docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
Reads DFTB+ structure files in gen format. Args: filename: name of the gen-file to be read Returns: atoms: an object of the phonopy.Atoms class, representing the structure found in filename
def read_dftbp(filename): infile = open(filename, 'r') lines = infile.readlines() # remove any comments for ss in lines: if ss.strip().startswith('#'): lines.remove(ss) natoms = int(lines[0].split()[0]) symbols = lines[1].split() if (lines[0].split()[1].lower() == 'f'): is_scaled = True scale_pos = 1 scale_latvecs = dftbpToBohr else: is_scaled = False scale_pos = dftbpToBohr scale_latvecs = dftbpToBohr # assign positions and expanded symbols positions = [] expaned_symbols = [] for ii in range(2, natoms+2): lsplit = lines[ii].split() expaned_symbols.append(symbols[int(lsplit[1]) - 1]) positions.append([float(ss)*scale_pos for ss in lsplit[2:5]]) # origin is ignored, may be used in future origin = [float(ss) for ss in lines[natoms+2].split()] # assign coords of unitcell cell = [] for ii in range(natoms+3, natoms+6): lsplit = lines[ii].split() cell.append([float(ss)*scale_latvecs for ss in lsplit[:3]]) cell = np.array(cell) if is_scaled: atoms = Atoms(symbols=expaned_symbols, cell=cell, scaled_positions=positions) else: atoms = Atoms(symbols=expaned_symbols, cell=cell, positions=positions) return atoms
210,914
Reduces expanded list of symbols. Args: symbols: list containing any chemical symbols as often as the atom appears in the structure Returns: reduced_symbols: any symbols appears only once
def get_reduced_symbols(symbols): reduced_symbols = [] for ss in symbols: if not (ss in reduced_symbols): reduced_symbols.append(ss) return reduced_symbols
210,915
Writes DFTB+ readable, gen-formatted structure files Args: filename: name of the gen-file to be written atoms: object containing information about structure
def write_dftbp(filename, atoms): scale_pos = dftbpToBohr lines = "" # 1. line, use absolute positions natoms = atoms.get_number_of_atoms() lines += str(natoms) lines += ' S \n' # 2. line expaned_symbols = atoms.get_chemical_symbols() symbols = get_reduced_symbols(expaned_symbols) lines += ' '.join(symbols) + '\n' atom_numbers = [] for ss in expaned_symbols: atom_numbers.append(symbols.index(ss) + 1) positions = atoms.get_positions()/scale_pos for ii in range(natoms): pos = positions[ii] pos_str = "{:3d} {:3d} {:20.15f} {:20.15f} {:20.15f}\n".format( ii + 1, atom_numbers[ii], pos[0], pos[1], pos[2]) lines += pos_str # origin arbitrary lines +='0.0 0.0 0.0\n' cell = atoms.get_cell()/scale_pos for ii in range(3): cell_str = "{:20.15f} {:20.15f} {:20.15f}\n".format( cell[ii][0], cell[ii][1], cell[ii][2]) lines += cell_str outfile = open(filename, 'w') outfile.write(lines)
210,916
Writes perfect supercell and supercells with displacements Args: supercell: perfect supercell cells_with_disps: supercells with displaced atoms filename: root-filename
def write_supercells_with_displacements(supercell, cells_with_disps, filename="geo.gen"): # original cell write_dftbp(filename + "S", supercell) # displaced cells for ii in range(len(cells_with_disps)): write_dftbp(filename + "S-{:03d}".format(ii+1), cells_with_disps[ii])
210,917
Construct the parser. Args: string_or_filelike: Either the string to parse, or a file-like object supporting the readline method. parser_delegate: An instance of the ParserDelegate class, that will be responsible for constructing appropriate objects for configurable references and macros.
def __init__(self, string_or_filelike, parser_delegate): if hasattr(string_or_filelike, 'readline'): line_reader = string_or_filelike.readline else: # Assume it's string-like. if six.PY2: string_or_filelike = unicode(string_or_filelike) string_io = io.StringIO(string_or_filelike) line_reader = string_io.readline def _text_line_reader(): line = line_reader() if isinstance(line, bytes): line = line.decode('utf8') return line self._token_generator = tokenize.generate_tokens(_text_line_reader) self._filename = getattr(string_or_filelike, 'name', None) self._current_token = None self._delegate = parser_delegate self._advance_one_token()
211,024
Returns `value` in a format parseable by `parse_value`, or `None`. Simply put, This function ensures that when it returns a string value, the following will hold: parse_value(_format_value(value)) == value Args: value: The value to format. Returns: A string representation of `value` when `value` is literally representable, or `None`.
def _format_value(value): literal = repr(value) try: if parse_value(literal) == value: return literal except SyntaxError: pass return None
211,051
Clears the global configuration. This clears any parameter values set by `bind_parameter` or `parse_config`, as well as the set of dynamically imported modules. It does not remove any configurable functions or classes from the registry of configurables. Args: clear_constants: Whether to clear constants created by `constant`. Defaults to False.
def clear_config(clear_constants=False): _set_config_is_locked(False) _CONFIG.clear() _SINGLETONS.clear() if clear_constants: _CONSTANTS.clear() else: saved_constants = _CONSTANTS.copy() _CONSTANTS.clear() # Clear then redefine constants (re-adding bindings). for name, value in six.iteritems(saved_constants): constant(name, value) _IMPORTED_MODULES.clear() _OPERATIVE_CONFIG.clear()
211,052
Returns True if `arg_name` might be a valid parameter for `fn_or_cls`. Specifically, this means that `fn_or_cls` either has a parameter named `arg_name`, or has a `**kwargs` parameter. Args: fn_or_cls: The function or class to check. arg_name: The name fo the parameter. Returns: Whether `arg_name` might be a valid argument of `fn`.
def _might_have_parameter(fn_or_cls, arg_name): if inspect.isclass(fn_or_cls): fn = _find_class_construction_fn(fn_or_cls) else: fn = fn_or_cls while hasattr(fn, '__wrapped__'): fn = fn.__wrapped__ arg_spec = _get_cached_arg_spec(fn) if six.PY3: if arg_spec.varkw: return True return arg_name in arg_spec.args or arg_name in arg_spec.kwonlyargs else: if arg_spec.keywords: return True return arg_name in arg_spec.args
211,055
Retrieve all default values for configurable parameters of a function. Any parameters included in the supplied blacklist, or not included in the supplied whitelist, are excluded. Args: fn: The function whose parameter values should be retrieved. whitelist: The whitelist (or `None`) associated with the function. blacklist: The blacklist (or `None`) associated with the function. Returns: A dictionary mapping configurable parameter names to their default values.
def _get_default_configurable_parameter_values(fn, whitelist, blacklist): arg_vals = _ARG_DEFAULTS_CACHE.get(fn) if arg_vals is not None: return arg_vals.copy() # First, grab any default values not captured in the kwargs var. arg_spec = _get_cached_arg_spec(fn) if arg_spec.defaults: default_kwarg_names = arg_spec.args[-len(arg_spec.defaults):] arg_vals = dict(zip(default_kwarg_names, arg_spec.defaults)) else: arg_vals = {} if six.PY3 and arg_spec.kwonlydefaults: arg_vals.update(arg_spec.kwonlydefaults) # Now, eliminate keywords that are blacklisted, or aren't whitelisted (if # there's a whitelist), or aren't representable as a literal value. for k in list(six.iterkeys(arg_vals)): whitelist_fail = whitelist and k not in whitelist blacklist_fail = blacklist and k in blacklist representable = _is_literally_representable(arg_vals[k]) if whitelist_fail or blacklist_fail or not representable: del arg_vals[k] _ARG_DEFAULTS_CACHE[fn] = arg_vals return arg_vals.copy()
211,060
Parse a Gin config file. Args: config_file: The path to a Gin config file. skip_unknown: A boolean indicating whether unknown configurables and imports should be skipped instead of causing errors (alternatively a list of configurable names to skip if unknown). See `parse_config` for additional details. Raises: IOError: If `config_file` cannot be read using any register file reader.
def parse_config_file(config_file, skip_unknown=False): for reader, existence_check in _FILE_READERS: if existence_check(config_file): with reader(config_file) as f: parse_config(f, skip_unknown=skip_unknown) return raise IOError('Unable to open file: {}'.format(config_file))
211,068
Provides an iterator over references in the given config. Args: config: A dictionary mapping scoped configurable names to argument bindings. to: If supplied, only yield references whose `configurable_fn` matches `to`. Yields: `ConfigurableReference` instances within `config`, maybe restricted to those matching the `to` parameter if it is supplied.
def iterate_references(config, to=None): for value in _iterate_flattened_values(config): if isinstance(value, ConfigurableReference): if to is None or value.configurable.fn_or_cls == to: yield value
211,073
Decorator for an enum class that generates Gin constants from values. Generated constants have format `module.ClassName.ENUM_VALUE`. The module name is optional when using the constant. Args: cls: Class type. module: The module to associate with the constants, to help handle naming collisions. If `None`, `cls.__module__` will be used. Returns: Class type (identity function). Raises: TypeError: When applied to a non-enum class.
def constants_from_enum(cls, module=None): if not issubclass(cls, enum.Enum): raise TypeError("Class '{}' is not subclass of enum.".format(cls.__name__)) if module is None: module = cls.__module__ for value in cls: constant('{}.{}'.format(module, str(value)), value) return cls
211,077
Associates a value with `complete_selector`. This function also performs some additional bookkeeping to facilitate partial matching of selectors. Args: complete_selector: The (complete) selector to associate a value with. value: The value to associate. Raises: ValueError: If `complete_selector` isn't a string consisting of valid Python identifiers separated by periods.
def __setitem__(self, complete_selector, value): if not SELECTOR_RE.match(complete_selector): raise ValueError("Invalid selector '{}'.".format(complete_selector)) selector_components = complete_selector.split('.') node = self._selector_tree # Iterate backwards over the components of the selector. for component in selector_components[::-1]: node = node.setdefault(component, {}) node[_TERMINAL_KEY] = complete_selector self._selector_map[complete_selector] = value
211,088
Returns the minimal selector that uniquely matches `complete_selector`. Args: complete_selector: A complete selector stored in the map. Returns: A partial selector that unambiguously matches `complete_selector`. Raises: KeyError: If `complete_selector` is not in the map.
def minimal_selector(self, complete_selector): if complete_selector not in self._selector_map: raise KeyError("No value with selector '{}'.".format(complete_selector)) selector_components = complete_selector.split('.') node = self._selector_tree start = None for i, component in enumerate(reversed(selector_components)): if len(node) == 1: if start is None: start = -i # Negative index, since we're iterating in reverse. else: start = None node = node[component] if len(node) > 1: # The selector is a substring of another selector. return complete_selector return '.'.join(selector_components[start:])
211,092
Returns a list of the generated/transformed columns. Arguments: X_original: df the original (input) DataFrame. X_transformed: df the transformed (current) DataFrame. to_transform: [str] a list of columns that were transformed (as in the original DataFrame), commonly self.cols. Output: a list of columns that were transformed (as in the current DataFrame).
def get_generated_cols(X_original, X_transformed, to_transform): original_cols = list(X_original.columns) if len(to_transform) > 0: [original_cols.remove(c) for c in to_transform] current_cols = list(X_transformed.columns) if len(original_cols) > 0: [current_cols.remove(c) for c in original_cols] return current_cols
212,757
Download file to local Args: - url(string): url request path - target_path(string): download destination
def http_download(url, target_path): r = requests.get(url, stream=True) with open(target_path, 'wb') as f: # shutil.copyfileobj(resp, f) for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) return target_path
212,944
Take ios screenshot Args: - filename(string): optional Returns: PIL.Image object
def screenshot(self, filename=None): image = self.d.screenshot() if self.rotation: method = getattr(Image, 'ROTATE_{}'.format(self.rotation*90)) image = image.transpose(method) if filename: image.save(filename) return image
212,971
Simulate click operation Args: - x (int): position of x - y (int): position of y Returns: self
def click(self, x, y): self._run_nowait('target.tap({x: %d, y: %d})' % (x/self._scale, y/self._scale)) return self
212,972
Simulate click within window screen. Args: x, y: int, pixel distance from window (left, top) as origin Returns: None
def click(self, x, y): print 'click at', x, y self._input_left_mouse(x, y)
212,993
Connect to a device, and return its object Args: platform: string one of <android|ios|windows> Returns: None Raises: SyntaxError, EnvironmentError
def connect(*args, **kwargs): connect_url = _connect_url(*args) platform = kwargs.pop('platform', _detect_platform(connect_url)) cls = None if platform == 'android': os.environ['JSONRPC_TIMEOUT'] = "60" # default is 90s which is too long. devcls = __import__('atx.drivers.android') cls = devcls.drivers.android.AndroidDevice elif platform == 'windows': devcls = __import__('atx.drivers.windows') cls = devcls.drivers.windows.WindowsDevice elif platform == 'ios': devcls = __import__('atx.drivers.ios_webdriveragent') cls = devcls.drivers.ios_webdriveragent.IOSDevice elif platform == 'webdriver': devcls = __import__('atx.drivers.webdriver') cls = devcls.drivers.webdriver.WebDriver elif platform == 'dummy': # for py.test use devcls = __import__('atx.drivers.dummy') cls = devcls.drivers.dummy.DummyDevice if cls is None: raise SyntaxError('Platform: %s not exists' % platform) c = cls(connect_url, **kwargs) c.platform = platform return c
213,026
Start app by bundle_id Args: - bundle_id(string): ex com.netease.my Returns: idevicedebug subprocess instance
def start_app(self, bundle_id): idevicedebug = must_look_exec('idevicedebug') # run in background kwargs = {'stdout': subprocess.PIPE, 'stderr': subprocess.PIPE} if sys.platform != 'darwin': kwargs['close_fds'] = True return subprocess.Popen([idevicedebug, "--udid", self.udid, 'run', bundle_id], **kwargs)
213,058
Delay some seconds Args: secs: float seconds Returns: self
def delay(self, secs): secs = int(secs) for i in reversed(range(secs)): sys.stdout.write('\r') sys.stdout.write("sleep %ds, left %2ds" % (secs, i+1)) sys.stdout.flush() time.sleep(1) sys.stdout.write("\n") return self
213,065
Set region of the screen area Args: bounds: Bounds object Returns: A new AndroidDevice object Raises: TypeError
def region(self, bounds): if not isinstance(bounds, Bounds): raise TypeError("region param bounds must be isinstance of Bounds") _d = copy.copy(self) _d._bounds = bounds return _d
213,073
Take screen snapshot Args: - filename: filename where save to, optional Returns: PIL.Image object Raises: TypeError, IOError
def screenshot(self, filename=None): if self.__keep_screen: return self.__last_screen try: screen = self._take_screenshot() except IOError: # try taks screenshot again log.warn("warning, screenshot failed [2/1], retry again") screen = self._take_screenshot() self.__last_screen = screen if filename: save_dir = os.path.dirname(filename) or '.' if not os.path.exists(save_dir): os.makedirs(save_dir) screen.save(filename) return screen
213,076
Return immediately if no image found Args: - pattern (str or Pattern): filename or an opencv image object. - action (str): click or long_click Returns: Click point or None
def click_nowait(self, pattern, action='click', desc=None, **match_kwargs): point = self.match(pattern, **match_kwargs) if not point or not point.matched: return None func = getattr(self, action) func(*point.pos) return point
213,078
Unix style output, already replace \r\n to \n Args: - timeout (float): timeout for a command exec
def run_cmd(self, *args, **kwargs): timeout = kwargs.pop('timeout', None) p = self.raw_cmd(*args, **kwargs) return p.communicate(timeout=timeout)[0].decode('utf-8').replace('\r\n', '\n')
213,104
Uninstall package Args: - package_name(string): package name ex: com.example.demo - keep_data(bool): keep the data and cache directories
def app_uninstall(self, package_name, keep_data=False): if keep_data: return self.run_cmd('uninstall', '-k', package_name) else: return self.run_cmd('uninstall', package_name)
213,107
Take device screenshot Args: - filename(string): optional, save int filename - scale(float): scale size - method(string): one of minicap,screencap Return: PIL.Image
def screenshot(self, filename=None, scale=1.0, method=None): image = None method = method or self._screenshot_method if method == 'minicap': try: image = self._adb_minicap(scale) except Exception as e: logger.warn("use minicap failed, fallback to screencap. error detail: %s", e) self._screenshot_method = 'screencap' return self.screenshot(filename=filename, scale=scale) elif method == 'screencap': image = self._adb_screencap(scale) else: raise RuntimeError("No such method(%s)" % method) if filename: image.save(filename) return image
213,113
Initial AndroidDevice Args: serial (str): serial or wlan ip Returns: AndroidDevice object Raises: EnvironmentError
def __init__(self, serial=None, **kwargs): self.__display = None serial = serial or getenvs('ATX_ADB_SERIALNO', 'ANDROID_SERIAL') self._host = kwargs.get('host') or getenvs( 'ATX_ADB_HOST', 'ANDROID_ADB_SERVER_HOST') or '127.0.0.1' self._port = int(kwargs.get('port') or getenvs( 'ATX_ADB_PORT', 'ANDROID_ADB_SERVER_PORT') or 5037) self._adb_client = adbkit.Client(self._host, self._port) self._adb_device = self._adb_client.device(serial) # self._adb_shell_timeout = 30.0 # max adb shell exec time # uiautomator2 self._uiauto = uiautomator2.connect_usb(serial) if not self._uiauto.alive: self._uiauto.healthcheck(unlock=False) DeviceMixin.__init__(self) self._randid = base.id_generator(5) self.screen_rotation = None # inherts from atx-uiautomator self.swipe = self._uiauto.swipe self.drag = self._uiauto.drag self.press = self._uiauto.press self.long_click = self._uiauto.long_click self.dump = self._uiauto.dump_hierarchy
213,173
Forward device port to local Args: device_port: port inside device local_port: port on PC, if this value is None, a port will random pick one. Returns: tuple, (host, local_port)
def forward(self, device_port, local_port=None): port = self._adb_device.forward(device_port, local_port) return (self._host, port)
213,174
Run adb command, for example: adb(['pull', '/data/local/tmp/a.png']) Args: command: string or list of string Returns: command output
def adb_cmd(self, command, **kwargs): kwargs['timeout'] = kwargs.get('timeout', self._adb_shell_timeout) if isinstance(command, list) or isinstance(command, tuple): return self.adb_device.run_cmd(*list(command), **kwargs) return self.adb_device.run_cmd(command, **kwargs)
213,179
Stop application Args: package_name: string like com.example.app1 clear: bool, remove user data Returns: None
def stop_app(self, package_name, clear=False): if clear: self.adb_shell(['pm', 'clear', package_name]) else: self.adb_shell(['am', 'force-stop', package_name]) return self
213,182
Mark a point Args: - img(numpy): the source image - x, y(int): position
def mark_point(img, x, y): overlay = img.copy() output = img.copy() alpha = 0.5 radius = max(5, min(img.shape[:2])//15) center = int(x), int(y) color = (0, 0, 255) cv2.circle(overlay, center, radius, color, -1) cv2.addWeighted(overlay, alpha, output, 1-alpha, 0, output) return output
213,195
Start an application Args: - bundle_id: (string) apk bundle ID Returns: WDA session object
def start_app(self, bundle_id): # if self._session is not None: # self.stop_app() self._bundle_id = bundle_id self._session = self._wda.session(bundle_id) return self._session
213,199
Simulate click operation Args: x, y(int): position
def do_tap(self, x, y): rx, ry = x/self.scale, y/self.scale self.session.tap(rx, ry)
213,205
Simulate swipe operation Args: x1, y1(int): from position x2, y2(int): to position duration(float): swipe duration, unit seconds
def swipe(self, x1, y1, x2, y2, duration=0.5): scale = self.scale x1, y1, x2, y2 = x1/scale, y1/scale, x2/scale, y2/scale self.session.swipe(x1, y1, x2, y2, duration)
213,206
Take a screenshot, also called by Mixin Args: - filename(string): file name to save Returns: PIL Image object
def _take_screenshot(self): raw_png = self._wda.screenshot() img = Image.open(BytesIO(raw_png)) return img
213,207
This is different from _save_screenshot. The return value maybe None or the screenshot path Args: screenshot: bool or PIL image
def _take_screenshot(self, screenshot=False, name_prefix='unknown'): if isinstance(screenshot, bool): if not screenshot: return return self._save_screenshot(name_prefix=name_prefix) if isinstance(screenshot, Image.Image): return self._save_screenshot(screen=screenshot, name_prefix=name_prefix) raise TypeError("invalid type for func _take_screenshot: "+ type(screenshot))
213,281
Check v1 is equals v2, and take screenshot if not equals Args: - desc (str): some description - safe (bool): will omit AssertionError if set to True - screenshot: can be type <None|True|False|PIL.Image>
def assert_equal(self, v1, v2, **kwargs):#, desc=None, screenshot=False, safe=False): is_success = v1 == v2 if is_success: message = "assert equal success, %s == %s" %(v1, v2) else: message = '%s not equal %s' % (v1, v2) kwargs.update({ 'message': message, 'success': is_success, }) self._add_assert(**kwargs)
213,284
Assert if image exists Args: - pattern: image filename # not support pattern for now - timeout (float): seconds - safe (bool): not raise assert error even throung failed.
def assert_image_exists(self, pattern, timeout=20.0, **kwargs): pattern = self.d.pattern_open(pattern) match_kwargs = kwargs.copy() match_kwargs.pop('safe', None) match_kwargs.update({ 'timeout': timeout, 'safe': True, }) res = self.d.wait(pattern, **match_kwargs) is_success = res is not None message = 'assert image exists' if res: x, y = res.pos kwargs['position'] = {'x': x, 'y': y} message = 'image exists\npos %s\nconfidence=%.2f\nmethod=%s' % (res.pos, res.confidence, res.method) else: res = self.d.match(pattern) if res is None: message = 'Image not found' else: th = kwargs.get('threshold') or pattern.threshold or self.image_match_threshold message = 'Matched: %s\nPosition: %s\nConfidence: %.2f\nThreshold: %.2f' % ( res.matched, res.pos, res.confidence, th) kwargs['target'] = self._save_screenshot(pattern, name_prefix='target') kwargs['screenshot'] = self.last_screenshot kwargs.update({ 'action': 'assert_image_exists', 'message': message, 'success': is_success, }) self._add_assert(**kwargs)
213,285
For Android & IOS Args: - ui: need have property "exists" - desc (str): description - safe (bool): will omit AssertionError if set to True - screenshot: can be type <None|True|False|PIL.Image> - platform (str, default:android): android | ios
def assert_ui_exists(self, ui, **kwargs): is_success = ui.exists if is_success: if kwargs.get('screenshot') is not None: if self.d.platform == 'android': bounds = ui.info['bounds'] # For android only. kwargs['position'] = { 'x': (bounds['left']+bounds['right'])//2, 'y': (bounds['top']+bounds['bottom'])//2, } elif self.d.platform == 'ios': bounds = ui.bounds # For iOS only. kwargs['position'] = { 'x': self.d.scale*(bounds.x+bounds.width//2), 'y': self.d.scale*(bounds.y+bounds.height//2), } message = 'UI exists' else: message = 'UI not exists' kwargs.update({ 'message': message, 'success': is_success, }) self._add_assert(**kwargs)
213,286
Initializer. Args: mtf_graph: a mtf.Graph. mesh_shape: an mtf.Shape. mtf_outputs: an optional iterable of mtf.Tensor, representing the outputs of the computation.
def __init__(self, mtf_graph, mesh_shape, mtf_outputs=()): self.mtf_graph = mtf_graph self.mesh_shape = mesh_shape self.mtf_outputs = mtf_outputs self._layout_validator = None # valid_layouts.LayoutValidator self._graph_interface = None
213,444
Configurable layer stack. Args: layers: a list of subclasses of TransformerLayer num_layers: an integer Returns: a LayerStack
def make_layer_stack(layers=gin.REQUIRED, num_layers=6): return LayerStack([cls() for cls in layers] * num_layers)
213,448
Get the next n recurrent states. Called by layers in "incremental" mode. Args: n: an integer Returns: a list of n Tensors
def get_states(self, n): return self.states[len(self.new_states):len(self.new_states) + n]
213,451
Compute tokenwise (elementwise) accuracy. Args: labels: ground-truth labels, shape=(batch, seq_length) outputs: predicted tokens, shape=(batch, seq_length) Returns: Two ops, one for getting the current average accuracy and another for updating the running average estimate.
def token_accuracy(labels, outputs): weights = tf.to_float(tf.not_equal(labels, 0)) return tf.metrics.accuracy(labels, outputs, weights=weights)
213,454
Compute the sequence-level accuracy. A sequence is only considered correct if all of its entries were predicted correctly. Args: labels: ground-truth labels, shape=(batch, packed_seq_length) outputs: predicted tokens, shape=(batch, seq_length) Returns: Two ops, one for getting the current average accuracy and another for updating the running average estimate.
def sequence_accuracy(labels, outputs): # A sequence is correct if all of the non-padded entries are correct all_correct = tf.reduce_all( tf.logical_or(tf.equal(labels, outputs), tf.equal(labels, 0)), axis=-1 ) return tf.metrics.mean(all_correct)
213,455
Initializer. Args: graph: either a tf.Graph or mtf.Graph. canonical_device: optional string, the name of the canonical device for IsTensoronCanonicalDevice.
def __init__(self, graph, canonical_device=None): self._graph = graph self.canonical_device = canonical_device self._operations = self._initialize_operations() self._operation_name_to_id = self._initialize_operation_name_to_id() self._tensor_name_to_ids = self._initialize_tensor_name_to_ids() self._final_tensors = set()
213,456
Generates the names of all input tensors of an operation. Args: operation_name: a string, the name of an operation in the graph. Yields: a string, the name of an input tensor.
def get_operation_input_names(self, operation_name): for input_tensor in self._name_to_operation(operation_name).inputs: yield input_tensor.name
213,457
Generates the names of all output tensors of an operation. Args: operation_name: a string, the name of an operation in the graph. Yields: a string, the name of an output tensor.
def get_operation_output_names(self, operation_name): for output_tensor in self._name_to_operation(operation_name).outputs: yield output_tensor.name
213,458
The tf.TensorShape of a tensor. Args: tensor_name: string, the name of a tensor in the graph. Returns: a tf.TensorShape
def get_tensor_shape(self, tensor_name): tensor = self._name_to_tensor(tensor_name) if isinstance(tensor, mtf.Tensor): return tf.TensorShape(tensor.shape.to_integer_list) else: # tf.Tensor return tensor.shape
213,459
The number of entries in a tensor. If partial_layout is specified, then mesh_dimension_to_size must also be. In this case, the number of entries on a single device is returned. Args: tensor_name: a string, name of a tensor in the graph. partial_layout: an optional {string: string}, from MTF dimension name to mesh dimension name. mesh_dimension_to_size: an optional {string: int}, from mesh dimension name to size. Returns: an integer
def get_tensor_num_entries(self, tensor_name, partial_layout=None, mesh_dimension_to_size=None): shape = self.get_tensor_shape(tensor_name) # We don't have to worry about divisiblity issues because Mesh TensorFlow # only allows evenly divisible assignments. num_entries = 1 for dim in shape.dims: num_entries = num_entries * dim.value if not partial_layout: return num_entries for mtf_dimension_name in self.get_tensor_mtf_dimension_names(tensor_name): if mtf_dimension_name not in partial_layout: continue mesh_dimension_name = partial_layout[mtf_dimension_name] mesh_dimension_size = mesh_dimension_to_size[mesh_dimension_name] num_entries = int(math.ceil(num_entries / mesh_dimension_size)) return num_entries
213,460
The size of a tensor in bytes. If partial_layout is specified, then mesh_dimension_to_size must also be. In this case, the size on a single device is returned. Args: tensor_name: a string, name of a tensor in the graph. partial_layout: an optional {string: string}, from MTF dimension name to mesh dimension name. mesh_dimension_to_size: an optional {string: int}, from mesh dimension name to size. Returns: an integer
def get_tensor_size(self, tensor_name, partial_layout=None, mesh_dimension_to_size=None): return (self.get_tensor_dtype(tensor_name).size * self.get_tensor_num_entries(tensor_name, partial_layout, mesh_dimension_to_size))
213,461
The device of a tensor. Note that only tf tensors have device assignments. Args: tensor_name: a string, name of a tensor in the graph. Returns: a string or None, representing the device name.
def get_tensor_device(self, tensor_name): tensor = self._name_to_tensor(tensor_name) if isinstance(tensor, tf.Tensor): return tensor.device else: # mtf.Tensor return None
213,462
Whether the tensor is on the first (canonical) device. Tensors not assigned to a device are assumed to be on all devices, including the canonical device. Args: tensor_name: a string, name of a tensor in the graph. Returns: a boolean indicating whether the tensor is on the first device.
def is_tensor_on_canonical_device(self, tensor_name): device = self.get_tensor_device(tensor_name) return not device or device == self.canonical_device
213,463
The device of an operation. Note that only tf operations have device assignments. Args: operation_name: a string, name of an operation in the graph. Returns: a string or None, representing the device name.
def get_operation_device(self, operation_name): operation = self._name_to_operation(operation_name) if isinstance(operation, tf.Operation): return operation.device else: # mtf.Operation return None
213,464
The Mesh TensorFlow dimensions associated with a tensor. Args: tensor_name: a string, name of a tensor in the graph. Returns: a [string], the names of Mesh TensorFlow dimensions.
def get_tensor_mtf_dimension_names(self, tensor_name): tensor = self._name_to_tensor(tensor_name) if isinstance(tensor, mtf.Tensor): return tensor.shape.dimension_names else: # tf.Tensor return []
213,465
The Mesh TensorFlow dimensions associated with an operation. Args: operation_name: a string, name of an operation in the graph. Returns: a set(string), the names of Mesh TensorFlow dimensions.
def get_operation_mtf_dimension_names(self, operation_name): mtf_dimension_names = set() for tensor_name in self.get_operation_input_names(operation_name): mtf_dimension_names.update(self.get_tensor_mtf_dimension_names( tensor_name)) for tensor_name in self.get_operation_output_names(operation_name): mtf_dimension_names.update(self.get_tensor_mtf_dimension_names( tensor_name)) return mtf_dimension_names
213,466
Denotes a tensor as a final output of the computation. Args: tensor_name: a string, name of a tensor in the graph.
def set_tensor_final(self, tensor_name): tensor = self._name_to_tensor(tensor_name) self._final_tensors.add(tensor)
213,467
Whether a tensor is a final output of the computation. Args: tensor_name: a string, name of a tensor in the graph. Returns: a boolean indicating whether the tensor was a final output.
def is_tensor_final(self, tensor_name): tensor = self._name_to_tensor(tensor_name) return tensor in self._final_tensors
213,468
The tensor with the given name. Args: tensor_name: a string, name of a tensor in the graph. Returns: a tf.Tensor or mtf.Tensor
def _name_to_tensor(self, tensor_name): id1, id2 = self._tensor_name_to_ids[tensor_name] return self._operations[id1].outputs[id2]
213,474
Layer normalization over dimension dim. Args: x: a mtf.Tensor whose shape contains dim. dim: a mtf.Dimension epsilon: a floating point number name: a string. variable scope. Returns: a mtf.Tensor with same shape as x.
def layer_norm(x, dim, epsilon=1e-6, name="layer_prepostprocess"): with tf.variable_scope(name + "/layer_norm"): scale = mtf.get_variable( x.mesh, "layer_norm_scale", mtf.Shape([dim]), initializer=tf.ones_initializer(), activation_dtype=x.dtype) bias = mtf.get_variable( x.mesh, "layer_norm_bias", mtf.Shape([dim]), initializer=tf.zeros_initializer(), activation_dtype=x.dtype) reduced_shape = x.shape - dim mean = mtf.reduce_mean(x, output_shape=reduced_shape) variance = mtf.reduce_mean(mtf.square(x - mean), output_shape=reduced_shape) norm_x = (x - mean) * mtf.rsqrt(variance + epsilon) return norm_x * scale + bias
213,477
Batch normalization. Args: x: a mtf.Tensor whose shape contains [batch_dim, ..., dim] is_training: a boolean, whether mode is training. momentum: a floating point number, specifying batch norm decay value. epsilon: a floating point number. init_zero: a boolean, whether to initialize scale with 0's or 1's. name: a string. variable scope. Returns: a mtf.Tensor with same shape as x.
def batch_norm(x, is_training, momentum, epsilon=1e-9, init_zero=False, name=None): with tf.variable_scope(name, default_name="batch_norm", values=[x]): if init_zero: gamma_initializer = tf.zeros_initializer() else: gamma_initializer = tf.ones_initializer() norm_dim = x.shape.dims[0:3] reduced_shape = x.shape - norm_dim scale = mtf.get_variable( x.mesh, "batch_norm_scale", reduced_shape, initializer=gamma_initializer, activation_dtype=x.dtype) bias = mtf.get_variable( x.mesh, "batch_norm_bias", reduced_shape, initializer=tf.zeros_initializer(), activation_dtype=x.dtype) moving_mean = mtf.get_variable( x.mesh, "moving_mean", reduced_shape, initializer=tf.random_normal_initializer(stddev=1.0), activation_dtype=x.dtype, trainable=False) moving_variance = mtf.get_variable( x.mesh, "moving_variance", reduced_shape, initializer=tf.ones_initializer(), activation_dtype=x.dtype, trainable=False) # At training time, calculate mean and variance and normalize across batch # dim. if is_training: mean = mtf.reduce_mean(x, output_shape=reduced_shape) variance = mtf.reduce_mean( mtf.square(x - mean), output_shape=reduced_shape) norm_x = (x - mean) * mtf.rsqrt(variance + epsilon) # Update running mean and running variance. moving_mean = mtf.assign( moving_mean, momentum * moving_mean + (1-momentum) * mean) moving_variance = mtf.assign( moving_variance, momentum * moving_variance + (1 - momentum) * variance) else: # At eval and test time, use the running mean and variance. norm_x = (x - moving_mean) * mtf.rsqrt(moving_variance + epsilon) return (norm_x * scale) + bias
213,478
Sigmoid cross-entropy loss. Args: logits: a mtf.Tensor targets: a mtf.Tensor with the same shape as logits Returns: a mtf.Tensor whose shape is equal to logits.shape Raises: ValueError: if the shapes do not match.
def sigmoid_cross_entropy_with_logits(logits, targets): if logits.shape != targets.shape: raise ValueError( "logits shape must equal targets shape" "logits=%s targets=%s" % (logits.to_string, targets.to_string)) x = logits z = targets return mtf.relu(x) - x * z + mtf.log(1 + mtf.exp(-mtf.abs(x)))
213,480
Hidden layer with ReLU activation followed by linear projection. The output has the same number of channels as the input. Args: x: a mtf.Tensor hidden_channels: a mtf.Dimension - channels in the hidden layer dropout: an optional float dropout_broadcast_dims: an optional list of mtf.Dimension master_dtype: a tf.dtype slice_dtype: a tf.dtype name: an optional string Returns: a mtf.Tensor with the same shape as x.
def dense_relu_dense(x, hidden_channels, dropout=0.0, dropout_broadcast_dims=None, master_dtype=tf.float32, slice_dtype=tf.float32, name=None): with tf.variable_scope(name, default_name="dense_relu_dense"): io_channels = x.shape.dims[-1] h = dense(x, hidden_channels, use_bias=False, activation=mtf.relu, master_dtype=master_dtype, slice_dtype=slice_dtype, name="wi") if dropout != 0.0: h = mtf.dropout(h, 1.0 - dropout, noise_shape=h.shape - dropout_broadcast_dims) return dense(h, io_channels, use_bias=False, activation=None, master_dtype=master_dtype, slice_dtype=slice_dtype, name="wo")
213,482
Bias for encoder-decoder attention. Args: inputs: a mtf.Tensor with shape [..., length_dim] dtype: a tf.dtype Returns: a mtf.Tensor with shape [..., memory_length_dim]
def attention_mask_ignore_padding(inputs, dtype=tf.float32): inputs = rename_length_to_memory_length(inputs) return mtf.cast(mtf.equal(inputs, 0), dtype) * -1e9
213,494
Bias for self-attention where attention to the right is disallowed. Args: query_pos: a mtf.Tensor with shape [..., length_dim] dtype: a tf.dtype Returns: a mtf.Tensor with shape [..., length_dim, memory_length_dim]
def attention_mask_autoregressive(query_pos, dtype=tf.float32): memory_pos = rename_length_to_memory_length(query_pos) return mtf.cast(mtf.less(query_pos, memory_pos), dtype) * -1e9
213,495
Bias for attention where attention between segments is disallowed. Args: query_segment: a mtf.Tensor with shape [..., length_dim] memory_segment: a mtf.Tensor with shape [..., memory_length_dim] dtype: a tf.dtype Returns: a mtf.Tensor with shape [..., length_dim, memory_length_dim]
def attention_mask_same_segment( query_segment, memory_segment=None, dtype=tf.float32): memory_segment = rename_length_to_memory_length( memory_segment or query_segment) return mtf.cast(mtf.not_equal(query_segment, memory_segment), dtype) * -1e9
213,496
Multiply values by a random number between 1-epsilon and 1+epsilon. Makes models more resilient to rounding errors introduced by bfloat16. This seems particularly important for logits. Args: x: a mtf.Tensor epsilon: a floating point value Returns: a mtf.Tensor with the same type and shape as x.
def multiplicative_jitter(x, epsilon=1e-2): if epsilon == 0: return x return x * mtf.random_uniform( x.mesh, x.shape, minval=1.0 - epsilon, maxval=1.0+epsilon, dtype=x.dtype)
213,499
Compress by taking group means. Args: x: a Tensor dim: a dimension in x.shape compression_factor: an integer Returns: a Tensor
def compress_mean(x, dim, compression_factor): dims = x.shape.dims pos = dims.index(dim) compressed_dim = mtf.Dimension(dim.name, dim.size // compression_factor) compression_factor_dim = mtf.Dimension( "compression_factor", compression_factor) new_shape = ( dims[:pos] + [compressed_dim, compression_factor_dim] + dims[pos + 1:]) x = mtf.reshape(x, new_shape) x = mtf.reduce_mean(x, reduced_dim=compression_factor_dim) return x
213,501
Generate a dictionary of metric name to metric function. Args: metric_names: list of strings in the format "prefix/metric_function_name". metric_function_name should refer to a function name in metrics.py. The prefix will be included in the key in the returned dict. labels: a tensor where batch is the first dimension. outputs: a tensor of model predictions, same dimensionality as labels. Returns: metric_fns: dict of metric functions keyed by their name.
def get_metric_fns(metric_names, labels, outputs): metric_fns = {} for metric_name in metric_names: metric_fn_name = metric_name.split("/")[-1] if hasattr(metrics, metric_fn_name): metric_fn = getattr(metrics, metric_fn_name) metric_fns[metric_name] = metric_fn(labels, outputs) else: raise ValueError("Metric {} is not implemented".format(metric_fn_name)) return metric_fns
213,505
Computes a schedule to minimize peak memory. Args: graph: an mtf.auto_mtf.graph_interface.GraphInterface. scheduler_alg: a string, one of 'NAIVE' or 'LIST' Returns: an iterable of integers representing the schedule.
def minimize_peak_memory(graph, scheduler_alg): if scheduler_alg == 'NAIVE': return _minimize_peak_memory_naive(graph) elif scheduler_alg == 'LIST': return _minimize_peak_memory_list(graph) else: raise NotImplementedError('{} is not a scheduler algorithm. It should be ' 'one of NAIVE or LIST.' .format(scheduler_alg))
213,506
Computes schedule according to the greedy list heuristic. Greedy list heuristic: schedule the operation which results in the most bytes of memory being (immediately) freed. TODO(joshuawang): Experiment with tiebreaking by preferring more successors. Args: graph: an mtf.auto_mtf.graph_interface.GraphInterface. Returns: an iterable of integers representing the schedule.
def _minimize_peak_memory_list(graph): schedule = [] bytes_freed = {} # {operation_name: bytes freed} users_of = collections.defaultdict(set) # {tensor_name: set(operation_name)} in_degree = collections.defaultdict(int) # {operation_name: in degree} operation_id = {} # {operation_name: id} # We want an updatable priority queue, so we use the following workaround: # docs.python.org/2/library/heapq.html#priority-queue-implementation-notes priority_queue = [] # (negative bytes freed, operation name) # Set up the (greedy) topological sort. for i, operation_name in enumerate(graph.get_all_operation_names()): operation_id[operation_name] = i for input_name in graph.get_operation_input_names(operation_name): # Note that in _HybridGraphInterface, an operation may use a tensor twice, # but we deduplicate (with respect to in_degree) so that we can later use # users_of to decrement in_degree. if operation_name in users_of[input_name]: continue users_of[input_name].add(operation_name) in_degree[operation_name] += 1 for operation_name in graph.get_all_operation_names(): bytes_freed[operation_name] = 0 # For each input, this operation frees memory if it is the final consumer. for input_name in graph.get_operation_input_names(operation_name): if len(users_of[input_name]) == 1 and not graph.is_tensor_final( input_name): bytes_freed[operation_name] += graph.get_tensor_size(input_name) # For each output, this operation will require additional bytes of memory # (hence negative bytes freed). for output_name in graph.get_operation_output_names(operation_name): # If the output is used (or is final), then it eats memory. if users_of[output_name] or graph.is_tensor_final(output_name): bytes_freed[operation_name] -= graph.get_tensor_size(output_name) for operation_name in graph.get_all_operation_names(): if in_degree[operation_name] == 0: heapq.heappush(priority_queue, (-bytes_freed[operation_name], operation_name)) # Do the (greedy) topological sort. while priority_queue: neg_bytes_freed, operation_name = heapq.heappop(priority_queue) if bytes_freed[operation_name] != -neg_bytes_freed: continue schedule.append(operation_id[operation_name]) bytes_freed[operation_name] = None for output_name in graph.get_operation_output_names(operation_name): for other_operation_name in users_of[output_name]: in_degree[other_operation_name] -= 1 if in_degree[other_operation_name] == 0: heapq.heappush(priority_queue, (-bytes_freed[other_operation_name], other_operation_name)) for input_name in graph.get_operation_input_names(operation_name): if operation_name not in users_of[input_name]: # Used twice by this operation and hence already removed. continue users_of[input_name].remove(operation_name) if len(users_of[input_name]) != 1 or graph.is_tensor_final(output_name): continue (other_operation_name,) = users_of[input_name] bytes_freed[other_operation_name] += graph.get_tensor_size( input_name) if in_degree[other_operation_name] > 0: continue # Push another copy into the priority queue with our updated value. # The original copy will be ignored since it does not match bytes_freed. heapq.heappush(priority_queue, (-bytes_freed[other_operation_name], other_operation_name)) return schedule
213,507
Compute layout rules based on a computational graph and mesh shape. Args: mtf_graph: a mtf.Graph. mesh_shape: an mtf.Shape, str, or listlike of mtf.Dimension. mtf_outputs: an optional iterable of mtf.Tensor, representing the outputs of the computation. Returns: a mtf.LayoutRules
def layout(mtf_graph, mesh_shape, mtf_outputs=()): mesh_shape = mtf.convert_to_shape(mesh_shape) estimator = memory_estimator.MemoryEstimator(mtf_graph, mesh_shape, mtf_outputs) optimizer = layout_optimizer.LayoutOptimizer(estimator) return mtf.convert_to_layout_rules(optimizer.solve())
213,508
Second-moment decay rate like Adam, subsuming the correction factor. Args: beta2: a float between 0 and 1 Returns: a scalar
def adafactor_decay_rate_adam(beta2): t = tf.cast(tf.train.get_or_create_global_step(), tf.float32) + 1.0 decay = beta2 * (1.0 - tf.pow(beta2, t - 1.0)) / (1.0 - tf.pow(beta2, t)) return decay
213,510
Create an Adafactor optimizer based on model hparams. Args: hparams: model hyperparameters lr: learning rate scalar. Returns: an AdafactorOptimizer Raises: ValueError: on illegal values
def adafactor_optimizer_from_hparams(hparams, lr): if hparams.optimizer_adafactor_decay_type == "Adam": decay_rate = adafactor_decay_rate_adam( hparams.optimizer_adafactor_beta2) elif hparams.optimizer_adafactor_decay_type == "pow": decay_rate = adafactor_decay_rate_pow( hparams.optimizer_adafactor_memory_exponent) else: raise ValueError("unknown optimizer_adafactor_decay_type") return AdafactorOptimizer( multiply_by_parameter_scale=( hparams.optimizer_adafactor_multiply_by_parameter_scale), learning_rate=lr, decay_rate=decay_rate, beta1=hparams.optimizer_adafactor_beta1, clipping_threshold=hparams.optimizer_adafactor_clipping_threshold, factored=hparams.optimizer_adafactor_factored)
213,511
Apply gradients to variables. Call this function externally instead of apply_grad(). This causes the operations to be combined, which is necessary for stacking variables see mtf.rewrite_stack_variables(). Args: grads: a list of Tensor variables: a list of Variables Returns: a list of Operations
def apply_grads(self, grads, variables): ops = [] for grad, var in zip(grads, variables): ops.extend(self.apply_grad(grad, var)) if not ops: return ops return variables[0].graph.combine_assignments(ops)
213,512
Should we use a factored second moment estimator. Based on the shape of the variable. If we factor the accumulator, then this function returns a list of two mtf.Dimensions to reduce over. We always pick the two largest dimensions. If there are not two dimensions of size >= min_dim_size_to_factor, then we do not factor. Args: shape: a Shape Returns: either a list of 2 Dimensions or None
def _factored_dims(self, shape): if not self._factored or shape.ndims < 2: return None sorted_dims = sorted(shape.dims, key=lambda d: -d.size) if sorted_dims[1].size < self._min_dim_size_to_factor: return None return sorted_dims[:2]
213,515
Initializer. Args: mtf_graph: an mtf.Graph, representing the Mesh TensorFlow computation of interest. mesh_shape: an mtf.Shape, representing the mesh of interest.
def __init__(self, mtf_graph, mesh_shape): self._splittable_mtf_dimension_names = self._initialize_splittable_dimensions( mtf_graph) self._mtf_dimension_name_to_size_gcd = ( self._initialize_mtf_dimension_name_to_size_gcd(mtf_graph)) self._mesh_dimension_name_to_size = self._initialize_mesh_dimension_name_to_size( mesh_shape)
213,517
Whether this MTF dimension may be assigned to this mesh dimension. Args: mtf_dimension_name: string, the name of a Mesh TensorFlow dimension. mesh_dimension_name: string, the name of a mesh dimension. Returns: A boolean indicating whether the assignment is valid.
def is_valid_assignment(self, mtf_dimension_name, mesh_dimension_name): return ((mtf_dimension_name in self._splittable_mtf_dimension_names) and (self._mtf_dimension_name_to_size_gcd[mtf_dimension_name] % self._mesh_dimension_name_to_size[mesh_dimension_name] == 0))
213,518
Initializer for self._splittable_mtf_dimension_names. Args: mtf_graph: an mtf.Graph. Returns: A set(string) of the names of Mesh TensorFlow dimensions that may be assigned in a layout.
def _initialize_splittable_dimensions(self, mtf_graph): all_mtf_dimension_names = set() # set(string) for mtf_operation in mtf_graph.operations: for mtf_tensor in mtf_operation.outputs: for mtf_dimension in mtf_tensor.shape.dims: if not re.match(r"_anonymous_\d*", mtf_dimension.name): all_mtf_dimension_names.add(mtf_dimension.name) unsplittable_mtf_dimension_names = set() # set(string) for mtf_operation in mtf_graph.operations: unsplittable_mtf_dimension_names.update(mtf_operation.unsplittable_dims) return all_mtf_dimension_names - unsplittable_mtf_dimension_names
213,519
Initializer for self._mtf_dimension_name_to_size_gcd. Args: mtf_graph: an mtf.Graph. Returns: A {string: int}, mapping the name of an MTF dimension to the greatest common divisor of all the sizes it has. All these sizes being evenly divisible by some x is equivalent to the GCD being divisible by x.
def _initialize_mtf_dimension_name_to_size_gcd(self, mtf_graph): mtf_dimension_name_to_size_gcd = {} for mtf_operation in mtf_graph.operations: for mtf_tensor in mtf_operation.outputs: for mtf_dimension in mtf_tensor.shape.dims: mtf_dimension_name_to_size_gcd[mtf_dimension.name] = fractions.gcd( mtf_dimension_name_to_size_gcd.get(mtf_dimension.name, mtf_dimension.size), mtf_dimension.size) return mtf_dimension_name_to_size_gcd
213,520
Initializer for self._mesh_dimension_name_to_size. Args: mesh_shape: an mtf.Shape. Returns: A {string: int} mapping mesh dimension names to their sizes.
def _initialize_mesh_dimension_name_to_size(self, mesh_shape): mesh_dimension_name_to_size = {} # {string: int} for mesh_dimension in mesh_shape.dims: mesh_dimension_name_to_size[mesh_dimension.name] = mesh_dimension.size return mesh_dimension_name_to_size
213,521
Compute the reduction of all Tensors and put the result everywhere. Performance-optimized for a ring of devices. Args: xs: a list of n tf.Tensors devices: a list of strings reduction_fn_string: "SUM" or "MAX" Returns: a list of n Tensors Raises: ValueError: if devices is not a list of n strings
def allreduce_ring_single_shard(xs, devices, reduction_fn_string="SUM"): n = len(xs) binary_reduction = mtf.binary_reduction_fn(reduction_fn_string) assert len(devices) == n, "devices must be a list of length len(xs)" if n == 1: return xs result = [None] * n if n % 2 == 0: left_center = n // 2 - 1 right_center = left_center + 1 else: left_center = n // 2 right_center = left_center left_sum = xs[0] for i in xrange(1, left_center + 1): with tf.device(devices[i]): left_sum = binary_reduction(left_sum, xs[i]) right_sum = xs[n-1] for i in reversed(xrange(left_center + 1, n - 1)): with tf.device(devices[i]): right_sum = binary_reduction(xs[i], right_sum) with tf.device(devices[left_center]): result[left_center] = binary_reduction(left_sum, right_sum) if n % 2 == 0: with tf.device(devices[right_center]): result[right_center] = binary_reduction(left_sum, right_sum) for i in reversed(xrange(left_center)): with tf.device(devices[i]): result[i] = tf.identity(result[i + 1]) for i in xrange(right_center + 1, n): with tf.device(devices[i]): result[i] = tf.identity(result[i - 1]) return result
213,523
Compute the reduction of all Tensors and put the result everywhere. Performance-optimized for a ring of devices. Args: xs: a list of n tf.Tensors devices: a list of strings reduction_fn_string: "SUM" or "MAX" Returns: a list of n Tensors Raises: ValueError: if devices is not a list of n strings
def allreduce_ring(xs, devices, reduction_fn_string="SUM"): n = len(xs) if len(devices) != n: raise ValueError("devices must be a list of length len(xs)") if n == 1: return xs shape = xs[0].shape.as_list() # tf.logging.info("allreduce_ring shape = %s" % shape) size = None if None in shape else mtf.list_product(shape) if size is None or size < 1024 or size % n != 0: return allreduce_ring_single_shard(xs, devices, reduction_fn_string) def _circular_shift(l, n): n %= len(l) return l[-n:] + l[:-n] def _flatten_and_split(x): # tf.reshape treats [-1] as a special value denoting 1D flattening. return tf.split(tf.reshape(x, [-1]), n) def _concat_and_reshape(xs): return tf.reshape(tf.concat(xs, 0), shape) # [device, shard] x_split = mtf.parallel(devices, _flatten_and_split, xs) x_split_t = mtf.transpose_list_of_lists(x_split) y_split_t = [] for shard in xrange(n): shard_xs = _circular_shift(x_split_t[shard], shard) shard_devices = _circular_shift(devices, shard) shard_ys = allreduce_ring_single_shard( shard_xs, shard_devices, reduction_fn_string) y_split_t.append(_circular_shift(shard_ys, -shard)) y_split = mtf.transpose_list_of_lists(y_split_t) ys = mtf.parallel(devices, _concat_and_reshape, y_split) return ys
213,524
Concatenate all Tensors everywhere. Performance-optimized for a ring of devices. Args: xs: a list of n tf.Tensors devices: a list of n strings concat_axis: an integer Returns: a list of n Tensors
def allconcat_ring(xs, devices, concat_axis): n = len(xs) if n == 1: return xs # [target, source] parts = [[xs[target] if target == source else None for source in xrange(n)] for target in xrange(n)] for distance in xrange(1, n // 2 + 1): for target in xrange(n): source = (target + distance) % n if parts[target][source] is None: with tf.device(devices[target]): parts[target][source] = tf.identity(parts[(target + 1) % n][source]) source = (target - distance) % n if parts[target][source] is None: with tf.device(devices[target]): parts[target][source] = tf.identity(parts[(target - 1) % n][source]) return mtf.parallel(devices, tf.concat, parts, axis=[concat_axis] * n)
213,525
MPI alltoall operation. Implementation of alltoall using pointwise communication. Args: xs: a list of n tf.Tensors devices: a list of n strings split_axis: an integer concat_axis: an integer Returns: a list of n Tensors
def alltoall_pointtwise(xs, devices, split_axis, concat_axis): n = len(xs) if n == 1: return xs # [target, source] parts = mtf.transpose_list_of_lists( mtf.parallel(devices, tf.split, xs, [n] * n, axis=[split_axis] * n)) return mtf.parallel(devices, tf.concat, parts, axis=[concat_axis] * n)
213,526
MPI alltoall operation. Performance-optimized for a ring of devices. Args: xs: a list of n tf.Tensors devices: a list of n strings split_axis: an integer concat_axis: an integer Returns: a list of n Tensors
def alltoall_ring(xs, devices, split_axis, concat_axis): n = len(xs) if n == 1: return xs # set up # [target, source] parts = [[None] * n for i in xrange(n)] def my_split(x, size_splits): total_size = tf.shape(x)[split_axis] part_size = total_size // sum(size_splits) return tf.split(x, [s * part_size for s in size_splits], axis=split_axis) forward_message_size = (n - 1) // 2 backward_message_size = (n - 1) - forward_message_size forward_messages = [None] * n backward_messages = [None] * n for i in xrange(n): with tf.device(devices[i]): if i >= backward_message_size: a, b, c, d = my_split( xs[i], [i - backward_message_size, backward_message_size, 1, n - i - 1]) backward_messages[i] = b parts[i][i] = c forward_messages[i] = tf.concat([d, a], axis=split_axis) else: a, b, c, d = my_split( xs[i], [i, 1, forward_message_size, backward_message_size - i]) backward_messages[i] = tf.concat([d, a], axis=split_axis) parts[i][i] = b forward_messages[i] = c for step in xrange(1, max(forward_message_size, backward_message_size) + 1): new_forward_messages = [None] * n new_backward_messages = [None] * n for i in xrange(n): with tf.device(devices[i]): if forward_message_size > 0: parts[i][(i - step) % n], new_forward_messages[i] = my_split( forward_messages[(i - 1) % n], [1, forward_message_size - 1]) if backward_message_size > 0: new_backward_messages[i], parts[i][(i + step) % n] = my_split( backward_messages[(i + 1) % n], [backward_message_size - 1, 1]) forward_message_size -= 1 backward_message_size -= 1 forward_messages = new_forward_messages backward_messages = new_backward_messages return mtf.parallel(devices, tf.concat, parts, axis=[concat_axis] * n)
213,527
Execute a function in parallel on all slices. Args: fn: a function from tf.Tensors to tf.Tensor or a tuple of tf.Tensors. *inputs: a list of inputs. Each input is either a LaidOutTensor or is convertible to a tf.Tensor. Returns: a LaidOutTensor, or a tuple of LaidOutTensors if fn returns a tuple.
def slicewise(self, fn, *inputs): if fn == tf.add: assert len(inputs) == 2 if isinstance(inputs[0], mtf.LazyAllreduceSum): # sum of LazyAllreduceSum (keep delaying the allreduce) return inputs[0] + inputs[1] # convert all inputs to LaidOutTensor where possible inputs = mtf.convert_args_to_laid_out_tensors(inputs) inputs = [x.tensor_list if isinstance(x, self.LaidOutTensor) else [x] * len(self.devices) for x in inputs] ret = mtf.parallel(self.devices, fn, *inputs) if isinstance(ret[0], tuple): ret = mtf.transpose_list_of_lists(ret) return tuple([self.LaidOutTensor(t) for t in ret]) else: return self.LaidOutTensor(ret)
213,529
call tf.Print. Args: x: a LaidOutTensor data: a list of LaidOutTensor message: a string **kwargs: keyword arguments to tf.print Returns: a LaidOutTensor
def Print(self, x, data, message, **kwargs): # pylint: disable=invalid-name tf.logging.info("PlacementMeshImpl::Print") new_slices = x.tensor_list[:] with tf.device(self._devices[0]): new_slices[0] = tf.Print( new_slices[0], [t for d in data for t in d.tensor_list], message, **kwargs) return self.LaidOutTensor(new_slices)
213,530
Grouped allreduce, (across the given dimensions). Args: x: a LaidOutTensor mesh_axes: a list of integers - the mesh dimensions to be reduced reduction_fn_string: "SUM" or "MAX" Returns: a LaidOutTensor
def allreduce(self, x, mesh_axes, reduction_fn_string): return self._collective_with_groups( x, mesh_axes, functools.partial( allreduce_ring, reduction_fn_string=reduction_fn_string))
213,531
Grouped allconcat (like MPI allgather followed by concat). Args: x: a LaidOutTensor mesh_axis: an integer - the mesh axis along which to group concat_axis: an integer (the Tensor axis along which to concatenate) Returns: a LaidOutTensor
def allconcat(self, x, mesh_axis, concat_axis): return self._collective_with_groups( x, [mesh_axis], functools.partial(allconcat_ring, concat_axis=concat_axis))
213,532
Grouped alltoall. Args: x: a LaidOutTensor mesh_axis: an integer the mesh axis along which to group split_axis: an integer (the Tensor axis along which to split) concat_axis: an integer (the Tensor axis along which to concatenate) Returns: a LaidOutTensor
def alltoall(self, x, mesh_axis, split_axis, concat_axis): return self._collective_with_groups( x, [mesh_axis], functools.partial( alltoall_ring, split_axis=split_axis, concat_axis=concat_axis))
213,533
Grouped collective, (across the given dimensions). Args: x: a LaidOutTensor mesh_axes: a list of integers - the mesh dimensions to be reduced collective: fn from list(tf.Tensor), list(device) -> list(tf.Tensor) Returns: a LaidOutTensor
def _collective_with_groups(self, x, mesh_axes, collective): if not mesh_axes: return x x = x.to_laid_out_tensor() if len(mesh_axes) == self.ndims: return self.LaidOutTensor(collective(x.tensor_list, self._devices)) else: groups = mtf.processor_groups(self.shape, mesh_axes) ret = [None] * self.size for g in groups: inputs = [x.tensor_list[pnum] for pnum in g] devices = [self._devices[pnum] for pnum in g] reduced = collective(inputs, devices) for pnum, y in zip(g, reduced): ret[pnum] = y return self.LaidOutTensor(ret)
213,535
Call a random tf operation (e.g. tf.random.uniform). Args: shape: a Shape tf_fn: a function such as tf.random.uniform kwargs: kwargs to pass to tf_fn, except for seed Returns: a LaidOutTensor
def random(self, shape, tf_fn, kwargs): slice_shape = self.slice_shape(shape) op_seed = random.random() def my_fn(pnum): # seeds are necessary to make sure that slices that should have the # same values actually do have the same values. seed = hash("%s,%s" % (op_seed, self.slice_begin(shape, pnum))) return tf_fn(slice_shape, seed=seed, **kwargs) return self.slicewise(my_fn, self.laid_out_pnum())
213,536
Turn a Tensor into a tf.Tensor. Args: x: a Tensor laid_out_x: a LaidOutTensor Returns: a tf.Tensor
def export_to_tf_tensor(self, x, laid_out_x): return self.combine_slices(laid_out_x.all_slices, x.shape)
213,537
Import a tf.Tensor, producing a LaidOutTensor. Args: x: a Tensor tf_x: a tf.Tensor Returns: a LaidOutTensor
def import_tf_tensor(self, x, tf_x): return self.LaidOutTensor(self.make_slices(tf_x, x.shape))
213,538
Common case attention parameters. Args: mesh: a Mesh io_dim: a Dimension (channels dimension of inputs and outputs) kv_dim: a Dimension (channels in keys and values) heads_dim: a Dimension (number of attention "heads") variable_dtype: a mtf.VariableDType Returns: an AttentionParams
def attention_params_simple( mesh, io_dim, kv_dim, heads_dim, variable_dtype): return AttentionParams( mesh, query_input_dim=io_dim, memory_input_dim=io_dim, output_dim=io_dim, key_dim=kv_dim, value_dim=kv_dim, query_heads_dims=[heads_dim], memory_heads_dims=[heads_dim], variable_dtype=variable_dtype)
213,541
Compute query Tensor q. Args: query_antecedent: a Tensor with dimensions {query_input_dim} + other_dims Returns: a Tensor with dimensions query_heads_dims + {key_dim} + other_dims
def compute_q(self, query_antecedent): ret = mtf.einsum( [query_antecedent, self.wq], reduced_dims=[self.query_input_dim]) if self.combine_dims: ret = mtf.replace_dimensions(ret, ret.shape.dims[-1], self.q_dims) return ret
213,544
Compute key/value Tensor kv. Args: memory_antecedent: a Tensor with dimensions {memory_input_dim} + other_dims Returns: a Tensor with dimensions memory_heads_dims + {key_dim} + other_dims
def compute_kv(self, memory_antecedent): if not self.shared_kv: raise ValueError("compute_kv can only be called with shared_kv") ret = mtf.einsum( [memory_antecedent, self.wkv], reduced_dims=[self.memory_input_dim]) if self.combine_dims: ret = mtf.replace_dimensions(ret, ret.shape.dims[-1], self.k_dims) return ret
213,545
Compute key Tensor k. Args: memory_antecedent: a Tensor with dimensions {memory_input_dim} + other_dims Returns: a Tensor with dimensions memory_heads_dims + {key_dim} + other_dims
def compute_k(self, memory_antecedent): if self.shared_kv: raise ValueError("compute_k cannot be called with shared_kv") ret = mtf.einsum( [memory_antecedent, self.wk], reduced_dims=[self.memory_input_dim]) if self.combine_dims: ret = mtf.replace_dimensions(ret, ret.shape.dims[-1], self.k_dims) return ret
213,546