url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp_rw [← LSeries_congr _ hF] | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries f ↑x) atTop (nhds (f 1)) | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries (fun {n} => F n) ↑x) atTop (nhds (f 1)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | convert LSeries.tendsto_pow_mul_atTop (n := 0) (fun _ hm ↦ Nat.le_zero.mp hm ▸ hF₀) ha' using 1 | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ Tendsto (fun x => LSeries (fun {n} => F n) ↑x) atTop (nhds (f 1)) | case h.e'_3
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ (fun x => LSeries (fun {n} => F n) ↑x) = fun x => (↑0 + 1) ^ ↑x * LSeries F ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [Nat.cast_zero, zero_add, one_cpow, one_mul] | case h.e'_3
f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha' : abscissaOfAbsConv F < ⊤
⊢ (fun x => LSeries (fun {n} => F n) ↑x) = fun x => (↑0 + 1) ^ ↑x * LSeries F ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_atTop | [135, 1] | [145, 57] | simp only [hn, ↓reduceIte, F] | f : ℕ → ℂ
ha : abscissaOfAbsConv f < ⊤
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
n : ℕ
hn : n ≠ 0
⊢ F n = f n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | ext s | f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 | case h
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
s : ℂ
⊢ LSeries f s = 0 s |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_of_abscissaOfAbsConv_eq_top | [147, 1] | [151, 57] | exact LSeries.eq_zero_of_not_LSeriesSummable f s <| mt LSeriesSummable.abscissaOfAbsConv_le <|
h ▸ fun H ↦ (H.trans_lt <| EReal.coe_lt_top _).false | case h
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
s : ℂ
⊢ LSeries f s = 0 s | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | by_cases h : abscissaOfAbsConv f = ⊤ <;> simp only [h, or_true, or_false, iff_true] | f : ℕ → ℂ
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ (∀ (n : ℕ), n ≠ 0 → f n = 0) ∨ abscissaOfAbsConv f = ⊤ | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0
case neg
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine eventually_of_forall ?_ | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ ∀ (x : ℝ), (fun x => LSeries f ↑x) x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h, Pi.zero_apply, forall_const] | case pos
f : ℕ → ℂ
h : abscissaOfAbsConv f = ⊤
⊢ ∀ (x : ℝ), (fun x => LSeries f ↑x) x = 0 x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine ⟨fun H ↦ ?_, fun H ↦ eventually_of_forall fun x ↦ ?_⟩ | case neg
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
⊢ (fun x => LSeries f ↑x) =ᶠ[atTop] 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0
case neg.refine_2
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∀ (n : ℕ), n ≠ 0 → f n = 0
x : ℝ
⊢ (fun x => LSeries f ↑x) x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | let F (n : ℕ) : ℂ := if n = 0 then 0 else f n | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hF₀ : F 0 = 0 := rfl | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have hF {n : ℕ} (hn : n ≠ 0) : F n = f n := by simp only [hn, ↓reduceIte, F] | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices ∀ n, F n = 0 by
peel hF with n hn h
exact (this n ▸ h).symm | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have ha : ¬ abscissaOfAbsConv F = ⊤ := abscissaOfAbsConv_congr hF ▸ h | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
⊢ ∀ (n : ℕ), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have h' (x : ℝ) : LSeries F x = LSeries f x := LSeries_congr x hF | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
⊢ ∀ (n : ℕ), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | have H' (n : ℕ) : (fun x : ℝ ↦ (n ^ (x : ℂ)) * LSeries F x) =ᶠ[atTop] (fun _ ↦ 0) := by
simp only [h']
rw [eventuallyEq_iff_exists_mem] at H ⊢
peel H with s hs
refine ⟨hs.1, fun x hx ↦ ?_⟩
simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
⊢ ∀ (n : ℕ), F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | intro n | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
⊢ ∀ (n : ℕ), F n = 0 | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
⊢ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | induction' n using Nat.strongInductionOn with n ih | case neg.refine_1
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
⊢ F n = 0 | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | suffices Tendsto (fun x : ℝ ↦ (n ^ (x : ℂ)) * LSeries F x) atTop (nhds (F n)) by
replace this := this.congr' <| H' n
simp only [tendsto_const_nhds_iff] at this
exact this.symm | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ F n = 0 | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | cases n with
| zero =>
refine Tendsto.congr' (H' 0).symm ?_
simp only [zero_eq, hF₀, tendsto_const_nhds_iff]
| succ n =>
simp only [succ_eq_add_one, cast_add, cast_one]
exact LSeries.tendsto_pow_mul_atTop (fun m hm ↦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
⊢ Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hn, ↓reduceIte, F] | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
n : ℕ
hn : n ≠ 0
⊢ F n = f n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel hF with n hn h | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
⊢ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case h.h
f : ℕ → ℂ
h✝ : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
n : ℕ
hn : n ≠ 0
h : F n = f n
⊢ f n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact (this n ▸ h).symm | case h.h
f : ℕ → ℂ
h✝ : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
this : ∀ (n : ℕ), F n = 0
n : ℕ
hn : n ≠ 0
h : F n = f n
⊢ f n = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [h'] | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) =ᶠ[atTop] fun x => 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | rw [eventuallyEq_iff_exists_mem] at H ⊢ | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) =ᶠ[atTop] fun x => 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ ∃ s ∈ atTop, Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | peel H with s hs | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
⊢ ∃ s ∈ atTop, Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
⊢ s ∈ atTop ∧ Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine ⟨hs.1, fun x hx ↦ ?_⟩ | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
⊢ s ∈ atTop ∧ Set.EqOn (fun x => ↑n ^ ↑x * LSeries f ↑x) (fun x => 0) s | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
x : ℝ
hx : x ∈ s
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) x = (fun x => 0) x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [hs.2 hx, Pi.zero_apply, mul_zero] | case h
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∃ s ∈ atTop, Set.EqOn (fun x => LSeries f ↑x) 0 s
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
n : ℕ
s : Set ℝ
hs : s ∈ atTop ∧ Set.EqOn (fun x => LSeries f ↑x) 0 s
x : ℝ
hx : x ∈ s
⊢ (fun x => ↑n ^ ↑x * LSeries f ↑x) x = (fun x => 0) x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | replace this := this.congr' <| H' n | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => ↑n ^ ↑x * LSeries F ↑x) atTop (nhds (F n))
⊢ F n = 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
⊢ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [tendsto_const_nhds_iff] at this | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : Tendsto (fun x => 0) atTop (nhds (F n))
⊢ F n = 0 | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : 0 = F n
⊢ F n = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact this.symm | f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n, F m = 0
this : 0 = F n
⊢ F n = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | refine Tendsto.congr' (H' 0).symm ?_ | case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => ↑0 ^ ↑x * LSeries F ↑x) atTop (nhds (F 0)) | case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => 0) atTop (nhds (F 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [zero_eq, hF₀, tendsto_const_nhds_iff] | case neg.refine_1.ind.zero
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
ih : ∀ m < 0, F m = 0
⊢ Tendsto (fun x => 0) atTop (nhds (F 0)) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [succ_eq_add_one, cast_add, cast_one] | case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => ↑(n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1))) | case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | exact LSeries.tendsto_pow_mul_atTop (fun m hm ↦ ih m <| lt_succ_of_le hm) <| Ne.lt_top ha | case neg.refine_1.ind.succ
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : (fun x => LSeries f ↑x) =ᶠ[atTop] 0
F : ℕ → ℂ := fun n => if n = 0 then 0 else f n
hF₀ : F 0 = 0
hF : ∀ {n : ℕ}, n ≠ 0 → F n = f n
ha : ¬abscissaOfAbsConv F = ⊤
h' : ∀ (x : ℝ), LSeries F ↑x = LSeries f ↑x
H' : ∀ (n : ℕ), (fun x => ↑n ^ ↑x * LSeries F ↑x) =ᶠ[atTop] fun x => 0
n : ℕ
ih : ∀ m < n + 1, F m = 0
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries F ↑x) atTop (nhds (F (n + 1))) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eventually_eq_zero_iff' | [154, 1] | [191, 37] | simp only [LSeries_congr x fun {n} ↦ H n, show (fun _ : ℕ ↦ (0 : ℂ)) = 0 from rfl,
LSeries_zero, Pi.zero_apply] | case neg.refine_2
f : ℕ → ℂ
h : ¬abscissaOfAbsConv f = ⊤
H : ∀ (n : ℕ), n ≠ 0 → f n = 0
x : ℝ
⊢ (fun x => LSeries f ↑x) x = 0 x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | by_cases h : abscissaOfAbsConv f = ⊤ <;> simp only [h, or_true, or_false, iff_true] | f : ℕ → ℂ
hf : f 0 = 0
⊢ LSeries f = 0 ↔ f = 0 ∨ abscissaOfAbsConv f = ⊤ | case pos
f : ℕ → ℂ
hf : f 0 = 0
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 ↔ f = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact LSeries_eq_zero_of_abscissaOfAbsConv_eq_top h | case pos
f : ℕ → ℂ
hf : f 0 = 0
h : abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine ⟨fun H ↦ ?_, fun H ↦ H ▸ LSeries_zero⟩ | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
⊢ LSeries f = 0 ↔ f = 0 | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | convert (LSeries_eventually_eq_zero_iff'.mp ?_).resolve_right h | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0
case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | refine ⟨fun H' _ _ ↦ by rw [H', Pi.zero_apply], fun H' ↦ ?_⟩ | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ f = 0 ↔ ∀ (n : ℕ), n ≠ 0 → f n = 0 | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f = 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | ext ⟨- | m⟩ | case a
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f = 0 | case a.h.zero
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f 0 = 0 0
case a.h.succ
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
n✝ : ℕ
⊢ f (n✝ + 1) = 0 (n✝ + 1) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | rw [H', Pi.zero_apply] | f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : f = 0
x✝¹ : ℕ
x✝ : x✝¹ ≠ 0
⊢ f x✝¹ = 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [zero_eq, hf, Pi.zero_apply] | case a.h.zero
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
⊢ f 0 = 0 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [ne_eq, succ_ne_zero, not_false_eq_true, H', Pi.zero_apply] | case a.h.succ
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
H' : ∀ (n : ℕ), n ≠ 0 → f n = 0
n✝ : ℕ
⊢ f (n✝ + 1) = 0 (n✝ + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | simp only [H, Pi.zero_apply] | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] 0 | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => 0) =ᶠ[Filter.atTop] 0 |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_zero_iff | [194, 1] | [207, 36] | exact Filter.EventuallyEq.rfl | case neg
f : ℕ → ℂ
hf : f 0 = 0
h : ¬abscissaOfAbsConv f = ⊤
H : LSeries f = 0
⊢ (fun x => 0) =ᶠ[Filter.atTop] 0 | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [EventuallyEq, eventually_atTop] at h ⊢ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
⊢ (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0 | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : ∃ a, ∀ b ≥ a, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain ⟨x₀, hx₀⟩ := h | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : ∃ a, ∀ b ≥ a, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain ⟨yf, hyf₁, hyf₂⟩ := exists_between hf | case intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | obtain ⟨yg, hyg₁, hyg₂⟩ := exists_between hg | case intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yf to ℝ using ⟨hyf₂.ne, ((OrderBot.bot_le _).trans_lt hyf₁).ne'⟩ | case intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : EReal
hyf₁ : abscissaOfAbsConv f < yf
hyf₂ : yf < ⊤
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | lift yg to ℝ using ⟨hyg₂.ne, ((OrderBot.bot_le _).trans_lt hyg₁).ne'⟩ | case intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yg : EReal
hyg₁ : abscissaOfAbsConv g < yg
hyg₂ : yg < ⊤
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine ⟨max x₀ (max yf yg), fun x hx ↦ ?_⟩ | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
⊢ ∃ a, ∀ b ≥ a, LSeries (f - g) ↑b = 0 b | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeries (f - g) ↑x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | have Hf : LSeriesSummable f x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyf₁.trans_le ?_
refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (x₀ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeries (f - g) ↑x = 0 x | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeries (f - g) ↑x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | have Hg : LSeriesSummable g x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyg₁.trans_le ?_
refine (le_max_right (yf : EReal) _).trans <| (le_max_right (x₀ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeries (f - g) ↑x = 0 x | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
Hg : LSeriesSummable g ↑x
⊢ LSeries (f - g) ↑x = 0 x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | rw [LSeries_sub Hf Hg, hx₀ x <| (le_max_left ..).trans hx, sub_self, Pi.zero_apply] | case intro.intro.intro.intro.intro.intro.intro
f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
Hg : LSeriesSummable g ↑x
⊢ LSeries (f - g) ↑x = 0 x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyf₁.trans_le ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ LSeriesSummable f ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ ↑yf ≤ ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (x₀ : EReal) _).trans ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ ↑yf ≤ ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm ▸ hyg₁.trans_le ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ LSeriesSummable g ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ ↑yg ≤ ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | refine (le_max_right (yf : EReal) _).trans <| (le_max_right (x₀ : EReal) _).trans ?_ | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ ↑yg ≤ ↑x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq | [210, 1] | [231, 86] | simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
x₀ : ℝ
hx₀ : ∀ b ≥ x₀, LSeries f ↑b = LSeries g ↑b
yf : ℝ
hyf₁ : abscissaOfAbsConv f < ↑yf
hyf₂ : ↑yf < ⊤
yg : ℝ
hyg₁ : abscissaOfAbsConv g < ↑yg
hyg₂ : ↑yg < ⊤
x : ℝ
hx : x ≥ max x₀ (max yf yg)
Hf : LSeriesSummable f ↑x
⊢ max (↑x₀) (max ↑yf ↑yg) ≤ ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | have hsub : (fun x : ℝ ↦ LSeries (f - g) x) =ᶠ[atTop] (0 : ℝ → ℂ) :=
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq hf hg h | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
⊢ f n = g n | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
⊢ f n = g n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | have ha : abscissaOfAbsConv (f - g) ≠ ⊤ :=
lt_top_iff_ne_top.mp <| (abscissaOfAbsConv_sub_le f g).trans_lt <| max_lt hf hg | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
⊢ f n = g n | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
ha : abscissaOfAbsConv (f - g) ≠ ⊤
⊢ f n = g n |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.eq_of_LSeries_eventually_eq | [234, 1] | [245, 74] | simpa only [Pi.sub_apply, sub_eq_zero]
using (LSeries_eventually_eq_zero_iff'.mp hsub).resolve_right ha n hn | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
h : (fun x => LSeries f ↑x) =ᶠ[atTop] fun x => LSeries g ↑x
n : ℕ
hn : n ≠ 0
hsub : (fun x => LSeries (f - g) ↑x) =ᶠ[atTop] 0
ha : abscissaOfAbsConv (f - g) ≠ ⊤
⊢ f n = g n | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_iff_of_abscissaOfAbsConv_lt_top | [247, 1] | [254, 58] | refine eq_of_LSeries_eventually_eq hf hg ?_ hn | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ f n = g n | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries_eq_iff_of_abscissaOfAbsConv_lt_top | [247, 1] | [254, 58] | exact Filter.eventually_of_forall fun x ↦ congr_fun H x | f g : ℕ → ℂ
hf : abscissaOfAbsConv f < ⊤
hg : abscissaOfAbsConv g < ⊤
H : LSeries f = LSeries g
n : ℕ
hn : n ≠ 0
⊢ (fun x => LSeries f ↑x) =ᶠ[Filter.atTop] fun x => LSeries g ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | Complex.cpow_natCast_add_one_ne_zero | [8, 1] | [9, 67] | norm_cast at H | n : ℕ
z : ℂ
H : ↑n + 1 = 0 ∧ z ≠ 0
⊢ False | n : ℕ
z : ℂ
H : False ∧ ¬z = 0
⊢ False |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | Complex.cpow_natCast_add_one_ne_zero | [8, 1] | [9, 67] | exact H.1 | n : ℕ
z : ℂ
H : False ∧ ¬z = 0
⊢ False | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | refine abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable' fun x hx ↦ hF ?_ ?_ | F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ
hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s
f g : ℕ → ℂ
⊢ abscissaOfAbsConv (F f g) ≤ max (abscissaOfAbsConv f) (abscissaOfAbsConv g) | case refine_1
F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ
hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s
f g : ℕ → ℂ
x : ℝ
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x
⊢ LSeriesSummable f ↑x
case refine_2
F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ
hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s
f g : ℕ → ℂ
x : ℝ
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x
⊢ LSeriesSummable g ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <|
(ofReal_re x).symm ▸ (le_max_left ..).trans_lt hx | case refine_1
F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ
hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s
f g : ℕ → ℂ
x : ℝ
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x
⊢ LSeriesSummable f ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.abscissaOfAbsConv_binop_le | [13, 1] | [24, 59] | exact LSeriesSummable_of_abscissaOfAbsConv_lt_re <|
(ofReal_re x).symm ▸ (le_max_right ..).trans_lt hx | case refine_2
F : (ℕ → ℂ) → (ℕ → ℂ) → ℕ → ℂ
hF : ∀ {f g : ℕ → ℂ} {s : ℂ}, LSeriesSummable f s → LSeriesSummable g s → LSeriesSummable (F f g) s
f g : ℕ → ℂ
x : ℝ
hx : max (abscissaOfAbsConv f) (abscissaOfAbsConv g) < ↑x
⊢ LSeriesSummable g ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | have Hm : (0 : ℝ) ≤ m := m.cast_nonneg | m n : ℕ
z : ℂ
x : ℝ
⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | have Hn : (0 : ℝ) ≤ (n + 1 : ℝ)⁻¹ := by positivity | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [← mul_div_assoc, mul_comm, div_eq_mul_inv z, mul_div_assoc] | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1) ^ ↑x * (z / ↑m ^ ↑x) = z / (↑m / (↑n + 1)) ^ ↑x | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ z * ((↑n + 1) ^ ↑x / ↑m ^ ↑x) = z * ((↑m / (↑n + 1)) ^ ↑x)⁻¹ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | congr | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ z * ((↑n + 1) ^ ↑x / ↑m ^ ↑x) = z * ((↑m / (↑n + 1)) ^ ↑x)⁻¹ | case e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1) ^ ↑x / ↑m ^ ↑x = ((↑m / (↑n + 1)) ^ ↑x)⁻¹ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp_rw [div_eq_mul_inv] | case e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1) ^ ↑x / ↑m ^ ↑x = ((↑m / (↑n + 1)) ^ ↑x)⁻¹ | case e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1) ^ ↑x * (↑m ^ ↑x)⁻¹ = ((↑m * (↑n + 1)⁻¹) ^ ↑x)⁻¹ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [show (n + 1 : ℂ)⁻¹ = (n + 1 : ℝ)⁻¹ by
simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one],
show (n + 1 : ℂ) = (n + 1 : ℝ) by norm_cast, show (m : ℂ) = (m : ℝ) by norm_cast,
mul_cpow_ofReal_nonneg Hm Hn, mul_inv, mul_comm] | case e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1) ^ ↑x * (↑m ^ ↑x)⁻¹ = ((↑m * (↑n + 1)⁻¹) ^ ↑x)⁻¹ | case e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑↑m ^ ↑x)⁻¹ * ↑(↑n + 1) ^ ↑x = (↑↑m ^ ↑x)⁻¹ * (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | congr | case e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑↑m ^ ↑x)⁻¹ * ↑(↑n + 1) ^ ↑x = (↑↑m ^ ↑x)⁻¹ * (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹ | case e_a.e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ ↑(↑n + 1) ^ ↑x = (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | rw [← cpow_neg, show (-x : ℂ) = (-1 : ℝ) * x by simp only [ofReal_neg, ofReal_one,
neg_mul, one_mul], cpow_mul_ofReal_nonneg Hn, Real.rpow_neg_one, inv_inv] | case e_a.e_a
m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ ↑(↑n + 1) ^ ↑x = (↑(↑n + 1)⁻¹ ^ ↑x)⁻¹ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | positivity | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
⊢ 0 ≤ (↑n + 1)⁻¹ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp only [ofReal_inv, ofReal_add, ofReal_natCast, ofReal_one] | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ (↑n + 1)⁻¹ = ↑(↑n + 1)⁻¹ | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | norm_cast | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ ↑n + 1 = ↑(↑n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | norm_cast | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ ↑m = ↑↑m | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | foo | [38, 1] | [52, 78] | simp only [ofReal_neg, ofReal_one,
neg_mul, one_mul] | m n : ℕ
z : ℂ
x : ℝ
Hm : 0 ≤ ↑m
Hn : 0 ≤ (↑n + 1)⁻¹
⊢ -↑x = ↑(-1) * ↑x | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.pow_mul_term_eq | [54, 1] | [58, 20] | simp only [term, add_eq_zero, one_ne_zero, and_false, ↓reduceIte, Nat.cast_add, Nat.cast_one,
mul_div_assoc', ne_eq, cpow_natCast_add_one_ne_zero n _, not_false_eq_true, div_eq_iff,
mul_comm (f _)] | f : ℕ → ℂ
s : ℂ
n : ℕ
⊢ (↑n + 1) ^ s * term f s (n + 1) = f (n + 1) | no goals |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | obtain ⟨y, hay, hyt⟩ := exists_between ha | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) | case intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < ⊤
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | lift y to ℝ using ⟨hyt.ne, ((OrderBot.bot_le _).trans_lt hay).ne'⟩ | case intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : EReal
hay : abscissaOfAbsConv f < y
hyt : y < ⊤
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | let F := fun (x : ℝ) ↦ {m | n + 1 < m}.indicator (fun m ↦ f m / (m / (n + 1) : ℂ) ^ (x : ℂ)) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hF₀ (x : ℝ) {m : ℕ} (hm : m ≤ n + 1) : F x m = 0 := by
simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F] | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | have hs {x : ℝ} (hx : x ≥ y) : Summable fun m ↦ (n + 1) ^ (x : ℂ) * term f x m := by
refine (summable_mul_left_iff <| cpow_natCast_add_one_ne_zero n _).mpr <|
LSeriesSummable_of_abscissaOfAbsConv_lt_re ?_
simpa only [ofReal_re] using hay.trans_le <| EReal.coe_le_coe_iff.mpr hx | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | conv => enter [3, 1]; rw [← add_zero (f _)] | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1))) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1) + 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine Tendsto.congr'
(eventuallyEq_of_mem (s := {x | y ≤ x}) (mem_atTop y) key).symm <| tendsto_const_nhds.add ?_ | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
⊢ Tendsto (fun x => (↑n + 1) ^ ↑x * LSeries f ↑x) atTop (nhds (f (n + 1) + 0)) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds 0) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rw [show (0 : ℂ) = tsum (fun _ : ℕ ↦ 0) from tsum_zero.symm] | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds 0) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds (∑' (x : ℕ), 0)) |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | refine tendsto_tsum_of_dominated_convergence hys.norm hc <| eventually_iff.mpr ?_ | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
⊢ Tendsto (fun x => ∑' (m : ℕ), F x m) atTop (nhds (∑' (x : ℕ), 0)) | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
⊢ {x | ∀ (k : ℕ), ‖F x k‖ ≤ ‖F y k‖} ∈ atTop |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | filter_upwards [mem_atTop y] with y' hy' k | case intro.intro.intro
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
⊢ {x | ∀ (k : ℕ), ‖F x k‖ ≤ ‖F y k‖} ∈ atTop | case h
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
⊢ ‖F y' k‖ ≤ ‖F y k‖ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | rcases lt_or_le (n + 1) k with H | H | case h
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
⊢ ‖F y' k‖ ≤ ‖F y k‖ | case h.inl
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : n + 1 < k
⊢ ‖F y' k‖ ≤ ‖F y k‖
case h.inr
f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
hF₀ : ∀ (x : ℝ) {m : ℕ}, m ≤ n + 1 → F x m = 0
hF : ∀ (x : ℝ) {m : ℕ}, m ≠ n + 1 → F x m = (↑n + 1) ^ ↑x * term f (↑x) m
hs : ∀ {x : ℝ}, x ≥ y → Summable fun m => (↑n + 1) ^ ↑x * term f (↑x) m
key : ∀ x ≥ y, (↑n + 1) ^ ↑x * LSeries f ↑x = f (n + 1) + ∑' (m : ℕ), F x m
hys : Summable (F y)
hc : ∀ (k : ℕ), Tendsto (fun x => F x k) atTop (nhds 0)
y' : ℝ
hy' : y ≤ y'
k : ℕ
H : k ≤ n + 1
⊢ ‖F y' k‖ ≤ ‖F y k‖ |
https://github.com/MichaelStollBayreuth/EulerProducts.git | 21e07835d1a467b99b5c3c9390d61ae69404445d | EulerProducts/LSeriesUnique.lean | LSeries.tendsto_pow_mul_atTop | [61, 1] | [132, 44] | simp only [Set.mem_setOf_eq, not_lt_of_le hm, not_false_eq_true, Set.indicator_of_not_mem, F] | f : ℕ → ℂ
n : ℕ
h : ∀ m ≤ n, f m = 0
ha : abscissaOfAbsConv f < ⊤
y : ℝ
hay : abscissaOfAbsConv f < ↑y
hyt : ↑y < ⊤
F : ℝ → ℕ → ℂ := fun x => {m | n + 1 < m}.indicator fun m => f m / (↑m / (↑n + 1)) ^ ↑x
x : ℝ
m : ℕ
hm : m ≤ n + 1
⊢ F x m = 0 | no goals |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.