url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | change 0 β€ deriv (f β ofReal') x at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (fun x => f βx) x
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (f β ofReal') x
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | erw [hF, deriv.ofReal_comp] at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (f β ofReal') x
β’ 0 β€ deriv F x | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ β(deriv (fun y => F y) x)
β’ 0 β€ deriv F x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | norm_cast at H | case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ β(deriv (fun y => F y) x)
β’ 0 β€ deriv F x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | refine Complex.ext rfl ?_ | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ iteratedDeriv n f 0 = β(D n) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = (β(D n)).im |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | simp only [ofReal_im] | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = (β(D n)).im | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | exact (le_def.mp (h n)).2.symm | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
n : β
β’ (iteratedDeriv n f 0).im = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | rw [β iteratedDeriv_succ'] | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
n : β
β’ 0 β€ iteratedDeriv n (deriv f) 0 | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
n : β
β’ 0 β€ iteratedDeriv (n + 1) f 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | exact h (n + 1) | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
n : β
β’ 0 β€ iteratedDeriv (n + 1) f 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | norm_cast | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ βx | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ x | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 < x
β’ 0 β€ x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.monotoneOn_of_iteratedDeriv_nonneg | [227, 1] | [250, 17] | exact hx.le | f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 < x
β’ 0 β€ x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | exact sub_nonneg.mp <| nonneg_of_iteratedDeriv_nonneg (hf.sub_const (f 0)) h' hz | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
h' : β (n : β), 0 β€ iteratedDeriv n (fun x => f x - f 0) 0
β’ f 0 β€ f z | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | cases n with
| zero => simp only [iteratedDeriv_zero, sub_self, le_refl]
| succ n =>
specialize h n.succ <| succ_ne_zero n
rw [iteratedDeriv_succ'] at h β’
convert h using 2
ext w
exact deriv_sub_const (f 0) | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
n : β
β’ 0 β€ iteratedDeriv n (fun x => f x - f 0) 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | simp only [iteratedDeriv_zero, sub_self, le_refl] | case zero
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
β’ 0 β€ iteratedDeriv 0 (fun x => f x - f 0) 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | specialize h n.succ <| succ_ne_zero n | case succ
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
n : β
β’ 0 β€ iteratedDeriv (n + 1) (fun x => f x - f 0) 0 | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n.succ f 0
β’ 0 β€ iteratedDeriv (n + 1) (fun x => f x - f 0) 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | rw [iteratedDeriv_succ'] at h β’ | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n.succ f 0
β’ 0 β€ iteratedDeriv (n + 1) (fun x => f x - f 0) 0 | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ iteratedDeriv n (deriv fun x => f x - f 0) 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | convert h using 2 | case succ
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ iteratedDeriv n (deriv fun x => f x - f 0) 0 | case h.e'_4.h.e'_7
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ (deriv fun x => f x - f 0) = deriv f |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | ext w | case h.e'_4.h.e'_7
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
β’ (deriv fun x => f x - f 0) = deriv f | case h.e'_4.h.e'_7.h
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
w : β
β’ deriv (fun x => f x - f 0) w = deriv f w |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_nonneg | [255, 1] | [266, 83] | exact deriv_sub_const (f 0) | case h.e'_4.h.e'_7.h
f : β β β
hf : Differentiable β f
z : β
hz : 0 β€ z
n : β
h : 0 β€ iteratedDeriv n (deriv f) 0
w : β
β’ deriv (fun x => f x - f 0) w = deriv f w | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | let F : β β β := fun z β¦ f (-z) | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
β’ f 0 β€ f z | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 β€ f z |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | convert at_zero_le_of_iteratedDeriv_nonneg (f := F) (hf.comp <| differentiable_neg)
(fun n hn β¦ ?_) (neg_nonneg.mpr hz) using 1 | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 β€ f z | case h.e'_3
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 = F 0
case h.e'_4
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f z = F (-z)
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
n : β
hn : n β 0
β’ 0 β€ iteratedDeriv n F 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | simp only [F, neg_zero] | case h.e'_3
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f 0 = F 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | simp only [F, neg_neg] | case h.e'_4
f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
β’ f z = F (-z) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/Auxiliary.lean | Complex.at_zero_le_of_iteratedDeriv_alternating | [271, 1] | [278, 66] | simpa only [F, iteratedDeriv_comp_neg, neg_zero] using h n hn | f : β β β
hf : Differentiable β f
h : β (n : β), n β 0 β 0 β€ (-1) ^ n * iteratedDeriv n f 0
z : β
hz : z β€ 0
F : β β β := fun z => f (-z)
n : β
hn : n β 0
β’ 0 β€ iteratedDeriv n F 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | Complex.cpow_natCast_add_one_ne_zero | [8, 1] | [9, 67] | norm_cast at H | n : β
z : β
H : βn + 1 = 0 β§ z β 0
β’ False | n : β
z : β
H : False β§ Β¬z = 0
β’ False |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | Complex.cpow_natCast_add_one_ne_zero | [8, 1] | [9, 67] | exact H.1 | n : β
z : β
H : False β§ Β¬z = 0
β’ False | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | refine abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable' fun x hx β¦ hF ?_ ?_ | F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
β’ abscissaOfAbsConv (F f g) β€ max (abscissaOfAbsConv f) (abscissaOfAbsConv g) | case refine_1
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable f βx
case refine_2
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable g βx |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <|
(ofReal_re x).symm βΈ (le_max_left ..).trans_lt hx | case refine_1
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable f βx | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <|
(ofReal_re x).symm βΈ (le_max_right ..).trans_lt hx | case refine_2
F : (β β β) β (β β β) β β β β
hF : β {f g : β β β} {s : β}, LSeriesSummable f s β LSeriesSummable g s β LSeriesSummable (F f g) s
f g : β β β
x : β
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < βx
β’ LSeriesSummable g βx | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | have Hm : (0 : β) β€ m := m.cast_nonneg | m n : β
z : β
x : β
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | m n : β
z : β
x : β
Hm : 0 β€ βm
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | have Hn : (0 : β) β€ (n + 1 : β)β»ΒΉ := by positivity | m n : β
z : β
x : β
Hm : 0 β€ βm
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [β mul_div_assoc, mul_comm, div_eq_mul_inv z, mul_div_assoc] | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (z / βm ^ βx) = z / (βm / (βn + 1)) ^ βx | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ z * ((βn + 1) ^ βx / βm ^ βx) = z * ((βm / (βn + 1)) ^ βx)β»ΒΉ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | congr | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ z * ((βn + 1) ^ βx / βm ^ βx) = z * ((βm / (βn + 1)) ^ βx)β»ΒΉ | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx / βm ^ βx = ((βm / (βn + 1)) ^ βx)β»ΒΉ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp_rw [div_eq_mul_inv] | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx / βm ^ βx = ((βm / (βn + 1)) ^ βx)β»ΒΉ | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (βm ^ βx)β»ΒΉ = ((βm * (βn + 1)β»ΒΉ) ^ βx)β»ΒΉ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [show (n + 1 : β)β»ΒΉ = (n + 1 : β)β»ΒΉ by
simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one],
show (n + 1 : β) = (n + 1 : β) by norm_cast, show (m : β) = (m : β) by norm_cast,
mul_cpow_ofReal_nonneg Hm Hn, mul_inv, mul_comm] | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1) ^ βx * (βm ^ βx)β»ΒΉ = ((βm * (βn + 1)β»ΒΉ) ^ βx)β»ΒΉ | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (ββm ^ βx)β»ΒΉ * β(βn + 1) ^ βx = (ββm ^ βx)β»ΒΉ * (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | congr | case e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (ββm ^ βx)β»ΒΉ * β(βn + 1) ^ βx = (ββm ^ βx)β»ΒΉ * (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ | case e_a.e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ β(βn + 1) ^ βx = (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [β cpow_neg, show (-x : β) = (-1 : β) * x by simp only [ofReal_neg, ofReal_one,
neg_mul, one_mul], cpow_mul_ofReal_nonneg Hn, Real.rpow_neg_one, inv_inv] | case e_a.e_a
m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ β(βn + 1) ^ βx = (β(βn + 1)β»ΒΉ ^ βx)β»ΒΉ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | positivity | m n : β
z : β
x : β
Hm : 0 β€ βm
β’ 0 β€ (βn + 1)β»ΒΉ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one] | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ (βn + 1)β»ΒΉ = β(βn + 1)β»ΒΉ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | norm_cast | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ βn + 1 = β(βn + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | norm_cast | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ βm = ββm | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp only [ofReal_neg, ofReal_one,
neg_mul, one_mul] | m n : β
z : β
x : β
Hm : 0 β€ βm
Hn : 0 β€ (βn + 1)β»ΒΉ
β’ -βx = β(-1) * βx | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.pow_mul_term_eq | [54, 1] | [58, 20] | simp only [term, add_eq_zero, one_ne_zero, and_false, βreduceIte, Nat.cast_add, Nat.cast_one,
mul_div_assoc', ne_eq, cpow_natCast_add_one_ne_zero n _, not_false_eq_true, div_eq_iff,
mul_comm (f _)] | f : β β β
s : β
n : β
β’ (βn + 1) ^ s * term f s (n + 1) = f (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | obtain β¨y, hay, hytβ© := exists_between ha | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | lift y to β using β¨hyt.ne, ((OrderBot.bot_le _).trans_lt hay).ne'β© | case intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | let F := fun (x : β) β¦ {m | n + 1 < m}.indicator (fun m β¦ f m / (m / (n + 1) : β) ^ (x : β)) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hFβ (x : β) {m : β} (hm : m β€ n + 1) : F x m = 0 := by
simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F] | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hs {x : β} (hx : x β₯ y) : Summable fun m β¦ (n + 1) ^ (x : β) * term f x m := by
refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <|
LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_
simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv => enter [3, 1]; rw [β add_zero (f _)] | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1) + 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine Tendsto.congr'
(eventuallyEq_of_mem (s := {x | y β€ x}) (mem_atTop y) key).symm <| tendsto_const_nhds.add ?_ | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) atTop (nhds (f (n + 1) + 0)) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [show (0 : β) = tsum (fun _ : β β¦ 0) from tsum_zero.symm] | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds 0) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds (β' (x : β), 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine tendsto_tsum_of_dominated_convergence hys.norm hc <| eventually_iff.mpr ?_ | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ Tendsto (fun x => β' (m : β), F x m) atTop (nhds (β' (x : β), 0)) | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ {x | β (k : β), βF x kβ β€ βF y kβ} β atTop |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | filter_upwards [mem_atTop y] with y' hy' k | case intro.intro.intro
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
β’ {x | β (k : β), βF x kβ β€ βF y kβ} β atTop | case h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
β’ βF y' kβ β€ βF y kβ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_or_le (n + 1) k with H | H | case h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
β’ βF y' kβ β€ βF y kβ | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ βF y' kβ β€ βF y kβ
case h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : k β€ n + 1
β’ βF y' kβ β€ βF y kβ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F] | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
x : β
m : β
hm : m β€ n + 1
β’ F x m = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_trichotomy m (n + 1) with H | rfl | H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
β’ F x m = (βn + 1) ^ βx * term f (βx) m | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : m < n + 1
β’ F x m = (βn + 1) ^ βx * term f (βx) m
case inr.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
hm : n + 1 β n + 1
β’ F x (n + 1) = (βn + 1) ^ βx * term f (βx) (n + 1)
case inr.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : n + 1 < m
β’ F x m = (βn + 1) ^ βx * term f (βx) m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, Nat.not_lt_of_gt H, not_false_eq_true, Set.indicator_of_not_mem,
term, h m <| Nat.lt_succ_iff.mp H, zero_div, ite_self, mul_zero, F] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : m < n + 1
β’ F x m = (βn + 1) ^ βx * term f (βx) m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact (hm rfl).elim | case inr.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
hm : n + 1 β n + 1
β’ F x (n + 1) = (βn + 1) ^ βx * term f (βx) (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, term, (n.zero_lt_succ.trans H).ne',
βreduceIte, foo, F] | case inr.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : n + 1 < m
β’ F x m = (βn + 1) ^ βx * term f (βx) m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <|
LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_ | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ Summable fun m => (βn + 1) ^ βx * term f (βx) m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ abscissaOfAbsConv f < β(βx).re |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ abscissaOfAbsConv f < β(βx).re | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | intro x hx | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
β’ β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [LSeries, β tsum_mul_left, tsum_eq_add_tsum_ite (hs hx) (n + 1)] | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ ((βn + 1) ^ βx * term f (βx) (n + 1) + β' (n_1 : β), if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) =
f (n + 1) + β' (m : β), F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | congr | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ ((βn + 1) ^ βx * term f (βx) (n + 1) + β' (n_1 : β), if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) =
f (n + 1) + β' (m : β), F x m | case e_a
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * term f (βx) (n + 1) = f (n + 1)
case e_a.e_f
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (fun n_1 => if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) = fun m => F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact pow_mul_term_eq f x n | case e_a
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * term f (βx) (n + 1) = f (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | ext m | case e_a.e_f
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (fun n_1 => if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) = fun m => F x m | case e_a.e_f.h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases eq_or_ne m (n + 1) with rfl | hm | case e_a.e_f.h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m | case e_a.e_f.h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (if n + 1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) (n + 1)) = F x (n + 1)
case e_a.e_f.h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
hm : m β n + 1
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [βreduceIte, hFβ x le_rfl] | case e_a.e_f.h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (if n + 1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) (n + 1)) = F x (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hm, βreduceIte, ne_eq, not_false_eq_true, hF] | case e_a.e_f.h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
hm : m β n + 1
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine ((hs le_rfl).indicator {m | n + 1 < m}).congr fun m β¦ ?_ | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Summable (F y) | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | by_cases hm : n + 1 < m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m | case pos
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m
case neg
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : Β¬n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, hm, Set.indicator_of_mem, ne_eq, hm.ne', not_false_eq_true, hF] | case pos
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, hm, not_false_eq_true, Set.indicator_of_not_mem,
hFβ _ (le_of_not_lt hm)] | case neg
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : Β¬n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_or_le (n + 1) k with H | H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
β’ Tendsto (fun x => F x k) atTop (nhds 0)
case inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : k β€ n + 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ : (0 : β) β€ k / (n + 1) := by positivity | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ' : (0 : β) β€ (n + 1) / k := by positivity | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ : (k / (n + 1) : β) = (k / (n + 1) : β) := by
simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ : (n + 1) / k < (1 : β) :=
(div_lt_one <| by exact_mod_cast n.succ_pos.trans H).mpr <| by exact_mod_cast H | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, F] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k / (βk / (βn + 1)) ^ βx) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv =>
enter [1, x]
rw [div_eq_mul_inv, Hβ, β ofReal_cpow Hβ, β ofReal_inv, β Real.inv_rpow Hβ, inv_div] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k / (βk / (βn + 1)) ^ βx) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv => enter [3, 1]; rw [β mul_zero (f k)] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds (f k * 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact
(tendsto_rpow_atTop_of_base_lt_one _ (neg_one_lt_zero.trans_le Hβ') Hβ).ofReal.const_mul _ | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds (f k * 0)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
β’ 0 β€ βk / (βn + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
β’ 0 β€ (βn + 1) / βk | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one] | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
β’ βk / (βn + 1) = β(βk / (βn + 1)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact_mod_cast n.succ_pos.trans H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ 0 < βk | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact_mod_cast H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ βn + 1 < βk | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hFβ _ H, tendsto_const_nhds_iff] | case inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : k β€ n + 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, norm_div, Complex.norm_eq_abs,
abs_cpow_real, map_divβ, abs_natCast, F] | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ βF y' kβ β€ βF y kβ | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y' β€ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [β Nat.cast_one, β Nat.cast_add, abs_natCast] | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y' β€ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hkn : 1 β€ (k / (n + 1 :) : β) :=
(one_le_div (by positivity)).mpr <| by norm_cast; exact Nat.le_of_succ_le H | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
hkn : 1 β€ βk / β(n + 1)
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact div_le_div_of_nonneg_left (Complex.abs.nonneg _)
(rpow_pos_of_pos (zero_lt_one.trans_le hkn) _) <| rpow_le_rpow_of_exponent_le hkn hy' | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
hkn : 1 β€ βk / β(n + 1)
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ 0 < β(n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | norm_cast | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ β(n + 1) β€ βk | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ n + 1 β€ k |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact Nat.le_of_succ_le H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ n + 1 β€ k | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hFβ _ H, norm_zero, le_refl] | case h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : k β€ n + 1
β’ βF y' kβ β€ βF y kβ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | let F (n : β) : β := if n = 0 then 0 else f n | f : β β β
ha : abscissaOfAbsConv f < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have hFβ : F 0 = 0 := rfl | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have hF {n : β} (hn : n β 0) : F n = f n := by simp only [hn, βreduceIte, F] | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have ha' : abscissaOfAbsConv F < β€ := (abscissaOfAbsConv_congr hF).symm βΈ ha | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.