url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
have Hf : LSeriesSummable f x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hyfβ.trans_le ?_
refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (xβ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
|
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeries (f - g) βx = 0 x
|
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeries (f - g) βx = 0 x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
have Hg : LSeriesSummable g x := by
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hygβ.trans_le ?_
refine (le_max_right (yf : EReal) _).trans <| (le_max_right (xβ : EReal) _).trans ?_
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
|
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeries (f - g) βx = 0 x
|
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
Hg : LSeriesSummable g βx
β’ LSeries (f - g) βx = 0 x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
rw [LSeries_sub Hf Hg, hxβ x <| (le_max_left ..).trans hx, sub_self, Pi.zero_apply]
|
case intro.intro.intro.intro.intro.intro.intro
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
Hg : LSeriesSummable g βx
β’ LSeries (f - g) βx = 0 x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hyfβ.trans_le ?_
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ LSeriesSummable f βx
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ βyf β€ βx
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
refine (le_max_left _ (yg : EReal)).trans <| (le_max_right (xβ : EReal) _).trans ?_
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ βyf β€ βx
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ max (βxβ) (max βyf βyg) β€ βx
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
β’ max (βxβ) (max βyf βyg) β€ βx
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
refine LSeriesSummable_of_abscissaOfAbsConv_lt_re <| (ofReal_re x).symm βΈ hygβ.trans_le ?_
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ LSeriesSummable g βx
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ βyg β€ βx
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
refine (le_max_right (yf : EReal) _).trans <| (le_max_right (xβ : EReal) _).trans ?_
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ βyg β€ βx
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ max (βxβ) (max βyf βyg) β€ βx
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq
|
[210, 1]
|
[231, 86]
|
simpa only [max_le_iff, EReal.coe_le_coe_iff] using hx
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
xβ : β
hxβ : β b β₯ xβ, LSeries f βb = LSeries g βb
yf : β
hyfβ : abscissaOfAbsConv f < βyf
hyfβ : βyf < β€
yg : β
hygβ : abscissaOfAbsConv g < βyg
hygβ : βyg < β€
x : β
hx : x β₯ max xβ (max yf yg)
Hf : LSeriesSummable f βx
β’ max (βxβ) (max βyf βyg) β€ βx
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries.eq_of_LSeries_eventually_eq
|
[234, 1]
|
[245, 74]
|
have hsub : (fun x : β β¦ LSeries (f - g) x) =αΆ [atTop] (0 : β β β) :=
LSeries_sub_eventuallyEq_zero_of_LSeries_eventually_eq hf hg h
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
β’ f n = g n
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
β’ f n = g n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries.eq_of_LSeries_eventually_eq
|
[234, 1]
|
[245, 74]
|
have ha : abscissaOfAbsConv (f - g) β β€ :=
lt_top_iff_ne_top.mp <| (abscissaOfAbsConv_sub_le f g).trans_lt <| max_lt hf hg
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
β’ f n = g n
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
ha : abscissaOfAbsConv (f - g) β β€
β’ f n = g n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries.eq_of_LSeries_eventually_eq
|
[234, 1]
|
[245, 74]
|
simpa only [Pi.sub_apply, sub_eq_zero]
using (LSeries_eventually_eq_zero_iff'.mp hsub).resolve_right ha n hn
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
h : (fun x => LSeries f βx) =αΆ [atTop] fun x => LSeries g βx
n : β
hn : n β 0
hsub : (fun x => LSeries (f - g) βx) =αΆ [atTop] 0
ha : abscissaOfAbsConv (f - g) β β€
β’ f n = g n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_eq_iff_of_abscissaOfAbsConv_lt_top
|
[247, 1]
|
[254, 58]
|
refine eq_of_LSeries_eventually_eq hf hg ?_ hn
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ f n = g n
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] fun x => LSeries g βx
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/LSeriesUnique.lean
|
LSeries_eq_iff_of_abscissaOfAbsConv_lt_top
|
[247, 1]
|
[254, 58]
|
exact Filter.eventually_of_forall fun x β¦ congr_fun H x
|
f g : β β β
hf : abscissaOfAbsConv f < β€
hg : abscissaOfAbsConv g < β€
H : LSeries f = LSeries g
n : β
hn : n β 0
β’ (fun x => LSeries f βx) =αΆ [Filter.atTop] fun x => LSeries g βx
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_bounded
|
[30, 1]
|
[39, 61]
|
refine Summable.of_norm <| (hs.const_smul c).norm.of_nonneg_of_le (fun _ β¦ norm_nonneg _) fun n β¦ ?_
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
β’ LSeriesSummable (f * g) s
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ βLSeries.term (f * g) s nβ β€ βc β’ LSeries.term f s nβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_bounded
|
[30, 1]
|
[39, 61]
|
rw [Complex.real_smul, β LSeries.term_smul_apply, mul_comm]
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ βLSeries.term (f * g) s nβ β€ βc β’ LSeries.term f s nβ
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ βLSeries.term (g * f) s nβ β€ βLSeries.term (βc β’ f) s nβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_bounded
|
[30, 1]
|
[39, 61]
|
refine LSeries.norm_term_le s ?_
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ βLSeries.term (g * f) s nβ β€ βLSeries.term (βc β’ f) s nβ
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ β(g * f) nβ β€ β(βc β’ f) nβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_bounded
|
[30, 1]
|
[39, 61]
|
have hc : β(c : β)β = c := by
simp only [Complex.norm_eq_abs, Complex.abs_ofReal, abs_eq_self, (norm_nonneg _).trans (hg 0)]
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ β(g * f) nβ β€ β(βc β’ f) nβ
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
hc : ββcβ = c
β’ β(g * f) nβ β€ β(βc β’ f) nβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_bounded
|
[30, 1]
|
[39, 61]
|
simpa only [Pi.mul_apply, norm_mul, Pi.smul_apply, smul_eq_mul, hc]
using mul_le_mul_of_nonneg_right (hg n) <| norm_nonneg _
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
hc : ββcβ = c
β’ β(g * f) nβ β€ β(βc β’ f) nβ
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_bounded
|
[30, 1]
|
[39, 61]
|
simp only [Complex.norm_eq_abs, Complex.abs_ofReal, abs_eq_self, (norm_nonneg _).trans (hg 0)]
|
f g : β β β
c : β
s : β
hs : LSeriesSummable f s
hg : β (n : β), βg nβ β€ c
n : β
β’ ββcβ = c
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_moebius
|
[42, 1]
|
[46, 36]
|
refine hf.mul_bounded (c := 1) fun n β¦ ?_
|
f : β β β
s : β
hf : LSeriesSummable f s
β’ LSeriesSummable (f * fun n => β(ΞΌ n)) s
|
f : β β β
s : β
hf : LSeriesSummable f s
n : β
β’ ββ(ΞΌ n)β β€ 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_moebius
|
[42, 1]
|
[46, 36]
|
simp only [Complex.norm_int]
|
f : β β β
s : β
hf : LSeriesSummable f s
n : β
β’ ββ(ΞΌ n)β β€ 1
|
f : β β β
s : β
hf : LSeriesSummable f s
n : β
β’ |β(ΞΌ n)| β€ 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeriesSummable.mul_moebius
|
[42, 1]
|
[46, 36]
|
exact_mod_cast abs_moebius_le_one
|
f : β β β
s : β
hf : LSeriesSummable f s
n : β
β’ |β(ΞΌ n)| β€ 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_convolution_distrib
|
[51, 1]
|
[59, 28]
|
ext n
|
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
β’ Ο * (f β g) = Ο * f β (Ο * g)
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
β’ (Ο * (f β g)) n = (Ο * f β (Ο * g)) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_convolution_distrib
|
[51, 1]
|
[59, 28]
|
simp only [Pi.mul_apply, LSeries.convolution_def, Finset.mul_sum]
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
β’ (Ο * (f β g)) n = (Ο * f β (Ο * g)) n
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
β’ β i β n.divisorsAntidiagonal, Ο n * (f i.1 * g i.2) = β x β n.divisorsAntidiagonal, Ο x.1 * f x.1 * (Ο x.2 * g x.2)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_convolution_distrib
|
[51, 1]
|
[59, 28]
|
refine Finset.sum_congr rfl fun p hp β¦ ?_
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
β’ β i β n.divisorsAntidiagonal, Ο n * (f i.1 * g i.2) = β x β n.divisorsAntidiagonal, Ο x.1 * f x.1 * (Ο x.2 * g x.2)
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
p : β Γ β
hp : p β n.divisorsAntidiagonal
β’ Ο n * (f p.1 * g p.2) = Ο p.1 * f p.1 * (Ο p.2 * g p.2)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_convolution_distrib
|
[51, 1]
|
[59, 28]
|
rw [(Nat.mem_divisorsAntidiagonal.mp hp).1.symm, hΟ]
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
p : β Γ β
hp : p β n.divisorsAntidiagonal
β’ Ο n * (f p.1 * g p.2) = Ο p.1 * f p.1 * (Ο p.2 * g p.2)
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
p : β Γ β
hp : p β n.divisorsAntidiagonal
β’ Ο p.1 * Ο p.2 * (f p.1 * g p.2) = Ο p.1 * f p.1 * (Ο p.2 * g p.2)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_convolution_distrib
|
[51, 1]
|
[59, 28]
|
exact mul_mul_mul_comm ..
|
case h
R : Type u_1
instβ : CommSemiring R
Ο : β β R
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
f g : β β R
n : β
p : β Γ β
hp : p β n.divisorsAntidiagonal
β’ Ο p.1 * Ο p.2 * (f p.1 * g p.2) = Ο p.1 * f p.1 * (Ο p.2 * g p.2)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.convolution_mul_moebius
|
[62, 1]
|
[72, 68]
|
nth_rewrite 1 [β mul_one Ο]
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
this : (1 β fun x => β(ΞΌ x)) = Ξ΄
β’ Ο β (Ο * fun n => β(ΞΌ n)) = Ξ΄
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
this : (1 β fun x => β(ΞΌ x)) = Ξ΄
β’ Ο * 1 β (Ο * fun n => β(ΞΌ n)) = Ξ΄
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.convolution_mul_moebius
|
[62, 1]
|
[72, 68]
|
simp only [β mul_convolution_distrib hΟ 1 βΞΌ, this, mul_delta hβ]
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
this : (1 β fun x => β(ΞΌ x)) = Ξ΄
β’ Ο * 1 β (Ο * fun n => β(ΞΌ n)) = Ξ΄
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.convolution_mul_moebius
|
[62, 1]
|
[72, 68]
|
rw [one_convolution_eq_zeta_convolution, β one_eq_delta]
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
β’ (1 β fun x => β(ΞΌ x)) = Ξ΄
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
β’ ((fun x => β(ΞΆ x)) β fun x => β(ΞΌ x)) = fun n => 1 n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.convolution_mul_moebius
|
[62, 1]
|
[72, 68]
|
change β(ΞΆ : ArithmeticFunction β) β β(ΞΌ : ArithmeticFunction β) = β(1 : ArithmeticFunction β)
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
β’ ((fun x => β(ΞΆ x)) β fun x => β(ΞΌ x)) = fun n => 1 n
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
β’ ββΞΆ β ββΞΌ = β1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.convolution_mul_moebius
|
[62, 1]
|
[72, 68]
|
simp only [coe_mul, coe_zeta_mul_coe_moebius]
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
β’ ββΞΆ β ββΞΌ = β1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_mu_eq_one
|
[75, 1]
|
[80, 23]
|
rw [β LSeries_convolution' hs ?_, convolution_mul_moebius hβ hΟ, LSeries_delta, Pi.one_apply]
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
s : β
hs : LSeriesSummable Ο s
β’ L Ο s * L (Ο * fun n => β(ΞΌ n)) s = 1
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
s : β
hs : LSeriesSummable Ο s
β’ LSeriesSummable (Ο * fun n => β(ΞΌ n)) s
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
LSeries.mul_mu_eq_one
|
[75, 1]
|
[80, 23]
|
exact hs.mul_moebius
|
Ο : β β β
hβ : Ο 1 = 1
hΟ : β (m n : β), Ο (m * n) = Ο m * Ο n
s : β
hs : LSeriesSummable Ο s
β’ LSeriesSummable (Ο * fun n => β(ΞΌ n)) s
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
DirichletCharacter.toFun_on_nat_map_one
|
[92, 1]
|
[93, 32]
|
simp only [cast_one, map_one]
|
N : β
Ο : DirichletCharacter β N
β’ (fun n => Ο βn) 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/DirichletLSeries.lean
|
DirichletCharacter.toFun_on_nat_map_mul
|
[95, 1]
|
[97, 32]
|
simp only [cast_mul, map_mul]
|
N : β
Ο : DirichletCharacter β N
m n : β
β’ (fun n => Ο βn) (m * n) = (fun n => Ο βn) m * (fun n => Ο βn) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[42, 1]
|
[51, 61]
|
rw [LSeries]
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = L (fun n => Ο βn) s
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[42, 1]
|
[51, 61]
|
convert exp_sum_primes_log_eq_tsum (f := dirichletSummandHom Ο <| ne_zero_of_one_lt_re hs) <|
summable_dirichletSummand Ο hs
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n
|
case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[42, 1]
|
[51, 61]
|
ext n
|
case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―)
|
case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[42, 1]
|
[51, 61]
|
rcases eq_or_ne n 0 with rfl | hn
|
case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0
case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[42, 1]
|
[51, 61]
|
simp only [term_zero, map_zero]
|
case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[42, 1]
|
[51, 61]
|
simp [hn, dirichletSummandHom, div_eq_mul_inv, cpow_neg]
|
case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
ArithmeticFunction.LSeries_zeta_eulerProduct'
|
[56, 1]
|
[59, 62]
|
convert modOne_eq_one (R := β) βΈ LSeries_eulerProduct' Οβ hs using 7
|
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - ββp ^ (-s)).log) = L 1 s
|
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
ArithmeticFunction.LSeries_zeta_eulerProduct'
|
[56, 1]
|
[59, 62]
|
rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul]
|
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
have (p : Nat.Primes) : βΟ p * (p : β) ^ (-s)β β€ (p : β) ^ (-s).re := by
rw [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs]
calc βΟ pβ * (p : β) ^ (-s).re
_ β€ 1 * (p : β) ^ (-s.re) := by gcongr; exact DirichletCharacter.norm_le_one Ο _
_ = _ := one_mul _
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ Summable fun p => -(1 - Ο ββp * ββp ^ (-s)).log
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
this : β (p : Nat.Primes), βΟ ββp * ββp ^ (-s)β β€ ββp ^ (-s).re
β’ Summable fun p => -(1 - Ο ββp * ββp ^ (-s)).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
refine (Nat.Primes.summable_rpow.mpr ?_).of_nonneg_of_le (fun _ β¦ norm_nonneg _) this
|>.of_norm.neg_clog_one_sub
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
this : β (p : Nat.Primes), βΟ ββp * ββp ^ (-s)β β€ ββp ^ (-s).re
β’ Summable fun p => -(1 - Ο ββp * ββp ^ (-s)).log
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
this : β (p : Nat.Primes), βΟ ββp * ββp ^ (-s)β β€ ββp ^ (-s).re
β’ (-s).re < -1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
simp only [neg_re, neg_lt_neg_iff, hs]
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
this : β (p : Nat.Primes), βΟ ββp * ββp ^ (-s)β β€ ββp ^ (-s).re
β’ (-s).re < -1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
rw [norm_mul, norm_natCast_cpow_of_re_ne_zero _ <| re_neg_ne_zero_of_one_lt_re hs]
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
p : Nat.Primes
β’ βΟ ββp * ββp ^ (-s)β β€ ββp ^ (-s).re
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
p : Nat.Primes
β’ βΟ ββpβ * ββp ^ (-s).re β€ ββp ^ (-s).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
calc βΟ pβ * (p : β) ^ (-s).re
_ β€ 1 * (p : β) ^ (-s.re) := by gcongr; exact DirichletCharacter.norm_le_one Ο _
_ = _ := one_mul _
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
p : Nat.Primes
β’ βΟ ββpβ * ββp ^ (-s).re β€ ββp ^ (-s).re
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
gcongr
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
p : Nat.Primes
β’ βΟ ββpβ * ββp ^ (-s).re β€ 1 * ββp ^ (-s.re)
|
case h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
p : Nat.Primes
β’ βΟ ββpβ β€ 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
summable_neg_log_one_sub_char_mul_prime_cpow
|
[69, 1]
|
[79, 41]
|
exact DirichletCharacter.norm_le_one Ο _
|
case h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
p : Nat.Primes
β’ βΟ ββpβ β€ 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
have hacβ : β(a : β)β < 1 := by
simp only [norm_eq_abs, abs_ofReal, _root_.abs_of_nonneg haβ, haβ]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
have hacβ : βa * zβ < 1 := by rwa [norm_mul, hz, mul_one]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
have hacβ : βa * z ^ 2β < 1 := by rwa [norm_mul, norm_pow, hz, one_pow, mul_one]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
have Hβ := (hasSum_re <| hasSum_taylorSeries_neg_log hacβ).mul_left 3
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
have Hβ := (hasSum_re <| hasSum_taylorSeries_neg_log hacβ).mul_left 4
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
Hβ : HasSum (fun i => 4 * ((βa * z) ^ i / βi).re) (4 * (-(1 - βa * z).log).re)
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
have Hβ := hasSum_re <| hasSum_taylorSeries_neg_log hacβ
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
Hβ : HasSum (fun i => 4 * ((βa * z) ^ i / βi).re) (4 * (-(1 - βa * z).log).re)
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
Hβ : HasSum (fun i => 4 * ((βa * z) ^ i / βi).re) (4 * (-(1 - βa * z).log).re)
Hβ : HasSum (fun x => ((βa * z ^ 2) ^ x / βx).re) (-(1 - βa * z ^ 2).log).re
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
rw [β ((Hβ.add Hβ).add Hβ).tsum_eq]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
Hβ : HasSum (fun i => 4 * ((βa * z) ^ i / βi).re) (4 * (-(1 - βa * z).log).re)
Hβ : HasSum (fun x => ((βa * z ^ 2) ^ x / βx).re) (-(1 - βa * z ^ 2).log).re
β’ 0 β€ 3 * (-(1 - βa).log).re + 4 * (-(1 - βa * z).log).re + (-(1 - βa * z ^ 2).log).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
Hβ : HasSum (fun i => 4 * ((βa * z) ^ i / βi).re) (4 * (-(1 - βa * z).log).re)
Hβ : HasSum (fun x => ((βa * z ^ 2) ^ x / βx).re) (-(1 - βa * z ^ 2).log).re
β’ 0 β€ β' (b : β), (3 * (βa ^ b / βb).re + 4 * ((βa * z) ^ b / βb).re + ((βa * z ^ 2) ^ b / βb).re)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
clear Hβ Hβ Hβ
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
Hβ : HasSum (fun i => 3 * (βa ^ i / βi).re) (3 * (-(1 - βa).log).re)
Hβ : HasSum (fun i => 4 * ((βa * z) ^ i / βi).re) (4 * (-(1 - βa * z).log).re)
Hβ : HasSum (fun x => ((βa * z ^ 2) ^ x / βx).re) (-(1 - βa * z ^ 2).log).re
β’ 0 β€ β' (b : β), (3 * (βa ^ b / βb).re + 4 * ((βa * z) ^ b / βb).re + ((βa * z ^ 2) ^ b / βb).re)
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
β’ 0 β€ β' (b : β), (3 * (βa ^ b / βb).re + 4 * ((βa * z) ^ b / βb).re + ((βa * z ^ 2) ^ b / βb).re)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
refine tsum_nonneg fun n β¦ ?_
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
β’ 0 β€ β' (b : β), (3 * (βa ^ b / βb).re + 4 * ((βa * z) ^ b / βb).re + ((βa * z ^ 2) ^ b / βb).re)
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
β’ 0 β€ 3 * (βa ^ n / βn).re + 4 * ((βa * z) ^ n / βn).re + ((βa * z ^ 2) ^ n / βn).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
simp only [mul_pow, β ofReal_pow, div_natCast_re, ofReal_re, mul_re, ofReal_im, zero_mul,
sub_zero]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
β’ 0 β€ 3 * (βa ^ n / βn).re + 4 * ((βa * z) ^ n / βn).re + ((βa * z ^ 2) ^ n / βn).re
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
β’ 0 β€ 3 * (a ^ n / βn) + 4 * (a ^ n * (z ^ n).re / βn) + a ^ n * ((z ^ 2) ^ n).re / βn
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
rcases n.eq_zero_or_pos with rfl | hn
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
β’ 0 β€ 3 * (a ^ n / βn) + 4 * (a ^ n * (z ^ n).re / βn) + a ^ n * ((z ^ 2) ^ n).re / βn
|
case inl
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
β’ 0 β€ 3 * (a ^ 0 / β0) + 4 * (a ^ 0 * (z ^ 0).re / β0) + a ^ 0 * ((z ^ 2) ^ 0).re / β0
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 3 * (a ^ n / βn) + 4 * (a ^ n * (z ^ n).re / βn) + a ^ n * ((z ^ 2) ^ n).re / βn
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
field_simp
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 3 * (a ^ n / βn) + 4 * (a ^ n * (z ^ n).re / βn) + a ^ n * ((z ^ 2) ^ n).re / βn
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / βn
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
refine div_nonneg ?_ n.cast_nonneg
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ (3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re) / βn
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
rw [β pow_mul, pow_mul', sq, mul_re, β sq, β sq, β sq_abs_sub_sq_re, β norm_eq_abs, norm_pow, hz]
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ 2) ^ n).re
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
calc
0 β€ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 := by positivity
_ = _ := by ring
|
case inr
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
simp only [norm_eq_abs, abs_ofReal, _root_.abs_of_nonneg haβ, haβ]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
β’ ββaβ < 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
rwa [norm_mul, hz, mul_one]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
β’ ββa * zβ < 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
rwa [norm_mul, norm_pow, hz, one_pow, mul_one]
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
β’ ββa * z ^ 2β < 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
simp
|
case inl
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
β’ 0 β€ 3 * (a ^ 0 / β0) + 4 * (a ^ 0 * (z ^ 0).re / β0) + a ^ 0 * ((z ^ 2) ^ 0).re / β0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
positivity
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 0 β€ 2 * a ^ n * ((z ^ n).re + 1) ^ 2
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg'
|
[81, 1]
|
[104, 22]
|
ring
|
a : β
haβ : 0 β€ a
haβ : a < 1
z : β
hz : βzβ = 1
hacβ : ββaβ < 1
hacβ : ββa * zβ < 1
hacβ : ββa * z ^ 2β < 1
n : β
hn : n > 0
β’ 2 * a ^ n * ((z ^ n).re + 1) ^ 2 =
3 * a ^ n + 4 * (a ^ n * (z ^ n).re) + a ^ n * ((z ^ n).re ^ 2 - ((1 ^ n) ^ 2 - (z ^ n).re ^ 2))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
by_cases hn' : IsUnit (n : ZMod N)
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
case neg
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : Β¬IsUnit βn
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
have haβ : 0 β€ (n : β) ^ (-x) := Real.rpow_nonneg n.cast_nonneg _
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
have haβ : (n : β) ^ (-x) < 1 := by
simpa only [Real.rpow_lt_one_iff n.cast_nonneg, Nat.cast_eq_zero, Nat.one_lt_cast,
Left.neg_neg_iff, Nat.cast_lt_one, Left.neg_pos_iff]
using Or.inr <| Or.inl β¨hn, zero_lt_one.trans hxβ©
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
have hz : βΟ n * (n : β) ^ (-(I * y))β = 1 := by
rw [norm_mul, β hn'.unit_spec, DirichletCharacter.unit_norm_eq_one Ο hn'.unit, one_mul,
norm_eq_abs, abs_cpow_of_imp fun h β¦ False.elim <| by linarith [Nat.cast_eq_zero.mp h, hn]]
simp
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
rw [MulChar.one_apply hn', one_mul]
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ 0 β€
3 * (-(1 - βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
convert re_log_comb_nonneg' haβ haβ hz using 6
|
case pos
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ 0 β€
3 * (-(1 - βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ (1 - βn ^ (-βx)).log = (1 - β(βn ^ (-x))).log
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ (1 - Ο βn * βn ^ (-(βx + I * βy))).log = (1 - β(βn ^ (-x)) * (Ο βn * βn ^ (-(I * βy)))).log
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy)) = β(βn ^ (-x)) * (Ο βn * βn ^ (-(I * βy))) ^ 2
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
simpa only [Real.rpow_lt_one_iff n.cast_nonneg, Nat.cast_eq_zero, Nat.one_lt_cast,
Left.neg_neg_iff, Nat.cast_lt_one, Left.neg_pos_iff]
using Or.inr <| Or.inl β¨hn, zero_lt_one.trans hxβ©
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
β’ βn ^ (-x) < 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
rw [norm_mul, β hn'.unit_spec, DirichletCharacter.unit_norm_eq_one Ο hn'.unit, one_mul,
norm_eq_abs, abs_cpow_of_imp fun h β¦ False.elim <| by linarith [Nat.cast_eq_zero.mp h, hn]]
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
β’ βΟ βn * βn ^ (-(I * βy))β = 1
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
β’ Complex.abs βn ^ (-(I * βy)).re / ((βn).arg * (-(I * βy)).im).exp = 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
simp
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
β’ Complex.abs βn ^ (-(I * βy)).re / ((βn).arg * (-(I * βy)).im).exp = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
linarith [Nat.cast_eq_zero.mp h, hn]
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
h : βn = 0
β’ False
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
congr 2
|
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ (1 - βn ^ (-βx)).log = (1 - β(βn ^ (-x))).log
|
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ βn ^ (-βx) = β(βn ^ (-x))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
exact_mod_cast (ofReal_cpow n.cast_nonneg (-x)).symm
|
case h.e'_4.h.e'_5.h.e'_5.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ βn ^ (-βx) = β(βn ^ (-x))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
congr 2
|
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ (1 - Ο βn * βn ^ (-(βx + I * βy))).log = (1 - β(βn ^ (-x)) * (Ο βn * βn ^ (-(I * βy)))).log
|
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn * βn ^ (-(βx + I * βy)) = β(βn ^ (-x)) * (Ο βn * βn ^ (-(I * βy)))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
rw [neg_add, cpow_add _ _ <| by norm_cast; linarith, β ofReal_neg,
ofReal_cpow n.cast_nonneg (-x), ofReal_natCast]
|
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn * βn ^ (-(βx + I * βy)) = β(βn ^ (-x)) * (Ο βn * βn ^ (-(I * βy)))
|
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn * (βn ^ β(-x) * βn ^ (-(I * βy))) = βn ^ β(-x) * (Ο βn * βn ^ (-(I * βy)))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
ring
|
case h.e'_4.h.e'_5.h.e'_6.h.e'_6.h.e'_1.h.e'_3.e_x.e_a
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn * (βn ^ β(-x) * βn ^ (-(I * βy))) = βn ^ β(-x) * (Ο βn * βn ^ (-(I * βy)))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
norm_cast
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ βn β 0
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Β¬n = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
linarith
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Β¬n = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
rw [neg_add, cpow_add _ _ <| by norm_cast; linarith, β ofReal_neg,
ofReal_cpow n.cast_nonneg (-x), ofReal_natCast,
show -(2 * I * y) = (2 : β) * (-I * y) by ring, cpow_nat_mul]
|
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy)) = β(βn ^ (-x)) * (Ο βn * βn ^ (-(I * βy))) ^ 2
|
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn ^ 2 * (βn ^ β(-x) * (βn ^ (-I * βy)) ^ 2) = βn ^ β(-x) * (Ο βn * βn ^ (-(I * βy))) ^ 2
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
ring_nf
|
case h.e'_4.h.e'_6.h.e'_1.h.e'_3.h.e'_1.h.e'_6
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ Ο βn ^ 2 * (βn ^ β(-x) * (βn ^ (-I * βy)) ^ 2) = βn ^ β(-x) * (Ο βn * βn ^ (-(I * βy))) ^ 2
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
ring
|
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : IsUnit βn
haβ : 0 β€ βn ^ (-x)
haβ : βn ^ (-x) < 1
hz : βΟ βn * βn ^ (-(I * βy))β = 1
β’ -(2 * I * βy) = β2 * (-I * βy)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
re_log_comb_nonneg_dirichlet
|
[106, 1]
|
[135, 37]
|
simp [MulChar.map_nonunit _ hn']
|
case neg
N : β
Ο : DirichletCharacter β N
n : β
hn : 2 β€ n
x y : β
hx : 1 < x
hn' : Β¬IsUnit βn
β’ 0 β€
3 * (-(1 - 1 βn * βn ^ (-βx)).log).re + 4 * (-(1 - Ο βn * βn ^ (-(βx + I * βy))).log).re +
(-(1 - Ο βn ^ 2 * βn ^ (-(βx + 2 * I * βy))).log).re
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
one_lt_re_of_pos
|
[138, 1]
|
[141, 92]
|
simp only [add_re, one_re, ofReal_re, lt_add_iff_pos_right, hx, mul_re, I_re, zero_mul, I_im,
ofReal_im, mul_zero, sub_self, add_zero, re_ofNat, im_ofNat, mul_one, mul_im, and_self]
|
x y : β
hx : 0 < x
β’ 1 < (1 + βx).re β§ 1 < (1 + βx + I * βy).re β§ 1 < (1 + βx + 2 * I * βy).re
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
norm_dirichlet_product_ge_one
|
[147, 1]
|
[174, 33]
|
let Οβ := (1 : DirichletCharacter β N)
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
norm_dirichlet_product_ge_one
|
[147, 1]
|
[174, 33]
|
have β¨hβ, hβ, hββ© := one_lt_re_of_pos y hx
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
norm_dirichlet_product_ge_one
|
[147, 1]
|
[174, 33]
|
have hxβ : 1 + (x : β) = (1 + x : β).re := by simp only [add_re, one_re, ofReal_re, ofReal_add, ofReal_one]
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
hxβ : 1 + βx = β(1 + βx).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
norm_dirichlet_product_ge_one
|
[147, 1]
|
[174, 33]
|
have hsumβ :=
(hasSum_re (summable_neg_log_one_sub_char_mul_prime_cpow Οβ hβ).hasSum).summable.mul_left 3
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
hxβ : 1 + βx = β(1 + βx).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
hxβ : 1 + βx = β(1 + βx).re
hsumβ : Summable fun i => 3 * (-(1 - Οβ ββi * ββi ^ (-(1 + βx))).log).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/PNT.lean
|
norm_dirichlet_product_ge_one
|
[147, 1]
|
[174, 33]
|
have hsumβ :=
(hasSum_re (summable_neg_log_one_sub_char_mul_prime_cpow Ο hβ).hasSum).summable.mul_left 4
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
hxβ : 1 + βx = β(1 + βx).re
hsumβ : Summable fun i => 3 * (-(1 - Οβ ββi * ββi ^ (-(1 + βx))).log).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
N : β
Ο : DirichletCharacter β N
x : β
hx : 0 < x
y : β
Οβ : DirichletCharacter β N := 1
hβ : 1 < (1 + βx).re
hβ : 1 < (1 + βx + I * βy).re
hβ : 1 < (1 + βx + 2 * I * βy).re
hxβ : 1 + βx = β(1 + βx).re
hsumβ : Summable fun i => 3 * (-(1 - Οβ ββi * ββi ^ (-(1 + βx))).log).re
hsumβ : Summable fun i => 4 * (-(1 - Ο ββi * ββi ^ (-(1 + βx + I * βy))).log).re
β’ βL (fun n => 1 βn) (1 + βx) ^ 3 * L (fun n => Ο βn) (1 + βx + I * βy) ^ 4 *
L (fun n => (Ο ^ 2) βn) (1 + βx + 2 * I * βy)β β₯
1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.