|
'''This module hosts the driver functions used for finding roots of an equation & also contains utility |
|
functions used by other files of visma.solvers.polynomial |
|
|
|
Note: Please try maintain proper documentation |
|
''' |
|
|
|
import copy |
|
import math |
|
from visma.io.checks import evaluateConstant, preprocessCheckPolynomial |
|
from visma.functions.constant import Constant |
|
from visma.functions.variable import Variable |
|
from visma.functions.operator import Binary |
|
from visma.solvers.polynomial.quadratic import quadraticRoots |
|
from visma.solvers.polynomial.cubic import cubicRoots |
|
from visma.solvers.polynomial.quartic import quarticRoots |
|
|
|
|
|
def rootFinder(lTokens, rTokens): |
|
'''Main function called by driver modules to calculate roots of equation |
|
|
|
Argument: |
|
lTokens {list} -- list of left side tokens |
|
rTokens {list} -- list of right side tokens |
|
|
|
Returns: |
|
lTokens {list} -- list of left side tokens |
|
rTokens {list} -- list of right side tokens |
|
{empty list} |
|
token_string {string} -- final result stored in a string |
|
animation {list} -- list of equation solving process |
|
comments {list} -- list of comments in equation solving process |
|
''' |
|
lTokensTemp = copy.deepcopy(lTokens) |
|
rTokensTemp = copy.deepcopy(rTokens) |
|
_, polyDegree = preprocessCheckPolynomial(lTokensTemp, rTokensTemp) |
|
if polyDegree == 2: |
|
lTokens, rTokens, _, token_string, animation, comments = quadraticRoots(lTokens, rTokens) |
|
elif polyDegree == 3: |
|
lTokens, rTokens, _, token_string, animation, comments = cubicRoots(lTokens, rTokens) |
|
elif polyDegree == 4: |
|
lTokens, rTokens, _, token_string, animation, comments = quarticRoots(lTokens, rTokens) |
|
return lTokens, rTokens, [], token_string, animation, comments |
|
|
|
|
|
def getCoefficients(lTokens, rTokens, degree): |
|
'''Used by root finder modules to get a list of coefficients of equation |
|
|
|
Argument: |
|
lTokens {list} -- list of left side tokens |
|
rTokens {list} -- list of right side tokens |
|
degree {int} -- degree of equation |
|
|
|
Returns: |
|
coeffs {list} -- list of coefficients of equation (item at ith index is coefficient of x^i) |
|
''' |
|
coeffs = [0] * (degree + 1) |
|
for i, token in enumerate(lTokens): |
|
if isinstance(token, Constant): |
|
cons = evaluateConstant(token) |
|
if i != 0: |
|
if isinstance(lTokens[i - 1], Binary): |
|
if lTokens[i - 1].value in ['-', '+']: |
|
if lTokens[i - 1].value == '-': |
|
cons *= -1 |
|
if (i + 1) < len(lTokens): |
|
if lTokens[i + 1].value not in ['*', '/']: |
|
coeffs[0] += cons |
|
else: |
|
return [] |
|
else: |
|
coeffs[0] += cons |
|
if isinstance(token, Variable): |
|
if len(token.value) == 1: |
|
var = token.coefficient |
|
if i != 0: |
|
if isinstance(lTokens[i - 1], Binary): |
|
if lTokens[i - 1].value in ['-', '+']: |
|
if lTokens[i - 1].value == '-': |
|
var *= -1 |
|
if (i + 1) < len(lTokens): |
|
if lTokens[i + 1].value not in ['*', '/']: |
|
if token.power[0] in [1, 2, 3, 4]: |
|
coeffs[int(token.power[0])] += var |
|
else: |
|
return [] |
|
else: |
|
return [] |
|
else: |
|
if token.power[0] in [1, 2, 3, 4]: |
|
coeffs[int(token.power[0])] += var |
|
else: |
|
return [] |
|
else: |
|
return [] |
|
return coeffs |
|
|
|
|
|
def squareRootComplex(value): |
|
'''Used by root finder modules to get square root of a complex number |
|
|
|
Argument: |
|
value {list of 2 elements} -- 1st element indicates real part & other element indicates imaginary part |
|
|
|
Returns: |
|
root {float} -- root of imaginary number |
|
''' |
|
a = value[0] |
|
b = value[1] |
|
root = 2*[0] |
|
root[0] = math.sqrt((a + math.sqrt(a*a + b*b))/2) |
|
root[1] = math.sqrt((math.sqrt(a*a + b*b) - a)/2) |
|
if b < 0: |
|
root[1] = -root[1] |
|
return root |
|
|
|
|
|
def cubeRoot(value): |
|
'''Used by root finder modules to get cube root of floats |
|
|
|
Argument: |
|
value {float} -- whose cube root is to be found |
|
|
|
Returns: |
|
root {float} -- cube root of "value" |
|
''' |
|
if value >= 0: |
|
return value ** (1./3.) |
|
else: |
|
return (-(-value) ** (1./3.)) |
|
|