A__ , has_text_modality=A__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : List[Any] ): pass def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(A__ ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(A__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def _snake_case ( self : str ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : str ): pass def _snake_case ( self : Optional[int] ): def check_hidden_states_output(__lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(A__ , A__ ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(A__ ) , A__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(A__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(A__ , A__ , A__ ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = copy.deepcopy(A__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(A__ , A__ , 1e-10 ) if isinstance(getattr(A__ , A__ , A__ ) , A__ ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(A__ , A__ ) ) setattr(A__ , A__ , A__ ) return configs_no_init SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(A__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=A__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Optional[int] ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : str ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(A__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ).to(A__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**A__ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A__ ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1e-4 ) )
720
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "facebook/bart-large-mnli" lowerCamelCase__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) lowerCamelCase__ = "text_classifier" lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ["text", ["text"]] lowerCamelCase__ = ["text"] def _snake_case ( self : Optional[Any] ): super().setup() SCREAMING_SNAKE_CASE = self.model.config SCREAMING_SNAKE_CASE = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): SCREAMING_SNAKE_CASE = int(__lowerCamelCase ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = labels return self.pre_processor( [text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
698
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A : List[str] = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A : List[Any] = 'UperNetConfig' class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] = 0 , __lowerCamelCase : List[str] = False , __lowerCamelCase : int = 1 , ): super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , padding=_a , bias=_a , dilation=_a , ) SCREAMING_SNAKE_CASE = nn.BatchNormad(_a ) SCREAMING_SNAKE_CASE = nn.ReLU() def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.conv(_a ) SCREAMING_SNAKE_CASE = self.batch_norm(_a ) SCREAMING_SNAKE_CASE = self.activation(_a ) return output class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = [ nn.AdaptiveAvgPoolad(_a ), UperNetConvModule(_a , _a , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_a ) , _a ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Any ): SCREAMING_SNAKE_CASE = input for layer in self.layers: SCREAMING_SNAKE_CASE = layer(_a ) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): super().__init__() SCREAMING_SNAKE_CASE = pool_scales SCREAMING_SNAKE_CASE = align_corners SCREAMING_SNAKE_CASE = in_channels SCREAMING_SNAKE_CASE = channels SCREAMING_SNAKE_CASE = [] for i, pool_scale in enumerate(_a ): SCREAMING_SNAKE_CASE = UperNetPyramidPoolingBlock(pool_scale=_a , in_channels=_a , channels=_a ) self.blocks.append(_a ) self.add_module(str(_a ) , _a ) def _snake_case ( self : Dict , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE = ppm(_a ) SCREAMING_SNAKE_CASE = nn.functional.interpolate( _a , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(_a ) return ppm_outs class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE = in_channels SCREAMING_SNAKE_CASE = config.hidden_size SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module SCREAMING_SNAKE_CASE = nn.ModuleList() SCREAMING_SNAKE_CASE = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE = UperNetConvModule(_a , self.channels , kernel_size=1 ) SCREAMING_SNAKE_CASE = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_a ) self.fpn_convs.append(_a ) SCREAMING_SNAKE_CASE = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _snake_case ( self : Optional[Any] ): self.apply(self._init_weights ) def _snake_case ( self : List[Any] , __lowerCamelCase : List[Any] ): if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self : str , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = inputs[-1] SCREAMING_SNAKE_CASE = [x] psp_outs.extend(self.psp_modules(_a ) ) SCREAMING_SNAKE_CASE = torch.cat(_a , dim=1 ) SCREAMING_SNAKE_CASE = self.bottleneck(_a ) return output def _snake_case ( self : int , __lowerCamelCase : List[str] ): # build laterals SCREAMING_SNAKE_CASE = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_a ) ) # build top-down path SCREAMING_SNAKE_CASE = len(_a ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_a , mode="bilinear" , align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) SCREAMING_SNAKE_CASE = torch.cat(_a , dim=1 ) SCREAMING_SNAKE_CASE = self.fpn_bottleneck(_a ) SCREAMING_SNAKE_CASE = self.classifier(_a ) return output class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict = 2 , __lowerCamelCase : Optional[int] = 3 , __lowerCamelCase : int = 1 ): super().__init__() SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = config.auxiliary_in_channels SCREAMING_SNAKE_CASE = config.auxiliary_channels SCREAMING_SNAKE_CASE = config.auxiliary_num_convs SCREAMING_SNAKE_CASE = config.auxiliary_concat_input SCREAMING_SNAKE_CASE = in_index SCREAMING_SNAKE_CASE = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE = nn.Identity() else: SCREAMING_SNAKE_CASE = nn.Sequential(*_a ) if self.concat_input: SCREAMING_SNAKE_CASE = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_a , padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _snake_case ( self : str ): self.apply(self._init_weights ) def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[Any] ): if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _snake_case ( self : Optional[Any] , __lowerCamelCase : Dict ): # just take the relevant feature maps SCREAMING_SNAKE_CASE = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE = self.convs(_a ) if self.concat_input: SCREAMING_SNAKE_CASE = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) SCREAMING_SNAKE_CASE = self.classifier(_a ) return output class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = UperNetConfig lowerCamelCase__ = 'pixel_values' lowerCamelCase__ = True def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple ): if isinstance(_a , _a ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _snake_case ( self : List[str] ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _snake_case ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Dict=False ): if isinstance(_a , _a ): SCREAMING_SNAKE_CASE = value __A : Union[str, Any] = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __A : Dict = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int ): super().__init__(_a ) SCREAMING_SNAKE_CASE = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE = UperNetHead(_a , in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE = UperNetFCNHead(_a ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=_a , config_class=_CONFIG_FOR_DOC ) def _snake_case ( self : Dict , __lowerCamelCase : Dict = None , __lowerCamelCase : List[str] = None , __lowerCamelCase : Dict = None , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : Union[str, Any] = None , ): SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE = self.backbone.forward_with_filtered_kwargs( _a , output_hidden_states=_a , output_attentions=_a ) SCREAMING_SNAKE_CASE = outputs.feature_maps SCREAMING_SNAKE_CASE = self.decode_head(_a ) SCREAMING_SNAKE_CASE = nn.functional.interpolate(_a , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_a ) SCREAMING_SNAKE_CASE = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE = self.auxiliary_head(_a ) SCREAMING_SNAKE_CASE = nn.functional.interpolate( _a , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_a ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss SCREAMING_SNAKE_CASE = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE = loss_fct(_a , _a ) SCREAMING_SNAKE_CASE = loss_fct(_a , _a ) SCREAMING_SNAKE_CASE = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_a , logits=_a , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
721
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __a ( A__ : str=None ): if subparsers is not None: SCREAMING_SNAKE_CASE = subparsers.add_parser("test" ) else: SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=A__ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: SCREAMING_SNAKE_CASE = script_name else: SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split() SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def __a ( ): SCREAMING_SNAKE_CASE = test_command_parser() SCREAMING_SNAKE_CASE = parser.parse_args() test_command(A__ ) if __name__ == "__main__": main()
698
0
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = name SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = weight def __repr__( self : Tuple ): return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def _snake_case ( self : Tuple ): return self.value def _snake_case ( self : Any ): return self.name def _snake_case ( self : Optional[Any] ): return self.weight def _snake_case ( self : Optional[Any] ): return self.value / self.weight def __a ( A__ : List[str] , A__ : Tuple , A__ : Tuple ): SCREAMING_SNAKE_CASE = [] for i in range(len(_lowerCamelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __a ( A__ : Tuple , A__ : List[str] , A__ : List[Any] ): SCREAMING_SNAKE_CASE = sorted(_lowerCamelCase , key=_lowerCamelCase , reverse=_lowerCamelCase ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.0, 0.0 for i in range(len(_lowerCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __a ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
700
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Dict = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : Dict ): return len(self.encoder ) def _snake_case ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : str , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : List[str] , __lowerCamelCase : str ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
698
0
from sklearn.metrics import recall_score import datasets __A : Dict = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __A : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __A : Any = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[int]="binary" , __lowerCamelCase : Tuple=None , __lowerCamelCase : str="warn" , ): SCREAMING_SNAKE_CASE = recall_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase , zero_division=__lowerCamelCase , ) return {"recall": float(__lowerCamelCase ) if score.size == 1 else score}
701
from __future__ import annotations from cmath import sqrt def __a ( A__ : int , A__ : int , A__ : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) SCREAMING_SNAKE_CASE = b * b - 4 * a * c SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a) SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
698
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' lowerCamelCase__ = "camembert" def __init__( self : str , __lowerCamelCase : Any=30522 , __lowerCamelCase : List[str]=768 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Dict=True , __lowerCamelCase : str=None , **__lowerCamelCase : Any , ): super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class _SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): '''simple docstring''' @property def _snake_case ( self : Any ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
702
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase ) SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE = cs.out[:-1] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : int ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = -1 SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 ) SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE = "" for new_text in streamer: streamer_text += new_text
698
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __A : Any = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = 4_2 lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = _str_to_version_tuple(self.version_str ) def __repr__( self : Tuple ): return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def _snake_case ( self : List[Any] ): return self.major, self.minor, self.patch def _snake_case ( self : int , __lowerCamelCase : str ): if isinstance(__lowerCamelCase , __lowerCamelCase ): return Version(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): return other raise TypeError(f"{other} (type {type(__lowerCamelCase )}) cannot be compared to version." ) def __eq__( self : Optional[Any] , __lowerCamelCase : Tuple ): try: SCREAMING_SNAKE_CASE = self._validate_operand(__lowerCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[int] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = self._validate_operand(__lowerCamelCase ) return self.tuple < other.tuple def __hash__( self : List[Any] ): return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _snake_case ( cls : Optional[int] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _snake_case ( self : int ): return self.version_str def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = _VERSION_REG.match(SCREAMING_SNAKE_CASE_ ) if not res: raise ValueError(F"Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(SCREAMING_SNAKE_CASE_ ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __a ( A__ : List[Any] ): return ".".join(str(SCREAMING_SNAKE_CASE_ ) for v in version_tuple )
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __A : Dict = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __A : int = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __A : List[Any] = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __A : Dict = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __A : Dict = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __A : int = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __lowercase ) return [m.group(0 ) for m in matches] def __a ( ): SCREAMING_SNAKE_CASE = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. SCREAMING_SNAKE_CASE = collections.defaultdict(__lowercase ) SCREAMING_SNAKE_CASE = collections.defaultdict(__lowercase ) SCREAMING_SNAKE_CASE = collections.defaultdict(__lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__lowercase ): SCREAMING_SNAKE_CASE = None if _re_tf_models.match(__lowercase ) is not None: SCREAMING_SNAKE_CASE = tf_models SCREAMING_SNAKE_CASE = _re_tf_models.match(__lowercase ).groups()[0] elif _re_flax_models.match(__lowercase ) is not None: SCREAMING_SNAKE_CASE = flax_models SCREAMING_SNAKE_CASE = _re_flax_models.match(__lowercase ).groups()[0] elif _re_pt_models.match(__lowercase ) is not None: SCREAMING_SNAKE_CASE = pt_models SCREAMING_SNAKE_CASE = _re_pt_models.match(__lowercase ).groups()[0] if lookup_dict is not None: while len(__lowercase ) > 0: if attr_name in model_prefix_to_model_type: SCREAMING_SNAKE_CASE = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE = ''.join(camel_case_split(__lowercase )[:-1] ) SCREAMING_SNAKE_CASE = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) SCREAMING_SNAKE_CASE = list(__lowercase ) all_models.sort() SCREAMING_SNAKE_CASE = {'model_type': all_models} SCREAMING_SNAKE_CASE = [pt_models[t] for t in all_models] SCREAMING_SNAKE_CASE = [tf_models[t] for t in all_models] SCREAMING_SNAKE_CASE = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure SCREAMING_SNAKE_CASE = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: SCREAMING_SNAKE_CASE = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. SCREAMING_SNAKE_CASE = 'AutoTokenizer' SCREAMING_SNAKE_CASE = [processors[t] for t in all_models] return pd.DataFrame(__lowercase ) def __a ( A__ : str ): SCREAMING_SNAKE_CASE = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: SCREAMING_SNAKE_CASE = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] SCREAMING_SNAKE_CASE = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(__lowercase , __lowercase , __lowercase ): # The type of pipeline may not exist in this framework if not hasattr(__lowercase , __lowercase ): continue # First extract all model_names SCREAMING_SNAKE_CASE = [] for name in getattr(__lowercase , __lowercase ).values(): if isinstance(__lowercase , __lowercase ): model_names.append(__lowercase ) else: model_names.extend(list(__lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __a ( A__ : Optional[int] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = get_frameworks_table() SCREAMING_SNAKE_CASE = Dataset.from_pandas(__lowercase ) SCREAMING_SNAKE_CASE = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__lowercase ) SCREAMING_SNAKE_CASE = Dataset.from_json(__lowercase ) SCREAMING_SNAKE_CASE = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(__lowercase ) ) } SCREAMING_SNAKE_CASE = update_pipeline_and_auto_class_table(__lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. SCREAMING_SNAKE_CASE = sorted(table.keys() ) SCREAMING_SNAKE_CASE = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) SCREAMING_SNAKE_CASE = Dataset.from_pandas(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__lowercase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__lowercase , "pipeline_tags.json" ) ) if commit_sha is not None: SCREAMING_SNAKE_CASE = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: SCREAMING_SNAKE_CASE = 'Update' upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__lowercase , repo_type="dataset" , token=__lowercase , commit_message=__lowercase , ) def __a ( ): SCREAMING_SNAKE_CASE = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} SCREAMING_SNAKE_CASE = transformers_module.pipelines.SUPPORTED_TASKS SCREAMING_SNAKE_CASE = [] for key in pipeline_tasks: if key not in in_table: SCREAMING_SNAKE_CASE = pipeline_tasks[key]['pt'] if isinstance(__lowercase , (list, tuple) ): SCREAMING_SNAKE_CASE = model[0] SCREAMING_SNAKE_CASE = model.__name__ if model not in in_table.values(): missing.append(__lowercase ) if len(__lowercase ) > 0: SCREAMING_SNAKE_CASE = ', '.join(__lowercase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') __A : Optional[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
704
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __A : Optional[Any] = datasets.load_iris() __A : Optional[Any] = np.array(data['data']) __A : Optional[int] = np.array(data['target']) __A : Union[str, Any] = data['target_names'] __A , __A , __A , __A : Optional[int] = train_test_split(X, y) def __a ( A__ : Optional[int] , A__ : Dict ): return np.linalg.norm(np.array(A__ ) - np.array(A__ ) ) def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ): SCREAMING_SNAKE_CASE = zip(A__ , A__ ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE = [] for data_point in data: SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
698
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Dict = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
705
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : Optional[int] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Optional[int] ): return 1e-3
698
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCamelCase__ = field( default=__a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCamelCase__ = field( default=__a , metadata={"help": "The column name of the images in the files."} ) lowerCamelCase__ = field(default=__a , metadata={"help": "A folder containing the training data."} ) lowerCamelCase__ = field(default=__a , metadata={"help": "A folder containing the validation data."} ) lowerCamelCase__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCamelCase__ = field( default=__a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase__ = field( default=__a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE = self.validation_dir SCREAMING_SNAKE_CASE = data_files if data_files else None @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( default=__a , metadata={ "help": ( "The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch." ) } , ) lowerCamelCase__ = field( default=__a , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) lowerCamelCase__ = field( default=__a , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCamelCase__ = field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCamelCase__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase__ = field(default=__a , metadata={"help": "Name or path of preprocessor config."} ) lowerCamelCase__ = field( default=__a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCamelCase__ = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) lowerCamelCase__ = field( default=__a , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class _SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' lowerCamelCase__ = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __a ( A__ : Any ): SCREAMING_SNAKE_CASE = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE = ds["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE = split["train"] SCREAMING_SNAKE_CASE = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(F"New config: {config}" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) SCREAMING_SNAKE_CASE = ViTMAEForPreTraining(lowerCAmelCase__ ) if training_args.do_train: SCREAMING_SNAKE_CASE = ds["train"].column_names else: SCREAMING_SNAKE_CASE = ds["validation"].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE = "image" elif "img" in column_names: SCREAMING_SNAKE_CASE = "img" else: SCREAMING_SNAKE_CASE = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE = Compose( [ Lambda(lambda A__ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCAmelCase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = [transforms(lowerCAmelCase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCAmelCase__ ) # Compute absolute learning rate SCREAMING_SNAKE_CASE = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer SCREAMING_SNAKE_CASE = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE = last_checkpoint SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("eval" , lowerCAmelCase__ ) trainer.save_metrics("eval" , lowerCAmelCase__ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def __a ( A__ : Union[str, Any] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
706
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "imagegpt" lowerCamelCase__ = ["past_key_values"] lowerCamelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ): SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = n_positions SCREAMING_SNAKE_CASE = n_embd SCREAMING_SNAKE_CASE = n_layer SCREAMING_SNAKE_CASE = n_head SCREAMING_SNAKE_CASE = n_inner SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = resid_pdrop SCREAMING_SNAKE_CASE = embd_pdrop SCREAMING_SNAKE_CASE = attn_pdrop SCREAMING_SNAKE_CASE = layer_norm_epsilon SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scale_attn_weights SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE = reorder_and_upcast_attn SCREAMING_SNAKE_CASE = tie_word_embeddings super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ): SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return inputs
698
0