url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_trichotomy m (n + 1) with H | rfl | H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
β’ F x m = (βn + 1) ^ βx * term f (βx) m | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : m < n + 1
β’ F x m = (βn + 1) ^ βx * term f (βx) m
case inr.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
hm : n + 1 β n + 1
β’ F x (n + 1) = (βn + 1) ^ βx * term f (βx) (n + 1)
case inr.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : n + 1 < m
β’ F x m = (βn + 1) ^ βx * term f (βx) m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, Nat.not_lt_of_gt H, not_false_eq_true, Set.indicator_of_not_mem,
term, h m <| Nat.lt_succ_iff.mp H, zero_div, ite_self, mul_zero, F] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : m < n + 1
β’ F x m = (βn + 1) ^ βx * term f (βx) m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact (hm rfl).elim | case inr.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
hm : n + 1 β n + 1
β’ F x (n + 1) = (βn + 1) ^ βx * term f (βx) (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, term, (n.zero_lt_succ.trans H).ne',
βreduceIte, foo, F] | case inr.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
x : β
m : β
hm : m β n + 1
H : n + 1 < m
β’ F x m = (βn + 1) ^ βx * term f (βx) m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <|
LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_ | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ Summable fun m => (βn + 1) ^ βx * term f (βx) m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ abscissaOfAbsConv f < β(βx).re |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ abscissaOfAbsConv f < β(βx).re | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | intro x hx | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
β’ β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [LSeries, β tsum_mul_left, tsum_eq_add_tsum_ite (hs hx) (n + 1)] | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ ((βn + 1) ^ βx * term f (βx) (n + 1) + β' (n_1 : β), if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) =
f (n + 1) + β' (m : β), F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | congr | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ ((βn + 1) ^ βx * term f (βx) (n + 1) + β' (n_1 : β), if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) =
f (n + 1) + β' (m : β), F x m | case e_a
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * term f (βx) (n + 1) = f (n + 1)
case e_a.e_f
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (fun n_1 => if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) = fun m => F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact pow_mul_term_eq f x n | case e_a
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (βn + 1) ^ βx * term f (βx) (n + 1) = f (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | ext m | case e_a.e_f
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (fun n_1 => if n_1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) n_1) = fun m => F x m | case e_a.e_f.h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases eq_or_ne m (n + 1) with rfl | hm | case e_a.e_f.h
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m | case e_a.e_f.h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (if n + 1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) (n + 1)) = F x (n + 1)
case e_a.e_f.h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
hm : m β n + 1
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [βreduceIte, hFβ x le_rfl] | case e_a.e_f.h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
β’ (if n + 1 = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) (n + 1)) = F x (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hm, βreduceIte, ne_eq, not_false_eq_true, hF] | case e_a.e_f.h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
x : β
hx : x β₯ y
m : β
hm : m β n + 1
β’ (if m = n + 1 then 0 else (βn + 1) ^ βx * term f (βx) m) = F x m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine ((hs le_rfl).indicator {m | n + 1 < m}).congr fun m β¦ ?_ | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
β’ Summable (F y) | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | by_cases hm : n + 1 < m | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m | case pos
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m
case neg
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : Β¬n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, hm, Set.indicator_of_mem, ne_eq, hm.ne', not_false_eq_true, hF] | case pos
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, hm, not_false_eq_true, Set.indicator_of_not_mem,
hFβ _ (le_of_not_lt hm)] | case neg
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
m : β
hm : Β¬n + 1 < m
β’ {m | n + 1 < m}.indicator (fun m => (βn + 1) ^ βy * term f (βy) m) m = F y m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_or_le (n + 1) k with H | H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
β’ Tendsto (fun x => F x k) atTop (nhds 0)
case inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : k β€ n + 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ : (0 : β) β€ k / (n + 1) := by positivity | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ' : (0 : β) β€ (n + 1) / k := by positivity | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ : (k / (n + 1) : β) = (k / (n + 1) : β) := by
simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have Hβ : (n + 1) / k < (1 : β) :=
(div_lt_one <| by exact_mod_cast n.succ_pos.trans H).mpr <| by exact_mod_cast H | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, F] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k / (βk / (βn + 1)) ^ βx) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv =>
enter [1, x]
rw [div_eq_mul_inv, Hβ, β ofReal_cpow Hβ, β ofReal_inv, β Real.inv_rpow Hβ, inv_div] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k / (βk / (βn + 1)) ^ βx) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv => enter [3, 1]; rw [β mul_zero (f k)] | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds 0) | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds (f k * 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact
(tendsto_rpow_atTop_of_base_lt_one _ (neg_one_lt_zero.trans_le Hβ') Hβ).ofReal.const_mul _ | case inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
Hβ : (βn + 1) / βk < 1
β’ Tendsto (fun x => f k * β(((βn + 1) / βk) ^ x)) atTop (nhds (f k * 0)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
β’ 0 β€ βk / (βn + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
β’ 0 β€ (βn + 1) / βk | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [ofReal_div, ofReal_natCast, ofReal_add, ofReal_one] | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
β’ βk / (βn + 1) = β(βk / (βn + 1)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact_mod_cast n.succ_pos.trans H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ 0 < βk | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact_mod_cast H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : n + 1 < k
Hβ : 0 β€ βk / (βn + 1)
Hβ' : 0 β€ (βn + 1) / βk
Hβ : βk / (βn + 1) = β(βk / (βn + 1))
β’ βn + 1 < βk | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hFβ _ H, tendsto_const_nhds_iff] | case inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
k : β
H : k β€ n + 1
β’ Tendsto (fun x => F x k) atTop (nhds 0) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, H, Set.indicator_of_mem, norm_div, Complex.norm_eq_abs,
abs_cpow_real, map_divβ, abs_natCast, F] | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ βF y' kβ β€ βF y kβ | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y' β€ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [β Nat.cast_one, β Nat.cast_add, abs_natCast] | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y' β€ Complex.abs (f k) / (βk / Complex.abs (βn + 1)) ^ y | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hkn : 1 β€ (k / (n + 1 :) : β) :=
(one_le_div (by positivity)).mpr <| by norm_cast; exact Nat.le_of_succ_le H | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
hkn : 1 β€ βk / β(n + 1)
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact div_le_div_of_nonneg_left (Complex.abs.nonneg _)
(rpow_pos_of_pos (zero_lt_one.trans_le hkn) _) <| rpow_le_rpow_of_exponent_le hkn hy' | case h.inl
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
hkn : 1 β€ βk / β(n + 1)
β’ Complex.abs (f k) / (βk / β(n + 1)) ^ y' β€ Complex.abs (f k) / (βk / β(n + 1)) ^ y | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | positivity | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ 0 < β(n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | norm_cast | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ β(n + 1) β€ βk | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ n + 1 β€ k |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | exact Nat.le_of_succ_le H | f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : n + 1 < k
β’ n + 1 β€ k | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [hFβ _ H, norm_zero, le_refl] | case h.inr
f : β β β
n : β
h : β m β€ n, f m = 0
ha : abscissaOfAbsConv f < β€
y : β
hay : abscissaOfAbsConv f < βy
hyt : βy < β€
F : β β β β β := fun x => {m | n + 1 < m}.indicator fun m => f m / (βm / (βn + 1)) ^ βx
hFβ : β (x : β) {m : β}, m β€ n + 1 β F x m = 0
hF : β (x : β) {m : β}, m β n + 1 β F x m = (βn + 1) ^ βx * term f (βx) m
hs : β {x : β}, x β₯ y β Summable fun m => (βn + 1) ^ βx * term f (βx) m
key : β x β₯ y, (βn + 1) ^ βx * LSeries f βx = f (n + 1) + β' (m : β), F x m
hys : Summable (F y)
hc : β (k : β), Tendsto (fun x => F x k) atTop (nhds 0)
y' : β
hy' : y β€ y'
k : β
H : k β€ n + 1
β’ βF y' kβ β€ βF y kβ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | let F (n : β) : β := if n = 0 then 0 else f n | f : β β β
ha : abscissaOfAbsConv f < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have hFβ : F 0 = 0 := rfl | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have hF {n : β} (hn : n β 0) : F n = f n := by simp only [hn, βreduceIte, F] | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | have ha' : abscissaOfAbsConv F < β€ := (abscissaOfAbsConv_congr hF).symm βΈ ha | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp_rw [β LSeries_congr _ hF] | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries f βx) atTop (nhds (f 1)) | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries (fun {n} => F n) βx) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | convert LSeries.tendsto_pow_mul_atTop (n := 0) (fun _ hm β¦ Nat.le_zero.mp hm βΈ hFβ) ha' using 1 | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ Tendsto (fun x => LSeries (fun {n} => F n) βx) atTop (nhds (f 1)) | case h.e'_3
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ (fun x => LSeries (fun {n} => F n) βx) = fun x => (β0 + 1) ^ βx * LSeries F βx |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [Nat.cast_zero, zero_add, one_cpow, one_mul] | case h.e'_3
f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha' : abscissaOfAbsConv F < β€
β’ (fun x => LSeries (fun {n} => F n) βx) = fun x => (β0 + 1) ^ βx * LSeries F βx | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [hn, βreduceIte, F] | f : β β β
ha : abscissaOfAbsConv f < β€
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
n : β
hn : n β 0
β’ F n = f n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | ext s | f : β β β
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0 | case h
f : β β β
h : abscissaOfAbsConv f = β€
s : β
β’ LSeries f s = 0 s |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | exact LSeries.eq_zero_of_not_LSeriesSummable f s <| mt LSeriesSummable.abscissaOfAbsConv_le <|
h βΈ fun H β¦ (H.trans_lt <| EReal.coe_lt_top _).false | case h
f : β β β
h : abscissaOfAbsConv f = β€
s : β
β’ LSeries f s = 0 s | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | by_cases h : abscissaOfAbsConv f = β€ <;> simp only [h, or_true, or_false, iff_true] | f : β β β
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β (β (n : β), n β 0 β f n = 0) β¨ abscissaOfAbsConv f = β€ | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0
case neg
f : β β β
h : Β¬abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β β (n : β), n β 0 β f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine eventually_of_forall ?_ | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ β (x : β), (fun x => LSeries f βx) x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h, Pi.zero_apply, forall_const] | case pos
f : β β β
h : abscissaOfAbsConv f = β€
β’ β (x : β), (fun x => LSeries f βx) x = 0 x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine β¨fun H β¦ ?_, fun H β¦ eventually_of_forall fun x β¦ ?_β© | case neg
f : β β β
h : Β¬abscissaOfAbsConv f = β€
β’ (fun x => LSeries f βx) =αΆ [atTop] 0 β β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
β’ β (n : β), n β 0 β f n = 0
case neg.refine_2
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β (n : β), n β 0 β f n = 0
x : β
β’ (fun x => LSeries f βx) x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | let F (n : β) : β := if n = 0 then 0 else f n | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
β’ β (n : β), n β 0 β f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hFβ : F 0 = 0 := rfl | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ β (n : β), n β 0 β f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hF {n : β} (hn : n β 0) : F n = f n := by simp only [hn, βreduceIte, F] | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), n β 0 β f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices β n, F n = 0 by
peel hF with n hn h
exact (this n βΈ h).symm | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), n β 0 β f n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have ha : Β¬ abscissaOfAbsConv F = β€ := abscissaOfAbsConv_congr hF βΈ h | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
β’ β (n : β), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have h' (x : β) : LSeries F x = LSeries f x := LSeries_congr x hF | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
β’ β (n : β), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have H' (n : β) : (fun x : β β¦ (n ^ (x : β)) * LSeries F x) =αΆ [atTop] (fun _ β¦ 0) := by
simp only [h']
rw [eventuallyEq_iff_exists_mem] at H β’
peel H with s hs
refine β¨hs.1, fun x hx β¦ ?_β©
simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
β’ β (n : β), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | intro n | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
β’ β (n : β), F n = 0 | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
β’ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | induction' n using Nat.strongInductionOn with n ih | case neg.refine_1
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
β’ F n = 0 | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices Tendsto (fun x : β β¦ (n ^ (x : β)) * LSeries F x) atTop (nhds (F n)) by
replace this := this.congr' <| H' n
simp only [tendsto_const_nhds_iff] at this
exact this.symm | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ F n = 0 | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | cases n with
| zero =>
refine Tendsto.congr' (H' 0).symm ?_
simp only [zero_eq, hFβ, tendsto_const_nhds_iff]
| succ n =>
simp only [succ_eq_add_one, cast_add, cast_one]
exact LSeries.tendsto_pow_mul_atTop (fun m hm β¦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
β’ Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hn, βreduceIte, F] | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
n : β
hn : n β 0
β’ F n = f n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel hF with n hn h | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
β’ β (n : β), n β 0 β f n = 0 | case h.h
f : β β β
hβ : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
n : β
hn : n β 0
h : F n = f n
β’ f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact (this n βΈ h).symm | case h.h
f : β β β
hβ : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
this : β (n : β), F n = 0
n : β
hn : n β 0
h : F n = f n
β’ f n = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [h'] | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries f βx) =αΆ [atTop] fun x => 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | rw [eventuallyEq_iff_exists_mem] at H β’ | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ (fun x => βn ^ βx * LSeries f βx) =αΆ [atTop] fun x => 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ β s β atTop, Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel H with s hs | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
β’ β s β atTop, Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
β’ s β atTop β§ Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine β¨hs.1, fun x hx β¦ ?_β© | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
β’ s β atTop β§ Set.EqOn (fun x => βn ^ βx * LSeries f βx) (fun x => 0) s | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
x : β
hx : x β s
β’ (fun x => βn ^ βx * LSeries f βx) x = (fun x => 0) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case h
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β s β atTop, Set.EqOn (fun x => LSeries f βx) 0 s
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
n : β
s : Set β
hs : s β atTop β§ Set.EqOn (fun x => LSeries f βx) 0 s
x : β
hx : x β s
β’ (fun x => βn ^ βx * LSeries f βx) x = (fun x => 0) x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | replace this := this.congr' <| H' n | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => βn ^ βx * LSeries F βx) atTop (nhds (F n))
β’ F n = 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
β’ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [tendsto_const_nhds_iff] at this | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
β’ F n = 0 | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : 0 = F n
β’ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact this.symm | f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n, F m = 0
this : 0 = F n
β’ F n = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine Tendsto.congr' (H' 0).symm ?_ | case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => β0 ^ βx * LSeries F βx) atTop (nhds (F 0)) | case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => 0) atTop (nhds (F 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [zero_eq, hFβ, tendsto_const_nhds_iff] | case neg.refine_1.ind.zero
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
ih : β m < 0, F m = 0
β’ Tendsto (fun x => 0) atTop (nhds (F 0)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [succ_eq_add_one, cast_add, cast_one] | case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => β(n + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1))) | case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact LSeries.tendsto_pow_mul_atTop (fun m hm β¦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind.succ
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : (fun x => LSeries f βx) =αΆ [atTop] 0
F : β β β := fun n => if n = 0 then 0 else f n
hFβ : F 0 = 0
hF : β {n : β}, n β 0 β F n = f n
ha : Β¬abscissaOfAbsConv F = β€
h' : β (x : β), LSeries F βx = LSeries f βx
H' : β (n : β), (fun x => βn ^ βx * LSeries F βx) =αΆ [atTop] fun x => 0
n : β
ih : β m < n + 1, F m = 0
β’ Tendsto (fun x => (βn + 1) ^ βx * LSeries F βx) atTop (nhds (F (n + 1))) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_congr x fun {n} β¦ H n, show (fun _ : β β¦ (0 : β)) = 0 from rfl,
LSeries_zero, Pi.zero_apply] | case neg.refine_2
f : β β β
h : Β¬abscissaOfAbsConv f = β€
H : β (n : β), n β 0 β f n = 0
x : β
β’ (fun x => LSeries f βx) x = 0 x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | by_cases h : abscissaOfAbsConv f = β€ <;> simp only [h, or_true, or_false, iff_true] | f : β β β
hf : f 0 = 0
β’ LSeries f = 0 β f = 0 β¨ abscissaOfAbsConv f = β€ | case pos
f : β β β
hf : f 0 = 0
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
β’ LSeries f = 0 β f = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h | case pos
f : β β β
hf : f 0 = 0
h : abscissaOfAbsConv f = β€
β’ LSeries f = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine β¨fun H β¦ ?_, fun H β¦ H βΈ LSeries_zeroβ© | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
β’ LSeries f = 0 β f = 0 | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | convert (LSeries_eventually_eq_zero_iff'.mp ?_).resolve_right h | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 β β (n : β), n β 0 β f n = 0
case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine β¨fun H' _ _ β¦ by rw [H', Pi.zero_apply], fun H' β¦ ?_β© | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ f = 0 β β (n : β), n β 0 β f n = 0 | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | ext β¨- | mβ© | case a
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f = 0 | case a.h.zero
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f 0 = 0 0
case a.h.succ
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
nβ : β
β’ f (nβ + 1) = 0 (nβ + 1) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | rw [H', Pi.zero_apply] | f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : f = 0
xβΒΉ : β
xβ : xβΒΉ β 0
β’ f xβΒΉ = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [zero_eq, hf, Pi.zero_apply] | case a.h.zero
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
β’ f 0 = 0 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [ne_eq, succ_ne_zero, not_false_eq_true, H', Pi.zero_apply] | case a.h.succ
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
H' : β (n : β), n β 0 β f n = 0
nβ : β
β’ f (nβ + 1) = 0 (nβ + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [H, Pi.zero_apply] | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] 0 | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => 0) =αΆ [Filter.atTop] 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact Filter.EventuallyEq.rfl | case neg
f : β β β
hf : f 0 = 0
h : Β¬abscissaOfAbsConv f = β€
H : LSeries f = 0
β’ (fun x => 0) =αΆ [Filter.atTop] 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [EventuallyEq, eventually_atTop] at h β’ | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
β’ (fun x => LSeries (f - g) βx) =αΆ [atTop] 0 | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : β a, β b β₯ a, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain β¨xβ, hxββ© := h | f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : β a, β b β₯ a, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain β¨yf, hyfβ, hyfββ© := exists_between hf | case intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain β¨yg, hygβ, hygββ© := exists_between hg | case intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yf to β using β¨hyfβ.ne, ((OrderBot.bot_le _).trans_lt hyfβ).ne'β© | case intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : EReal
hyfβ : abscissaOfAbsConv f < yf
hyfβ : yf < β€
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yg to β using β¨hygβ.ne, ((OrderBot.bot_le _).trans_lt hygβ).ne'β© | case intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yg : EReal
hygβ : abscissaOfAbsConv g < yg
hygβ : yg < β€
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine β¨max xβ (max yf yg), fun x hx β¦ ?_β© | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
β’ β a, β b β₯ a, LSeries (f - g) βb = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeries (f - g) βx = 0 x |
Subsets and Splits