docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
Lower the ReshapeOperation. Reshaping can require collective communication between processors. We haven't yet implemented all possible reshapes. We try to handle the common cases here - otherwise we raise a NotImplementedError. Args: lowering: a Lowering Raises: NotImplementedError: if we haven't covered this case
def lower(self, lowering): old_shape = self.inputs[0].shape new_shape = self.outputs[0].shape mesh_impl = lowering.mesh_impl(self) slices = lowering.tensors[self.inputs[0]] mesh_axis_to_cumprod_old = mesh_impl.mesh_axis_to_cumprod(old_shape) mesh_axis_to_cumprod_new = mesh_impl.mesh_axis_to_cumprod(new_shape) # Figure out what needs to be done for different mesh-axes mesh_axes_allsplit = [] mesh_axes_allconcat = [] mesh_axes_alltoall = [] for mesh_axis, (old_cumprod, new_cumprod) in enumerate( zip(mesh_axis_to_cumprod_old, mesh_axis_to_cumprod_new)): if new_cumprod != old_cumprod: if old_cumprod is None: # split in new layout but not in old layout - we need an allsplit mesh_axes_allsplit.append(mesh_axis) elif new_cumprod is None: # split in old layout but not in new layout - we need an allconcat mesh_axes_allconcat.append(mesh_axis) else: # split differently in old and new layouts - we need an alltoall mesh_axes_alltoall.append(mesh_axis) laid_out_size = mesh_impl.laid_out_size(old_shape) for mesh_axis in mesh_axes_allsplit: tensor_axis = old_shape.cumprod_to_tensor_axis( mesh_axis_to_cumprod_new[mesh_axis]) if tensor_axis is None: # TODO(noam): try to handle this case raise NotImplementedError( "Try first reshaping to insert a new tf dimension," " then changing layout. input_shape=%s output_shape=%s" % (self.inputs[0].shape, self.outputs[0].shape)) slices = mesh_impl.allsplit(slices, mesh_axis, tensor_axis) laid_out_size //= mesh_impl.shape[mesh_axis].size for mesh_axis in mesh_axes_alltoall: split_tensor_axis = old_shape.cumprod_to_tensor_axis( mesh_axis_to_cumprod_new[mesh_axis]) if split_tensor_axis is None: # TODO(noam): try to handle this case raise NotImplementedError( "Try first reshaping to insert a new tf dimension," " then changing layout. input_shape=%s output_shape=%s" % (self.inputs[0].shape, self.outputs[0].shape)) concat_tensor_axis = old_shape.cumprod_to_tensor_axis( mesh_axis_to_cumprod_old[mesh_axis]) assert concat_tensor_axis is not None slices = mesh_impl.alltoall( slices, mesh_axis, split_tensor_axis, concat_tensor_axis) lowering.add_counter( "alltoall/%s/reshape_op" % mesh_axis, laid_out_size) for mesh_axis in mesh_axes_allconcat: tensor_axis = old_shape.cumprod_to_tensor_axis( mesh_axis_to_cumprod_old[mesh_axis]) assert tensor_axis is not None slices = mesh_impl.allconcat(slices, mesh_axis, tensor_axis) laid_out_size *= mesh_impl.shape[mesh_axis].size lowering.add_counter( "allconcat/%s/reshape_op" % mesh_axis, laid_out_size) # now reshape the slices old_slice_shape = mesh_impl.slice_shape(old_shape) new_slice_shape = mesh_impl.slice_shape(new_shape) if new_slice_shape != old_slice_shape: def reshape_fn(x): return tf.reshape(x, new_slice_shape) slices = mesh_impl.slicewise(reshape_fn, slices) lowering.set_tensor_lowering(self.outputs[0], slices)
213,822
Datatypes to use for the run. Args: master_dtype: string, datatype for checkpoints keep this the same between training and eval/inference slice_dtype: string, datatype for variables in memory must be tf.float32 for training activation_dtype: string, datatype for activations less memory usage if tf.bfloat16 but possible numerical issues Returns: a mtf.VariableDtype
def get_variable_dtype( master_dtype=tf.bfloat16, slice_dtype=tf.float32, activation_dtype=tf.float32): return mtf.VariableDType( master_dtype=tf.as_dtype(master_dtype), slice_dtype=tf.as_dtype(slice_dtype), activation_dtype=tf.as_dtype(activation_dtype))
213,829
Decode from a text file. Args: estimator: a TPUEstimator vocabulary: a mtf.transformer.vocabulary.Vocabulary model_type: a string batch_size: an integer sequence_length: an integer (maximum decode length) checkpoint_path: an optional string input_filename: a string output_filename: a string eos_id: EOS id
def decode_from_file(estimator, vocabulary, model_type, batch_size, sequence_length, checkpoint_path="", input_filename=gin.REQUIRED, output_filename=gin.REQUIRED, eos_id=1): with tf.gfile.Open(input_filename) as f: text = f.read() records = text.split("\n") inputs = [record.strip() for record in records] # Strip the last empty line. if not inputs[-1]: inputs.pop() n = len(inputs) # encode all inputs all_input_ids = [] for line in inputs: ids = inputs_vocabulary(vocabulary).encode(line.strip()) if model_type != "lm": # for text2self problems, the inputs represent a partial sequence # to be continued, and should not be terminated by EOS. # for sequence-to-sequence problems, the input needs to be EOS-terminated ids += [eos_id] if len(ids) > sequence_length: ids = ids[:sequence_length] else: ids.extend([0] * (sequence_length - len(ids))) all_input_ids.append(ids) # pad to make an integral number of batches all_input_ids.extend([all_input_ids[0]] * (-n % batch_size)) padded_n = len(all_input_ids) all_input_ids = np.array(all_input_ids, dtype=np.int32) def input_fn(params): del params dataset = tf.data.Dataset.from_tensor_slices({"inputs": all_input_ids}) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset result_iter = estimator.predict(input_fn, checkpoint_path=checkpoint_path) vocab_size = targets_vocabulary(vocabulary).vocab_size decodes = [] for i, result in enumerate(result_iter): output_ids = clean_decodes(list(result["outputs"]), vocab_size) output_string = targets_vocabulary(vocabulary).decode( [int(x) for x in output_ids]) decodes.append(output_string) if i & (i - 1) == 0: if i < len(inputs): # LOG every power of 2, don't log if it's padded input i >= len(inputs) tf.logging.info("decode %d input = %s" % (i, inputs[i])) tf.logging.info(" output = %s" % output_string) # BUG WORKAROUND - on TF1.13 and earlier, the output for each batch is # repeated a number of times equal to the number of cores. if len(decodes) == padded_n: tf.logging.info("number of decodes matches number of inputs") elif len(decodes) % padded_n == 0: num_cores = len(decodes) // padded_n tf.logging.info("output is repeated num_cores times - removing extras") def keep(i): return i % (batch_size * num_cores) < batch_size decodes = [d for i, d in enumerate(decodes) if keep(i)] else: raise ValueError("unexpected number of outputs") output_file = tf.gfile.Open(output_filename, "w") decodes = decodes[:n] for d in decodes: output_file.write(d) output_file.write("\n") output_file.close()
213,832
Stop at EOS or padding or OOV. Args: ids: a list of integers vocab_size: an integer eos_id: EOS id Returns: a list of integers
def clean_decodes(ids, vocab_size, eos_id=1): ret = [] for i in ids: if i == eos_id: break if i >= vocab_size: break ret.append(int(i)) return ret
213,833
Automatically compute batch size. Args: sequence_length: an integer mesh_shape: an input to mtf.convert_to_shape() layout_rules: an input to mtf.convert_to_layout_rules() tokens_per_split: an integer Returns: an integer
def auto_batch_size(sequence_length, mesh_shape, layout_rules, tokens_per_split=2048): num_splits = mtf.tensor_dim_to_mesh_dim_size( layout_rules, mesh_shape, mtf.Dimension("batch", 0)) ret = max(1, tokens_per_split // sequence_length) * num_splits tf.logging.info( "AUTO_BATCH_SIZE tokens_per_split=%s num_splits=%s" " sequence_length=%s batch_size=%s" % (tokens_per_split, num_splits, sequence_length, ret)) return ret
213,834
Ring-order of a mxn mesh. Args: m: an integer n: an integer Returns: a list of mxn pairs
def _ring_2d(m, n): if m == 1: return [(0, i) for i in range(n)] if n == 1: return [(i, 0) for i in range(m)] if m % 2 != 0: tf.logging.warning("Odd dimension") return [(i % m, i // m) for i in range(n * m)] ret = [(0, 0)] for i in range(m // 2): for j in range(1, n): ret.append((2 * i, j)) for j in range(n-1, 0, -1): ret.append((2 * i + 1, j)) for i in range(m-1, 0, -1): ret.append((i, 0)) return ret
213,837
Grouped allreduce, (summed across the given dimensions). Args: x: a LaidOutTensor mesh_axes: a list of integers reduction_fn_string: "SUM" Returns: a LaidOutTensor Raises: ValueError: if the reduction is not yet implemented.
def allreduce(self, x, mesh_axes, reduction_fn_string): if not mesh_axes: return x x = x.to_laid_out_tensor() if reduction_fn_string == "SUM": group_assignment = self._create_group_assignment(mesh_axes) group_size = len(group_assignment[0]) tf_in = x.one_slice dtype = tf_in.dtype if dtype == tf.float32: cast_to_float32 = False elif dtype == tf.bfloat16: cast_to_float32 = ( group_size > self._allreduce_in_bfloat16_max_group_size) else: tf.logging.info("Casting %s to float32 for allreduce" % tf_in.dtype) cast_to_float32 = True if cast_to_float32: tf_in = tf.cast(tf_in, tf.float32) tf_out = tpu_ops.cross_replica_sum(tf_in, group_assignment) if cast_to_float32: tf_out = tf.cast(tf_out, dtype) return self.LaidOutTensor([tf_out]) else: for axis in mesh_axes: x = self.allconcat(x, axis, 0, stack=True) x = self.LaidOutTensor( [mtf.reduction_fn(reduction_fn_string)(x.one_slice, 0)]) return x
213,842
Grouped allconcat (like MPI allgather followed by concat). TODO(noam): inefficient - replace with a XLA allconcat when available Args: x: a LaidOutTensor mesh_axis: an integer - the mesh axis along which to group concat_axis: an integer (the Tensor axis along which to concatenate) stack: a boolean - whether to stack instead of concat Returns: a LaidOutTensor
def allconcat(self, x, mesh_axis, concat_axis, stack=False): x = x.to_laid_out_tensor() coord = self.laid_out_pcoord(mesh_axis) t = x.one_slice old_shape = t.shape.as_list() num_parts = self.shape[mesh_axis].size t = tf.expand_dims(t, concat_axis) t *= tf.reshape( tf.one_hot(coord.one_slice, num_parts, dtype=t.dtype), [num_parts if i == concat_axis else 1 for i in xrange(len(old_shape) + 1)]) if not stack: new_shape = old_shape[:] new_shape[concat_axis] *= num_parts t = tf.reshape(t, new_shape) return self.allreduce(self.LaidOutTensor([t]), [mesh_axis], "SUM")
213,843
Grouped alltoall (like MPI alltoall with splitting and concatenation). Args: x: a LaidOutTensor mesh_axis: an integer the mesh axis along which to group split_axis: an integer (the Tensor axis along which to split) concat_axis: an integer (the Tensor axis along which to concatenate) Returns: a LaidOutTensor
def alltoall(self, x, mesh_axis, split_axis, concat_axis): x = x.to_laid_out_tensor() t = x.one_slice group_assignment = self._create_group_assignment([mesh_axis]) dtype = t.dtype if dtype == tf.float32: # There seems to be a bug with float32 alltoall. # Do it in bfloat16 until the bug is fixed. # TODO(noam): file a bug t = tf.to_bfloat16(t) t = tpu_ops.all_to_all( t, concat_dimension=concat_axis, split_dimension=split_axis, split_count=len(group_assignment[0]), group_assignment=group_assignment) t = tf.cast(t, dtype) x = self.LaidOutTensor([t]) return x
213,844
Execute a function in parallel on all slices. Args: fn: a function from tf.Tensors to tf.Tensor or a tuple of tf.Tensors. *inputs: a list of inputs. Each input is either a LaidOutTensor or is convertible to a tf.Tensor. Returns: a LaidOutTensor, or a tuple of LaidOutTensors if fn returns a tuple.
def slicewise(self, fn, *inputs): if fn == tf.add: assert len(inputs) == 2 if isinstance(inputs[0], mtf.LazyAllreduceSum): # sum of LazyAllreduceSum (keep delaying the allreduce) return inputs[0] + inputs[1] # convert all inputs to LaidOutTensor where possible inputs = mtf.convert_args_to_laid_out_tensors(inputs) ret = fn(*[ x.one_slice if isinstance(x, self.LaidOutTensor) else x for x in inputs]) if isinstance(ret, tuple): return tuple([self.LaidOutTensor([t]) for t in ret]) else: return self.LaidOutTensor([ret])
213,847
Call a random tf operation (e.g. random_uniform). Args: shape: a Shape tf_fn: a function such as tf.random.uniform kwargs: kwargs to pass to tf_fn, except for seed Returns: a LaidOutTensor
def random(self, shape, tf_fn, kwargs): # TODO(noam): can we make things better with stateless_random? slice_shape = self.slice_shape(shape) x = tf_fn(slice_shape, **kwargs) # TPU does not have seeds enabled. Sync up the # random choices by zeroing out all but the first core per group of # identical slices, then allreducing by group. layout = self.tensor_layout(shape) # we need to sync across these axes. mesh_axes = [i for i in xrange(self.ndims) if i not in layout.tensor_axis_to_mesh_axis] multiplier = 1.0 for axis in mesh_axes: multiplier *= tf.cast( tf.equal(self.laid_out_pcoord(axis).one_slice, 0), x.dtype) x *= multiplier x = self.LaidOutTensor([x]) x = self.allreduce(x, mesh_axes, "SUM") return x
213,848
Turn a Tensor into a tf.Tensor. Args: x: a Tensor laid_out_x: a LaidOutTensor Returns: a tf.Tensor
def export_to_tf_tensor(self, x, laid_out_x): tensor_layout = self.tensor_layout(x.shape) if not tensor_layout.is_fully_replicated: raise NotImplementedError( "SimdMeshImpl only supports export_to_tf_tensor of fully-replicated " "Tensors. Try reshaping to new dimension names. " " x.shape = %s tensor_layout=%s" % (x.shape, tensor_layout)) return laid_out_x.one_slice
213,849
Predictions with the model. Returns posterior means and standard deviations at X. Note that this is different in GPy where the variances are given. Parameters: X (np.ndarray) - points to run the prediction for. with_noise (bool) - whether to add noise to the prediction. Default is True.
def predict(self, X, with_noise=True): m, v = self._predict(X, False, with_noise) # We can take the square root because v is just a diagonal matrix of variances return m, np.sqrt(v)
214,905
Predicts the covariance matric for points in X. Parameters: X (np.ndarray) - points to run the prediction for. with_noise (bool) - whether to add noise to the prediction. Default is True.
def predict_covariance(self, X, with_noise=True): _, v = self._predict(X, True, with_noise) return v
214,906
Generates samples. Parameters: n_samples - number of samples to generate log_p_function - a function that returns log density for a specific sample burn_in_steps - number of burn-in steps for sampling Returns a tuple of two array: (samples, log_p_function values for samples)
def get_samples(self, n_samples, log_p_function, burn_in_steps=50): restarts = initial_design('random', self.space, n_samples) sampler = emcee.EnsembleSampler(n_samples, self.space.input_dim(), log_p_function) samples, samples_log, _ = sampler.run_mcmc(restarts, burn_in_steps) # make sure we have an array of shape (n samples, space input dim) if len(samples.shape) == 1: samples = samples.reshape(-1, 1) samples_log = samples_log.reshape(-1, 1) return samples, samples_log
214,937
Decorator routes Alexa SessionEndedRequest to the wrapped view function to end the skill. @ask.session_ended def session_ended(): return "{}", 200 The wrapped function is registered as the session_ended view function and renders the response for requests to the end of the session. Arguments: f {function} -- session_ended view function
def session_ended(self, f): self._session_ended_view_func = f @wraps(f) def wrapper(*args, **kw): self._flask_view_func(*args, **kw) return f
215,244
Decorator routes Alexa Display.ElementSelected request to the wrapped view function. @ask.display_element_selected def eval_element(): return "", 200 The wrapped function is registered as the display_element_selected view function and renders the response for requests. Arguments: f {function} -- display_element_selected view function
def display_element_selected(self, f): self._display_element_selected_func = f @wraps(f) def wrapper(*args, **kw): self._flask_view_func(*args, **kw) return f
215,247
Returns a string that is valid JSON or YAML and contains all the variables in every extra_vars_opt inside of extra_vars_list. Args: parse_kv (bool): whether to allow key=value syntax. force_json (bool): if True, always output json.
def process_extra_vars(extra_vars_list, force_json=True): # Read from all the different sources and put into dictionary extra_vars = {} extra_vars_yaml = "" for extra_vars_opt in extra_vars_list: # Load file content if necessary if extra_vars_opt.startswith("@"): with open(extra_vars_opt[1:], 'r') as f: extra_vars_opt = f.read() # Convert text markup to a dictionary conservatively opt_dict = string_to_dict(extra_vars_opt, allow_kv=False) else: # Convert text markup to a dictionary liberally opt_dict = string_to_dict(extra_vars_opt, allow_kv=True) # Rolling YAML-based string combination if any(line.startswith("#") for line in extra_vars_opt.split('\n')): extra_vars_yaml += extra_vars_opt + "\n" elif extra_vars_opt != "": extra_vars_yaml += yaml.dump( opt_dict, default_flow_style=False) + "\n" # Combine dictionary with cumulative dictionary extra_vars.update(opt_dict) # Return contents in form of a string if not force_json: try: # Conditions to verify it is safe to return rolling YAML string try_dict = yaml.load(extra_vars_yaml, Loader=yaml.SafeLoader) assert type(try_dict) is dict debug.log('Using unprocessed YAML', header='decision', nl=2) return extra_vars_yaml.rstrip() except Exception: debug.log('Failed YAML parsing, defaulting to JSON', header='decison', nl=2) if extra_vars == {}: return "" return json.dumps(extra_vars, ensure_ascii=False)
216,641
Expand PyYAML's built-in dumper to support parsing OrderedDict. Return a string as parse result of the original data structure, which includes OrderedDict. Args: data: the data structure to be dumped(parsed) which is supposed to contain OrderedDict. Dumper: the yaml serializer to be expanded and used. kws: extra key-value arguments to be passed to yaml.dump.
def ordered_dump(data, Dumper=yaml.Dumper, **kws): class OrderedDumper(Dumper): pass def _dict_representer(dumper, data): return dumper.represent_mapping( yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, data.items()) OrderedDumper.add_representer(OrderedDict, _dict_representer) return yaml.dump(data, None, OrderedDumper, **kws)
216,642
Extract a tarfile described by a file object to a specified path. Args: fileobj (file): File object wrapping the target tarfile. dest_path (str): Path to extract the contents of the tarfile to.
def tarfile_extract(fileobj, dest_path): # Though this method doesn't fit cleanly into the TarPartition object, # tarballs are only ever extracted for partitions so the logic jives # for the most part. tar = tarfile.open(mode='r|', fileobj=fileobj, bufsize=pipebuf.PIPE_BUF_BYTES) # canonicalize dest_path so the prefix check below works dest_path = os.path.realpath(dest_path) # list of files that need fsyncing extracted_files = [] # Iterate through each member of the tarfile individually. We must # approach it this way because we are dealing with a pipe and the # getmembers() method will consume it before we extract any data. for member in tar: assert not member.name.startswith('/') relpath = os.path.join(dest_path, member.name) # Workaround issue with tar handling of symlink, see: # https://bugs.python.org/issue12800 if member.issym(): target_path = os.path.join(dest_path, member.name) try: os.symlink(member.linkname, target_path) except OSError as e: if e.errno == errno.EEXIST: os.remove(target_path) os.symlink(member.linkname, target_path) else: raise continue if member.isreg() and member.size >= pipebuf.PIPE_BUF_BYTES: cat_extract(tar, member, relpath) else: tar.extract(member, path=dest_path) filename = os.path.realpath(relpath) extracted_files.append(filename) # avoid accumulating an unbounded list of strings which # could be quite large for a large database if len(extracted_files) > 1000: _fsync_files(extracted_files) del extracted_files[:] tar.close() _fsync_files(extracted_files)
216,785
Return Blobstore instance for a given storage layout Args: layout (StorageLayout): Target storage layout.
def get_blobstore(layout): if layout.is_s3: from wal_e.blobstore import s3 blobstore = s3 elif layout.is_wabs: from wal_e.blobstore import wabs blobstore = wabs elif layout.is_swift: from wal_e.blobstore import swift blobstore = swift elif layout.is_gs: from wal_e.blobstore import gs blobstore = gs elif layout.is_file: from wal_e.blobstore import file blobstore = file return blobstore
216,832
All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
def convert(self, vroot, entry_variables): self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables cnt = 0 with nn.parameter_scope(self.name): # Function loop in the forward order for t, func in enumerate(self.graph_info.funcs): if func.name == "BatchNormalization": bn_func = func # TODO: should deal with both? if bn_func.info.args["batch_stat"] == False: o = self._bn_linear_conversion(bn_func, cnt) cnt += 1 continue # Identity conversion o = self._identity_conversion(func) self.end_variable = o return self.end_variable
217,044
All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
def convert(self, vroot, entry_variables): self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables with nn.parameter_scope(self.name): # Function loop in the forward order for func in self.graph_info.funcs: o = self._identity_conversion(func) self.end_variable = o return self.end_variable
217,049
Remove and get parameter by key. Args: key(str): Key of parameter. Returns: ~nnabla.Variable Parameter if key found, otherwise None.
def pop_parameter(key): names = key.split('/') if len(names) > 1: with parameter_scope(names[0]): return pop_parameter('/'.join(names[1:])) global current_scope param = current_scope.get(key, None) if param is not None: del current_scope[key] return param
217,063
Get parameter Variables under the current parameter scope. Args: params (dict): Internal use. User doesn't set it manually. path (str): Internal use. User doesn't set it manually. grad_only (bool): Retrieve all parameters under the current scope if False, while only parameters with need_grad=True are retrieved if True. Returns: dict: {:obj:`str` : :obj:`~nnabla.Variable`}
def get_parameters(params=None, path='', grad_only=True): global current_scope if params is None: params = OrderedDict() for k, v in iteritems(current_scope): if isinstance(v, dict): with parameter_scope(k): params = get_parameters( params, '/'.join([path, k]) if path else k, grad_only=grad_only) else: assert isinstance(v, nn.Variable) if not grad_only or v.need_grad: params['/'.join([path, k]) if path else k] = v return params
217,066
Load parameters from a file with the specified format. Args: path : path or file object
def load_parameters(path, proto=None, needs_proto=False): _, ext = os.path.splitext(path) if ext == '.h5': # TODO temporary work around to suppress FutureWarning message. import warnings warnings.simplefilter('ignore', category=FutureWarning) import h5py with h5py.File(path, 'r') as hd: keys = [] def _get_keys(name): ds = hd[name] if not isinstance(ds, h5py.Dataset): # Group return # To preserve order of parameters keys.append((ds.attrs.get('index', None), name)) hd.visit(_get_keys) for _, key in sorted(keys): ds = hd[key] var = get_parameter_or_create( key, ds.shape, need_grad=ds.attrs['need_grad']) var.data.cast(ds.dtype)[...] = ds[...] if needs_proto: if proto is None: proto = nnabla_pb2.NNablaProtoBuf() parameter = proto.parameter.add() parameter.variable_name = key parameter.shape.dim.extend(ds.shape) parameter.data.extend( numpy.array(ds[...]).flatten().tolist()) parameter.need_grad = False if ds.attrs['need_grad']: parameter.need_grad = True else: if proto is None: proto = nnabla_pb2.NNablaProtoBuf() if ext == '.protobuf': with open(path, 'rb') as f: proto.MergeFromString(f.read()) set_parameter_from_proto(proto) elif ext == '.nntxt' or ext == '.prototxt': with open(path, 'r') as f: text_format.Merge(f.read(), proto) set_parameter_from_proto(proto) elif ext == '.nnp': try: tmpdir = tempfile.mkdtemp() with zipfile.ZipFile(path, 'r') as nnp: for name in nnp.namelist(): nnp.extract(name, tmpdir) _, ext = os.path.splitext(name) if ext in ['.protobuf', '.h5']: proto = load_parameters(os.path.join( tmpdir, name), proto, needs_proto) finally: shutil.rmtree(tmpdir) logger.info("Parameter load ({}): {}".format(format, path)) else: pass # TODO: Unknwon extension. return proto
217,068
Save all parameters into a file with the specified format. Currently hdf5 and protobuf formats are supported. Args: path : path or file object params (dict, optional): Parameters to be saved. Dictionary is of a parameter name (:obj:`str`) to :obj:`~nnabla.Variable`.
def save_parameters(path, params=None): _, ext = os.path.splitext(path) params = get_parameters(grad_only=False) if params is None else params if ext == '.h5': # TODO temporary work around to suppress FutureWarning message. import warnings warnings.simplefilter('ignore', category=FutureWarning) import h5py with h5py.File(path, 'w') as hd: for i, (k, v) in enumerate(iteritems(params)): hd[k] = v.d hd[k].attrs['need_grad'] = v.need_grad # To preserve order of parameters hd[k].attrs['index'] = i elif ext == '.protobuf': proto = nnabla_pb2.NNablaProtoBuf() for variable_name, variable in params.items(): parameter = proto.parameter.add() parameter.variable_name = variable_name parameter.shape.dim.extend(variable.shape) parameter.data.extend(numpy.array(variable.d).flatten().tolist()) parameter.need_grad = variable.need_grad with open(path, "wb") as f: f.write(proto.SerializeToString()) else: logger.critical('Only supported hdf5 or protobuf.') assert False logger.info("Parameter save ({}): {}".format(ext, path))
217,069
All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
def convert(self, vroot, entry_variables): self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables with nn.parameter_scope(self.name): # Function loop in the forward order for t, func in enumerate(self.graph_info.funcs): if func.name in self.inner_prod_functions: inner_prod_func = func o = self._fixed_point_weight_conversion(inner_prod_func) continue # Identity conversion o = self._identity_conversion(func) self.end_variable = o if self.call_forward: o.forward(clear_buffer=True) return self.end_variable
217,255
load Load network information from files. Args: filenames (list): List of filenames. Returns: dict: Network information.
def load(filenames, prepare_data_iterator=True, batch_size=None, exclude_parameter=False, parameter_only=False): class Info: pass info = Info() proto = nnabla_pb2.NNablaProtoBuf() for filename in filenames: _, ext = os.path.splitext(filename) # TODO: Here is some known problems. # - Even when protobuf file includes network structure, # it will not loaded. # - Even when prototxt file includes parameter, # it will not loaded. if ext in ['.nntxt', '.prototxt']: if not parameter_only: with open(filename, 'rt') as f: try: text_format.Merge(f.read(), proto) except: logger.critical('Failed to read {}.'.format(filename)) logger.critical( '2 byte characters may be used for file name or folder name.') raise if len(proto.parameter) > 0: if not exclude_parameter: nn.load_parameters(filename) elif ext in ['.protobuf', '.h5']: if not exclude_parameter: nn.load_parameters(filename) else: logger.info('Skip loading parameter.') elif ext == '.nnp': try: tmpdir = tempfile.mkdtemp() with zipfile.ZipFile(filename, 'r') as nnp: for name in nnp.namelist(): _, ext = os.path.splitext(name) if name == 'nnp_version.txt': nnp.extract(name, tmpdir) with open(os.path.join(tmpdir, name), 'rt') as f: pass # TODO currently do nothing with version. elif ext in ['.nntxt', '.prototxt']: nnp.extract(name, tmpdir) if not parameter_only: with open(os.path.join(tmpdir, name), 'rt') as f: text_format.Merge(f.read(), proto) if len(proto.parameter) > 0: if not exclude_parameter: nn.load_parameters( os.path.join(tmpdir, name)) elif ext in ['.protobuf', '.h5']: nnp.extract(name, tmpdir) if not exclude_parameter: nn.load_parameters(os.path.join(tmpdir, name)) else: logger.info('Skip loading parameter.') finally: shutil.rmtree(tmpdir) default_context = None if proto.HasField('global_config'): info.global_config = _global_config(proto) default_context = info.global_config.default_context if 'cuda' in default_context.backend: import nnabla_ext.cudnn elif 'cuda:float' in default_context.backend: try: import nnabla_ext.cudnn except: pass else: import nnabla_ext.cpu default_context = nnabla_ext.cpu.context() comm = current_communicator() if comm: default_context.device_id = str(comm.rank) if proto.HasField('training_config'): info.training_config = _training_config(proto) info.datasets = _datasets( proto, prepare_data_iterator if prepare_data_iterator is not None else info.training_config.max_epoch > 0) info.networks = _networks(proto, default_context, batch_size) info.optimizers = _optimizers( proto, default_context, info.networks, info.datasets) info.monitors = _monitors( proto, default_context, info.networks, info.datasets) info.executors = _executors(proto, info.networks) return info
217,274
Convert a given graph. Convert a given graph using the `converters` in the order of the registeration, i.e., sequentially. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
def convert(self, vroot, entry_variables): for converter in self.converters: vroot = converter.convert(vroot, entry_variables) return vroot
217,336
Get a unique function name. Args: function_type(str): Name of Function. Ex) Convolution, Affine functions(OrderedDict of (str, Function) Returns: str A unique function name
def _get_unique_function_name(function_type, functions): function_name = function_name_base = function_type count = 2 while function_name in functions: function_name = '{}_{}'.format(function_name_base, count) count += 1 return function_name
217,375
Get a unique variable name. Args: vname(str): A candidate name. variable(OrderedDict of str and Variable) Returns: str A unique variable name
def _get_unique_variable_name(vname, variables): count = 2 vname_base = vname while vname in variables: vname = '{}_{}'.format(vname_base, count) count += 1 return vname
217,376
Reduction along axes with sum operation. Args: x (Variable): An input variable. axis (None, int or tuple of ints): Axis or axes along which the sum is calculated. Passing the default value `None` will reduce all dimensions. keepdims (bool): Flag whether the reduced axes are kept as a dimension with 1 element. Returns: ~nnabla.Variable: N-D array.
def sum(x, axis=None, keepdims=False): from .function_bases import sum as sum_base if axis is None: axis = range(x.ndim) elif not hasattr(axis, '__iter__'): axis = [axis] return sum_base(x, axis, keepdims)
217,402
Reduction along axes with mean operation. Args: x (Variable): An input variable. axis (None, int or tuple of ints): Axis or axes along which mean is calculated. Passing the default value `None` will reduce all dimensions. keepdims (bool): Flag whether the reduced axes are kept as a dimension with 1 element. Returns: ~nnabla.Variable: N-D array.
def mean(x, axis=None, keepdims=False): from .function_bases import mean as mean_base if axis is None: axis = range(x.ndim) elif not hasattr(axis, '__iter__'): axis = [axis] return mean_base(x, axis, keepdims)
217,403
Reduction along axes with product operation. Args: x (Variable): An input variable. axis (None, int or tuple of ints): Axis or axes along which product is calculated. Passing the default value `None` will reduce all dimensions. keepdims (bool): Flag whether the reduced axes are kept as a dimension with 1 element. Returns: ~nnabla.Variable: N-D array. Note: Backward computation is not accurate in a zero value input.
def prod(x, axis=None, keepdims=False): from .function_bases import prod as prod_base if axis is None: axis = range(x.ndim) elif not hasattr(axis, '__iter__'): axis = [axis] return prod_base(x, axis, keepdims)
217,406
Reduction function with given operation. Args: x (Variable): An input. op (str): 'sum' or 'mean'. Note: This is deprecated. Use ``mean`` or ``sum`` instead.
def reduce(x, op='sum'): import warnings warnings.warn( "Deprecated API. Use ``sum`` or ``mean`` instead.", DeprecationWarning) from .function_bases import reduce_sum, reduce_mean if op == 'sum': return reduce_sum(x) elif op == 'mean': return reduce_mean(x) raise ValueError()
217,407
Split arrays at the specified axis. It returns a number corresponding the size of the given axis (i.e ``x.shape[axis]``) of :obj:`~nnabla.Variable` s. Args: x(~nnabla.Variable): N-D array axis(int): Axis Returns: A :obj:`tuple` of :obj:`~nnabla.Variable` s See Also: :func:`nnabla.function_bases.split`.
def split(x, axis=0): from .function_bases import split as split_base return split_base(x, axis, x.shape[axis])
217,408
Download a file from URL. Args: url (str): URL. output_file (str, optional): If given, the downloaded file is written to the given path. open_file (bool): If True, it returns an opened file stream of the downloaded file. allow_overwrite (bool): If True, it overwrites an existing file. Returns: Returns file object if open_file is True, otherwise None.
def download(url, output_file=None, open_file=True, allow_overwrite=False): filename = url.split('/')[-1] if output_file is None: cache = os.path.join(get_data_home(), filename) else: cache = output_file if os.path.exists(cache) and not allow_overwrite: logger.info("> {} already exists.".format(cache)) logger.info("> If you have any issue when using this file, ") logger.info("> manually remove the file and try download again.") else: r = request.urlopen(url) try: if six.PY2: content_length = int(r.info().dict['content-length']) elif six.PY3: content_length = int(r.info()['Content-Length']) except: content_length = 0 unit = 1000000 content = b'' with tqdm(total=content_length, desc=filename, unit='B', unit_scale=True, unit_divisor=1024) as t: while True: data = r.read(unit) l = len(data) t.update(l) if l == 0: break content += data with open(cache, 'wb') as f: f.write(content) if not open_file: return return open(cache, 'rb')
217,430
Get learning rate with polymomial decay based on current iteration. Args: iter (int): current iteration (starting with 0). Returns: float: Learning rate
def get_learning_rate(self, iter): return self.init_lr * ((1.0 - iter * 1.0 / self.max_iter) ** self.power)
217,479
Get learning rate with cosine decay based on current iteration. Args: iter (int): Current iteration (starting with 0). Returns: float: Learning rate
def get_learning_rate(self, iter): return self.init_lr * ((math.cos(iter * 1.0 / (self.max_iter) * math.pi) + 1.0) * 0.5)
217,480
Get learning rate with exponential decay based on current iteration. Args: iter (int): Current iteration (starting with 0). Returns: float: Learning rate
def get_learning_rate(self, iter): return self.init_lr * (self.gamma ** (iter // self.iter_interval))
217,482
Get learning rate with exponential decay based on current iteration. Args: iter (int): Current iteration (starting with 0). Returns: float: Learning rate
def get_learning_rate(self, iter): lr = self.init_lr for iter_step in self.iter_steps: if iter >= iter_step: lr *= self.gamma return lr
217,484
Get learning rate with exponential decay based on current iteration. Args: iter (int): Current iteration (starting with 0). Returns: float: Learning rate
def get_learning_rate(self, iter): lr = self.scheduler.get_learning_rate(iter) if iter < self.warmup_iter: lr *= (iter + 1) * 1.0 / self.warmup_iter return lr
217,486
Create input :obj:`nnabla.Variable` from :obj:`Inspec`. Args: inspecs (:obj:`list` of :obj:`Inspec`): A list of ``Inspec``. Returns: :obj:`list` of :obj:`nnabla.Variable`: Input variables.
def create_inputs(inspecs): ret = [] for i in inspecs: v = nn.Variable(i.shape, need_grad=i.need_grad) v.d = i.init(v.shape) ret.append(v) return ret
217,515
Write a single function benchmark. Args: fb (FunctionBenchmark): FunctionBenchmark class instance. Before passing to this, you should call ``fb.benchmark()``.
def write(self, fb): print('[{}.{}]'.format(fb.module, fb.func.__name__), file=self.file) print('class = {}'.format(fb.func_ins.name), file=self.file) print('inspecs = {}'.format(repr(fb.inspecs)), file=self.file) print('func_args = {}'.format(repr(fb.func_args)), file=self.file) print('func_kwargs = {}'.format(repr(fb.func_kwargs)), file=self.file) print('ext = ({}, {})'.format( repr(fb.ext), repr(fb.ext_kwargs)), file=self.file) if self.setup_stat is not None: self._write_a_stat('setup', self.setup_stat) if self.foward_stat is not None: self._write_a_stat('forward', self.forward_stat) if self.backward_stat is not None: self._write_a_stat('backward', self.backward_stat)
217,520
Create a function instance and execute setup. Args: delete (bool): Delete buffered variables.
def _setup(self, delete=True): if delete: self.clear() with nn.context_scope(self.ctx): outputs = self.func( *(self.inputs_f + self.func_args), **self.func_kwargs) if not hasattr(outputs, '__iter__'): self.outputs = [outputs] else: self.outputs = outputs self.func_ins = self.outputs[0].parent self.inputs = self.func_ins.inputs
217,525
Convert an array with shape of (B, C, H, W) into a tiled image. Args: data (~numpy.ndarray): An array with shape of (B, C, H, W). padsize (int): Each tile has padding with this size. padval (float): Padding pixels are filled with this value. Returns: tile_image (~numpy.ndarray): A tile image.
def tile_images(data, padsize=1, padval=0): assert(data.ndim == 4) data = data.transpose(0, 2, 3, 1) # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ( (0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize) ) + ((0, 0),) * (data.ndim - 3) data = np.pad( data, padding, mode='constant', constant_values=(padval, padval)) data = data.reshape( (n, n) + data.shape[1:] ).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape( (n * data.shape[1], n * data.shape[3]) + data.shape[4:]) if data.shape[2] == 1: # Return as (H, W) return data.reshape(data.shape[:2]) return data
217,578
Plot series data from MonitorSeries output text file. Args: filename (str): Path to *.series.txt file produced by :obj:`~nnabla.MonitorSeries` class. plot_kwags (dict, optional): Keyward arguments passed to :function:`matplotlib.pyplot.plot`. Note: matplotlib package is required.
def plot_series(filename, plot_kwargs=None): import matplotlib.pyplot as plt if plot_kwargs is None: plot_kwargs = {} data = np.genfromtxt(filename, dtype='i8,f4', names=['k', 'v']) index = data['k'] values = data['v'] plt.plot(index, values, **plot_kwargs)
217,579
Plot series data from MonitorTimeElapsed output text file. Args: filename (str): Path to *.series.txt file produced by :obj:`~nnabla.MonitorSeries` class. elapsed (bool): If ``True``, it plots the total elapsed time. unit (str): Time unit chosen from ``'s'``, ``'m'``, ``'h'``, or ``'d'``. plot_kwags (dict, optional): Keyward arguments passed to :function:`matplotlib.pyplot.plot`. Note: matplotlib package is required.
def plot_time_elapsed(filename, elapsed=False, unit='s', plot_kwargs=None): import matplotlib.pyplot as plt if plot_kwargs is None: plot_kwargs = {} data_column = 3 if elapsed else 1 data = np.genfromtxt(filename, dtype='i8,f4', usecols=(0, data_column), names=['k', 'v']) index = data['k'] values = data['v'] if unit == 's': pass elif unit == 'm': values /= 60 elif unit == 'h': values /= 3600 elif unit == 'd': values /= 3600 * 24 else: raise ValueError('The argument `unit` must be chosen from {s|m|h|d}.') plt.plot(index, values, **plot_kwargs)
217,580
Add a value to the series. Args: index (int): Index. value (float): Value.
def add(self, index, value): self.buf.append(value) if (index - self.flush_at) < self.interval: return value = np.mean(self.buf) if self.verbose: logger.info("iter={} {{{}}}={}".format(index, self.name, value)) if self.fd is not None: print("{} {:g}".format(index, value), file=self.fd) self.flush_at = index self.buf = []
217,583
Calculate time elapsed from the point previously called this method or this object is created to this is called. Args: index (int): Index to be displayed, and be used to take intervals.
def add(self, index): if (index - self.flush_at) < self.interval: return now = time.time() elapsed = now - self.lap elapsed_total = now - self.start it = index - self.flush_at self.lap = now if self.verbose: logger.info("iter={} {{{}}}={}[sec/{}iter] {}[sec]".format( index, self.name, elapsed, it, elapsed_total)) if self.fd is not None: print("{} {} {} {}".format(index, elapsed, it, elapsed_total), file=self.fd) self.flush_at = index
217,585
Add a minibatch of images to the monitor. Args: index (int): Index. var (:obj:`~nnabla.Variable`, :obj:`~nnabla.NdArray`, or :obj:`~numpy.ndarray`): A minibatch of images with ``(N, ..., C, H, W)`` format. If C == 2, blue channel is appended with ones. If C > 3, the array will be sliced to remove C > 3 sub-array.
def add(self, index, var): import nnabla as nn from nnabla.utils.image_utils import imsave if index != 0 and (index + 1) % self.interval != 0: return if isinstance(var, nn.Variable): data = var.d.copy() elif isinstance(var, nn.NdArray): data = var.data.copy() else: assert isinstance(var, np.ndarray) data = var.copy() assert data.ndim > 2 channels = data.shape[-3] data = data.reshape(-1, *data.shape[-3:]) data = data[:min(data.shape[0], self.num_images)] data = self.normalize_method(data) if channels > 3: data = data[:, :3] elif channels == 2: data = np.concatenate( [data, np.ones((data.shape[0], 1) + data.shape[-2:])], axis=1) path_tmpl = os.path.join(self.save_dir, '{:06d}-{}.png') for j in range(min(self.num_images, data.shape[0])): img = data[j].transpose(1, 2, 0) if img.shape[-1] == 1: img = img[..., 0] path = path_tmpl.format(index, '{:03d}'.format(j)) imsave(path, img) if self.verbose: logger.info("iter={} {{{}}} are written to {}.".format( index, self.name, path_tmpl.format(index, '*')))
217,588
All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
def convert(self, vroot, entry_variables): self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables with nn.parameter_scope(self.name): # Function loop in the forward order for t, func in enumerate(self.graph_info.funcs): # Activation check if func.name in self.activation_functions: activation_func = func o = self._fixed_point_activation_conversion( activation_func) continue # Identity conversion o = self._identity_conversion(func) self.end_variable = o return self.end_variable
217,626
Context for dynamic graph execution mode. Args: auto (bool): Whether forward computation is executed during a computation graph construction. Returns: bool
def auto_forward(auto=True): global __auto_forward_state prev = __auto_forward_state __auto_forward_state = auto yield __auto_forward_state = prev
217,636
Manually print profiling result. Args: reset (bool): If False is specified, the profiling statistics so far is maintained. If ``True`` (default), :obj:`~reset_stats` is called to reset the profiling statistics.
def print_stats(self, reset=True): if not self.ncalls: return stats = self.stats code = self.fn.__code__ print('--- Function Profiling ---') print('File "{}", line {}, function {}'.format( code.co_filename, code.co_firstlineno, self.fn.__name__)) stats.sort_stats(*self.sort_keys) stats.print_stats(*self.print_restrictions) print('--------------------------') if reset: self.reset_stats()
217,640
Save the graph to a given file path. Args: vleaf (`nnabla.Variable`): End variable. All variables and functions which can be traversed from this variable are shown in the reuslt. fpath (`str`): The file path used to save. cleanup (`bool`): Clean up the source file after rendering. Default is False. format (str): Force overwrite ``format`` (``'pdf', 'png', ...)``) configuration.
def save(self, vleaf, fpath, cleanup=False, format=None): graph = self.create_graphviz_digraph(vleaf, format=format) graph.render(fpath, cleanup=cleanup)
217,656
View the graph. Args: vleaf (`nnabla.Variable`): End variable. All variables and functions which can be traversed from this variable are shown in the reuslt. fpath (`str`): The file path used to save. cleanup (`bool`): Clean up the source file after rendering. Default is True. format (str): Force overwrite ``format`` (``'pdf', 'png', ...)``) configuration.
def view(self, vleaf, fpath=None, cleanup=True, format=None): graph = self.create_graphviz_digraph(vleaf, format=format) graph.view(fpath, cleanup=cleanup)
217,657
Get parameters. Args: grad_only (bool, optional): Return parameters with `need_grad` option as `True`. If you set this option as `False`, All parameters are returned. Default is `True`. Returns: dict: The dictionary of parameter name (`str`) to Variable (:obj:`~nnabla.Variable`).
def get_parameters(self, grad_only=True): params = OrderedDict() for v in self.get_modules(): if not isinstance(v, tuple): continue prefix, module = v for k, v in module.__dict__.items(): if not isinstance(v, nn.Variable): continue pname = k name = "{}/{}".format(prefix, pname) if grad_only and v.need_grad == False: continue params[name] = v return params
217,661
Save all parameters into a file with the specified format. Currently hdf5 and protobuf formats are supported. Args: path : path or file object grad_only (bool, optional): Return parameters with `need_grad` option as `True`.
def save_parameters(self, path, grad_only=False): params = self.get_parameters(grad_only=grad_only) nn.save_parameters(path, params)
217,663
Load parameters from a file with the specified format. Args: path : path or file object
def load_parameters(self, path): nn.load_parameters(path) for v in self.get_modules(): if not isinstance(v, tuple): continue prefix, module = v for k, v in module.__dict__.items(): if not isinstance(v, nn.Variable): continue pname = k name = "{}/{}".format(prefix, pname) # Substitute param0 = v param1 = nn.parameter.pop_parameter(name) if param0 is None: raise ValueError( "Model does not have {} parameter.".format(name)) param0.d = param1.d.copy() nn.logger.info("`{}` loaded.)".format(name))
217,664
All functions are replaced with the same `new` function. Args: vroot (:obj:`Variable`): NNabla Variable entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
def convert(self, vroot, entry_variables): self.graph_info = GraphInfo(vroot) self.entry_variables = entry_variables with nn.parameter_scope(self.name): # Function loop in the forward order for t, func in enumerate(self.graph_info.funcs): # TODO: error check # Batch normalization check, then skip if func.name == "BatchNormalization": i0 = func.inputs[0] bn_func = func # Test mode check if bn_func.info.args["batch_stat"] == False: # `Target Func -> BN` check from BN if i0.parent.info.type_name in self.inner_prod_functions: nn.logger.info("{} is skipped.".format(func.name)) continue # `Target Func -> BN` conversion if func.name in self.inner_prod_functions: inner_prod_func = func o0 = inner_prod_func.outputs[0] fs = self.graph_info.variable_to_funcs[o0] # No branch check #TODO: branching check (really needed?) if fs is not None and len(fs) == 1: # `Target Func -> BN` check bn_func = fs[0] if bn_func.name == "BatchNormalization": # Test mode check if bn_func.info.args["batch_stat"] == False: # Perform `Target Func -> BN` conversion nn.logger.info("BatchNormalization parameters are folded to " "the preceding convolution.") o = self._inner_prod_bn_conversion( inner_prod_func, bn_func) continue # Identity conversion o = self._identity_conversion(func) self.end_variable = o return self.end_variable
217,666
Calculate length of a string for a given built-in font. Args: fontname: name of the font. fontsize: size of font in points. encoding: encoding to use (0=Latin, 1=Greek, 2=Cyrillic). Returns: (float) length of text.
def getTextlength(text, fontname="helv", fontsize=11, encoding=0): fontname = fontname.lower() basename = Base14_fontdict.get(fontname, None) glyphs = None if basename == "Symbol": glyphs = symbol_glyphs if basename == "ZapfDingbats": glyphs = zapf_glyphs if glyphs is not None: w = sum([glyphs[ord(c)][1] if ord(c)<256 else glyphs[183][1] for c in text]) return w * fontsize if fontname in Base14_fontdict.keys(): return TOOLS.measure_string(text, Base14_fontdict[fontname], fontsize, encoding) if fontname in ["china-t", "china-s", "china-ts", "china-ss", "japan", "japan-s", "korea", "korea-s"]: return len(text) * fontsize raise ValueError("Font '%s' is unsupported" % fontname)
218,122
Returns the parsed table of a page in a PDF / (open) XPS / EPUB document. Parameters: page: fitz.Page object bbox: containing rectangle, list of numbers [xmin, ymin, xmax, ymax] columns: optional list of column coordinates. If None, columns are generated Returns the parsed table as a list of lists of strings. The number of rows is determined automatically from parsing the specified rectangle.
def ParseTab(page, bbox, columns = None): tab_rect = fitz.Rect(bbox).irect xmin, ymin, xmax, ymax = tuple(tab_rect) if tab_rect.isEmpty or tab_rect.isInfinite: print("Warning: incorrect rectangle coordinates!") return [] if type(columns) is not list or columns == []: coltab = [tab_rect.x0, tab_rect.x1] else: coltab = sorted(columns) if xmin < min(coltab): coltab.insert(0, xmin) if xmax > coltab[-1]: coltab.append(xmax) words = page.getTextWords() if words == []: print("Warning: page contains no text") return [] alltxt = [] # get words contained in table rectangle and distribute them into columns for w in words: ir = fitz.Rect(w[:4]).irect # word rectangle if ir in tab_rect: cnr = 0 # column index for i in range(1, len(coltab)): # loop over column coordinates if ir.x0 < coltab[i]: # word start left of column border cnr = i - 1 break alltxt.append([ir.x0, ir.y0, ir.x1, cnr, w[4]]) if alltxt == []: print("Warning: no text found in rectangle!") return [] alltxt.sort(key = itemgetter(1)) # sort words vertically # create the table / matrix spantab = [] # the output matrix for y, zeile in groupby(alltxt, itemgetter(1)): schema = [""] * (len(coltab) - 1) for c, words in groupby(zeile, itemgetter(3)): entry = " ".join([w[4] for w in words]) schema[c] = entry spantab.append(schema) return spantab
218,367
Show page number 'pno' of PDF 'src' in rectangle 'rect'. Args: rect: (rect-like) where to place the source image src: (document) source PDF pno: (int) source page number overlay: (bool) put in foreground keep_proportion: (bool) do not change width-height-ratio rotate: (int) degrees (multiple of 90) clip: (rect-like) part of source page rectangle Returns: xref of inserted object (for reuse)
def showPDFpage( page, rect, src, pno=0, overlay=True, keep_proportion=True, rotate=0, reuse_xref=0, clip = None, ): def calc_matrix(sr, tr, keep=True, rotate=0): # calc center point of source rect smp = Point((sr.x1 + sr.x0) / 2., (sr.y1 + sr.y0) / 2.) # calc center point of target rect tmp = Point((tr.x1 + tr.x0) / 2., (tr.y1 + tr.y0) / 2.) rot = Matrix(rotate) # rotation matrix # m moves to (0, 0), then rotates m = Matrix(1, 0, 0, 1, -smp.x, -smp.y) * rot sr1 = sr * m # resulting source rect to calculate scale factors fw = tr.width / sr1.width # scale the width fh = tr.height / sr1.height # scale the height if keep: fw = fh = min(fw, fh) # take min if keeping aspect ratio m *= Matrix(fw, fh) # concat scale matrix m *= Matrix(1, 0, 0, 1, tmp.x, tmp.y) # concat move to target center return m CheckParent(page) doc = page.parent if not doc.isPDF or not src.isPDF: raise ValueError("not a PDF") rect = page.rect & rect # intersect with page rectangle if rect.isEmpty or rect.isInfinite: raise ValueError("rect must be finite and not empty") if reuse_xref > 0: warnings.warn("ignoring 'reuse_xref'", DeprecationWarning) while pno < 0: # support negative page numbers pno += len(src) src_page = src[pno] # load ource page if len(src_page._getContents()) == 0: raise ValueError("nothing to show - source page empty") tar_rect = rect * ~page._getTransformation() # target rect in PDF coordinates src_rect = src_page.rect if not clip else src_page.rect & clip # source rect if src_rect.isEmpty or src_rect.isInfinite: raise ValueError("clip must be finite and not empty") src_rect = src_rect * ~src_page._getTransformation() # ... in PDF coord matrix = calc_matrix(src_rect, tar_rect, keep=keep_proportion, rotate=rotate) # list of existing /Form /XObjects ilst = [i[1] for i in doc._getPageInfo(page.number, 3)] # create a name that is not in that list n = "fzFrm" i = 0 _imgname = n + "0" while _imgname in ilst: i += 1 _imgname = n + str(i) isrc = src._graft_id # used as key for graftmaps if doc._graft_id == isrc: raise ValueError("source document must not equal target") # check if we have already copied objects from this source doc if isrc in doc.Graftmaps: # yes: use the old graftmap gmap = doc.Graftmaps[isrc] else: # no: make a new graftmap gmap = Graftmap(doc) doc.Graftmaps[isrc] = gmap # take note of generated xref for automatic reuse pno_id = (isrc, pno) # id of src[pno] xref = doc.ShownPages.get(pno_id, 0) xref = page._showPDFpage( src_page, overlay=overlay, matrix=matrix, xref=xref, clip=src_rect, graftmap=gmap, _imgname=_imgname, ) doc.ShownPages[pno_id] = xref return xref
218,404
Insert an image in a rectangle on the current page. Notes: Exactly one of filename, pixmap or stream must be provided. Args: rect: (rect-like) where to place the source image filename: (str) name of an image file pixmap: (obj) a Pixmap object stream: (bytes) an image in memory rotate: (int) degrees (multiple of 90) keep_proportion: (bool) whether to maintain aspect ratio overlay: (bool) put in foreground
def insertImage(page, rect, filename=None, pixmap=None, stream=None, rotate=0, keep_proportion = True, overlay=True): def calc_matrix(fw, fh, tr, rotate=0): # center point of target rect tmp = Point((tr.x1 + tr.x0) / 2., (tr.y1 + tr.y0) / 2.) rot = Matrix(rotate) # rotation matrix # matrix m moves image center to (0, 0), then rotates m = Matrix(1, 0, 0, 1, -0.5, -0.5) * rot #sr1 = sr * m # resulting image rect # -------------------------------------------------------------------- # calculate the scale matrix # -------------------------------------------------------------------- small = min(fw, fh) # factor of the smaller side if rotate not in (0, 180): fw, fh = fh, fw # width / height exchange their roles if fw < 1: # portrait if (float(tr.width) / fw) > (float(tr.height) / fh): w = tr.height * small h = tr.height else: w = tr.width h = tr.width / small elif fw != fh: # landscape if (float(tr.width) / fw) > (float(tr.height) / fh): w = tr.height / small h = tr.height else: w = tr.width h = tr.width * small else: # (treated as) equal sided w = tr.width h = tr.height m *= Matrix(w, h) # concat scale matrix m *= Matrix(1, 0, 0, 1, tmp.x, tmp.y) # concat move to target center return m # ------------------------------------------------------------------------- CheckParent(page) doc = page.parent if not doc.isPDF: raise ValueError("not a PDF") if bool(filename) + bool(stream) + bool(pixmap) != 1: raise ValueError("need exactly one of filename, pixmap, stream") if filename and not os.path.exists(filename): raise FileNotFoundError("No such file: '%s'" % filename) elif stream and type(stream) not in (bytes, bytearray, io.BytesIO): raise ValueError("stream must be bytes-like or BytesIO") elif pixmap and type(pixmap) is not Pixmap: raise ValueError("pixmap must be a Pixmap") while rotate < 0: rotate += 360 while rotate > 360: rotate -= 360 if rotate not in (0, 90, 180, 270): raise ValueError("bad rotate value") r = page.rect & rect if r.isEmpty or r.isInfinite: raise ValueError("rect must be finite and not empty") _imgpointer = None if keep_proportion is True: # for this we need the image dimension if pixmap: # this is the easy case w = pixmap.width h = pixmap.height elif stream: # use tool to access the information # we also pass through the generated fz_image address img_size = TOOLS.image_size(stream, keep_image=True) w, h = img_size[:2] stream = None # make sure this arg is NOT used _imgpointer = img_size[-1] # pointer to fz_image else: # worst case, we need to read the file ourselves img = open(filename, "rb") stream = img.read() img_size = TOOLS.image_size(stream, keep_image=True) w, h = img_size[:2] _imgpointer = img_size[-1] # pointer to fz_image stream = None # make sure this arg is NOT used filename = None # make sure this arg is NOT used img.close() # close image file maxf = max(w, h).__float__() fw = w / maxf fh = h / maxf else: fw = fh = 1.0 clip = r * ~page._getTransformation() # target rect in PDF coordinates matrix = calc_matrix(fw, fh, clip, rotate=rotate) ilst = [i[7] for i in doc.getPageImageList(page.number)] n = "fzImg" i = 0 _imgname = n + "0" while _imgname in ilst: i += 1 _imgname = n + str(i) page._insertImage( filename=filename, # image in file pixmap=pixmap, # image in pixmap stream=stream, # image in memory matrix=matrix, # generated matrix overlay=overlay, _imgname=_imgname, # generated PDF resource name _imgpointer=_imgpointer, # address of fz_image )
218,405
Search for a string on a page. Args: text: string to be searched for hit_max: maximum hits quads: return quads instead of rectangles Returns: a list of rectangles or quads, each containing one occurrence.
def searchFor(page, text, hit_max = 16, quads = False): CheckParent(page) dl = page.getDisplayList() # create DisplayList tp = dl.getTextPage() # create TextPage # return list of hitting reactangles rlist = tp.search(text, hit_max = hit_max, quads = quads) dl = None tp = None return rlist
218,406
Search for a string on a page. Args: pno: page number text: string to be searched for hit_max: maximum hits quads: return quads instead of rectangles Returns: a list of rectangles or quads, each containing an occurrence.
def searchPageFor(doc, pno, text, hit_max=16, quads=False): return doc[pno].searchFor(text, hit_max = hit_max, quads = quads)
218,407
Return the text blocks on a page. Notes: Lines in a block are concatenated with line breaks. Args: images: (bool) also return meta data of any images. Image data are never returned with this method. Returns: A list of the blocks. Each item contains the containing rectangle coordinates, text lines, block type and running block number.
def getTextBlocks(page, images=False): CheckParent(page) dl = page.getDisplayList() flags = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE if images: flags |= TEXT_PRESERVE_IMAGES tp = dl.getTextPage(flags) l = tp._extractTextBlocks_AsList() del tp del dl return l
218,408
Extract a document page's text. Args: output: (str) text, html, dict, json, rawdict, xhtml or xml. Returns: the output of TextPage methods extractText, extractHTML, extractDICT, extractJSON, extractRAWDICT, extractXHTML or etractXML respectively. Default and misspelling choice is "text".
def getText(page, output = "text"): CheckParent(page) dl = page.getDisplayList() # available output types formats = ("text", "html", "json", "xml", "xhtml", "dict", "rawdict") # choose which of them also include images in the TextPage images = (0, 1, 1, 0, 1, 1, 1) # controls image inclusion in text page try: f = formats.index(output.lower()) except: f = 0 flags = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE if images[f] : flags |= TEXT_PRESERVE_IMAGES tp = dl.getTextPage(flags) # TextPage with / without images t = tp._extractText(f) del dl del tp return t
218,410
Create pixmap of page. Args: matrix: Matrix for transformation (default: Identity). colorspace: (str/Colorspace) rgb, rgb, gray - case ignored, default csRGB. clip: (irect-like) restrict rendering to this area. alpha: (bool) include alpha channel
def getPixmap(page, matrix = None, colorspace = csRGB, clip = None, alpha = True): CheckParent(page) # determine required colorspace cs = colorspace if type(colorspace) is str: if colorspace.upper() == "GRAY": cs = csGRAY elif colorspace.upper() == "CMYK": cs = csCMYK else: cs = csRGB if cs.n not in (1,3,4): raise ValueError("unsupported colorspace") dl = page.getDisplayList() # create DisplayList if clip: scissor = Rect(clip) else: scissor = None pix = dl.getPixmap(matrix = matrix, colorspace = cs, alpha = alpha, clip = scissor) del dl return pix
218,411
Create pixmap of document page by page number. Notes: Convenience function calling page.getPixmap. Args: pno: (int) page number matrix: Matrix for transformation (default: Identity). colorspace: (str/Colorspace) rgb, rgb, gray - case ignored, default csRGB. clip: (irect-like) restrict rendering to this area. alpha: (bool) include alpha channel
def getPagePixmap(doc, pno, matrix = None, colorspace = csRGB, clip = None, alpha = True): return doc[pno].getPixmap(matrix = matrix, colorspace = colorspace, clip = clip, alpha = alpha)
218,412
Create a table of contents. Args: simple: a bool to control output. Returns a list, where each entry consists of outline level, title, page number and link destination (if simple = False). For details see PyMuPDF's documentation.
def getToC(doc, simple = True): def recurse(olItem, liste, lvl): while olItem: if olItem.title: title = olItem.title else: title = " " if not olItem.isExternal: if olItem.uri: page = olItem.page + 1 else: page = -1 else: page = -1 if not simple: link = getLinkDict(olItem) liste.append([lvl, title, page, link]) else: liste.append([lvl, title, page]) if olItem.down: liste = recurse(olItem.down, liste, lvl+1) olItem = olItem.next return liste # check if document is open and not encrypted if doc.isClosed: raise ValueError("illegal operation on closed document") olItem = doc.outline if not olItem: return [] lvl = 1 liste = [] return recurse(olItem, liste, lvl)
218,415
Draw a circle sector given circle center, one arc end point and the angle of the arc. Parameters: center -- center of circle point -- arc end point beta -- angle of arc (degrees) fullSector -- connect arc ends with center
def drawSector(page, center, point, beta, color=None, fill=None, dashes=None, fullSector=True, morph=None, width=1, closePath=False, roundCap=False, overlay=True): img = page.newShape() Q = img.drawSector(Point(center), Point(point), beta, fullSector=fullSector) img.finish(color=color, fill=fill, dashes=dashes, width=width, roundCap=roundCap, morph=morph, closePath=closePath) img.commit(overlay) return Q
218,434
Set a float option. Args: option (str): name of option. value (float): value of the option. Raises: TypeError: Value must be a float.
def set_float(self, option, value): if not isinstance(value, float): raise TypeError("Value must be a float") self.options[option] = value
218,558
Set an integer option. Args: option (str): name of option. value (int): value of the option. Raises: ValueError: Value must be an integer.
def set_integer(self, option, value): try: int_value = int(value) except ValueError as err: print(err.args) self.options[option] = value
218,559
Set a boolean option. Args: option (str): name of option. value (bool): value of the option. Raises: TypeError: Value must be a boolean.
def set_boolean(self, option, value): if not isinstance(value, bool): raise TypeError("%s must be a boolean" % option) self.options[option] = str(value).lower()
218,560
Set a string option. Args: option (str): name of option. value (str): value of the option. Raises: TypeError: Value must be a string.
def set_string(self, option, value): if not isinstance(value, str): raise TypeError("%s must be a string" % option) self.options[option] = value
218,561
Set the MetricsGraphics chart type. Allowed charts are: line, histogram, point, and bar Args: value (str): chart type. Raises: ValueError: Not a valid chart type.
def chart_type(self, value): if value not in self._allowed_charts: raise ValueError("Not a valid chart type") self.options["chart_type"] = value
218,562
Set the custom line color map. Args: values (list): list of colors. Raises: TypeError: Custom line color map must be a list.
def custom_line_color_map(self, values): if not isinstance(values, list): raise TypeError("custom_line_color_map must be a list") self.options["custom_line_color_map"] = values
218,563
Set the legend labels. Args: values (list): list of labels. Raises: ValueError: legend must be a list of labels.
def legend(self, values): if not isinstance(values, list): raise TypeError("legend must be a list of labels") self.options["legend"] = values
218,564
Set the markers. Args: values (list): list of marker objects. Raises: ValueError: Markers must be a list of objects.
def markers(self, values): if not isinstance(values, list): raise TypeError("Markers must be a list of objects") self.options["markers"] = values
218,565
Show confidence band? See metricsgraphics documentation Args: value (list): strings Raises: TypeError: show_confidence_band must be a list of strings.
def show_confidence_band(self, value): if not isinstance(values, list): raise TypeError("show_confidence_band must be a list of strings") self.options["show_confidence_band"] = values
218,566
Set margin of the chart. Args: top (int): size of top margin in pixels. bottom (int): size of bottom margin in pixels. left (int): size of left margin in pixels. right (int): size of right margin in pixels. buffer_size (int): buffer size in pixels between the chart and margins.
def set_margin(self, top=40, bottom=30, left=50, right=10, buffer_size=8): self.set_integer("top", top) self.set_integer("bottom", bottom) self.set_integer("left", left) self.set_integer("right", right) self.set_integer("buffer", buffer_size)
218,588
Set the size of the chart. Args: height (int): height in pixels. width (int): width in pixels. height_threshold (int): height threshold in pixels width_threshold (int): width threshold in pixesls
def set_size(self, height=220, width=350, height_threshold=120, width_threshold=160): self.set_integer("height", height) self.set_integer("width", width) self.set_integer("small_height_threshold", height_threshold) self.set_integer("small_width_threshold", width_threshold)
218,589
Formats props for the React template. Args: props (dict): properties to be written to the template. Returns: Two lists, one containing variable names and the other containing a list of props to be fed to the React template.
def format_props(props, prop_template="{{k}} = { {{v}} }", delim="\n"): vars_ = [] props_ = [] for k, v in list(props.items()): vars_.append(Template("var {{k}} = {{v}};").render(k=k,v=json.dumps(v))) props_.append(Template(prop_template).render(k=k, v=k)) return "\n".join(vars_), delim.join(props_)
218,591
register UILayout with the flask app create a function that will send props for each UILayout Args: layouts (dict): dict of UILayout objects by name app (object): flask app url (string): address of props; default is /api/props/
def register_layouts(layouts, app, url="/api/props/", brand="Pyxley"): def props(name): if name not in layouts: # cast as list for python3 name = list(layouts.keys())[0] return jsonify({"layouts": layouts[name]["layout"]}) def apps(): paths = [] for i, k in enumerate(layouts.keys()): if i == 0: paths.append({ "path": "/", "label": layouts[k].get("title", k) }) paths.append({ "path": "/"+k, "label": layouts[k].get("title", k) }) return jsonify({"brand": brand, "navlinks": paths}) app.add_url_rule(url+"<string:name>/", view_func=props) app.add_url_rule(url, view_func=apps)
218,605
create a mg line plot Args: df (pandas.DataFrame): data to plot
def create_line_plot(df): fig = Figure("/mg/line_plot/", "mg_line_plot") fig.graphics.transition_on_update(True) fig.graphics.animate_on_load() fig.layout.set_size(width=450, height=200) fig.layout.set_margin(left=40, right=40) return LineChart(df, fig, "Date", ["value"], init_params={"Data": "Steps"}, timeseries=True)
218,630
create a mg line plot Args: df (pandas.DataFrame): data to plot
def create_histogram(df): fig = Figure("/mg/histogram/", "mg_histogram") fig.layout.set_size(width=450, height=200) fig.layout.set_margin(left=40, right=40) fig.graphics.animate_on_load() # Make a histogram with 20 bins return Histogram(df, fig, "value", 20, init_params={"Data": "Steps"})
218,631
create a mg line plot Args: df (pandas.DataFrame): data to plot
def create_scatterplot(df): fig = Figure("/mg/scatter/", "mg_scatter") fig.layout.set_size(width=450, height=200) fig.layout.set_margin(left=40, right=40) fig.graphics.animate_on_load() init_params = {"Data": "Steps"} def get_data(): y = request.args.get("Data", "Steps") return jsonify(ScatterPlot.to_json(df, "Steps", y)) # Make a histogram with 20 bins return ScatterPlot(df, fig, "Steps", "Distance", init_params={}, route_func=get_data)
218,632
Set x-axis limits. Accepts a two-element list to set the x-axis limits. Args: xlim (list): lower and upper bounds Raises: ValueError: xlim must contain two elements ValueError: Min must be less than max
def set_xlim(self, xlim): if len(xlim) != 2: raise ValueError("xlim must contain two elements") if xlim[1] < xlim[0]: raise ValueError("Min must be less than Max") self.options["min_x"] = xlim[0] self.options["max_x"] = xlim[1]
218,635
Set y-axis limits. Accepts a two-element list to set the y-axis limits. Args: ylim (list): lower and upper bounds Raises: ValueError: ylim must contain two elements ValueError: Min must be less than max
def set_ylim(self, ylim): if len(ylim) != 2: raise ValueError("ylim must contain two elements") if ylim[1] < ylim[0]: raise ValueError("Min must be less than Max") self.options["min_y"] = ylim[0] self.options["max_y"] = ylim[1]
218,636
basic line plot dataframe to json for a line plot Args: df (pandas.DataFrame): input dataframe xypairs (list): list of tuples containing column names mode (str): plotly.js mode (e.g. lines) layout (dict): layout parameters config (dict): config parameters
def line_plot(df, xypairs, mode, layout={}, config=_BASE_CONFIG): if df.empty: return { "x": [], "y": [], "mode": mode } _data = [] for x, y in xypairs: if (x in df.columns) and (y in df.columns): _data.append( { "x": df[x].values.tolist(), "y": df[y].values.tolist(), "mode": mode } ) return { "data": _data, "layout": layout, "config": config }
218,639
Return the function call result decoded. Args: function_name (str): One of the existing functions described in the contract interface. data (bin): The encoded result from calling `function_name`. Return: List[object]: The values returned by the call to `function_name`.
def decode_function_result(self, function_name, data): description = self.function_data[function_name] arguments = decode_abi(description['decode_types'], data) return arguments
219,309
Return a dictionary representation the log. Note: This function won't work with anonymous events. Args: log_topics (List[bin]): The log's indexed arguments. log_data (bin): The encoded non-indexed arguments.
def decode_event(self, log_topics, log_data): # https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#function-selector-and-argument-encoding # topics[0]: keccak(EVENT_NAME+"("+EVENT_ARGS.map(canonical_type_of).join(",")+")") # If the event is declared as anonymous the topics[0] is not generated; if not len(log_topics) or log_topics[0] not in self.event_data: raise ValueError('Unknown log type') event_id_ = log_topics[0] event = self.event_data[event_id_] # data: abi_serialise(EVENT_NON_INDEXED_ARGS) # EVENT_NON_INDEXED_ARGS is the series of EVENT_ARGS that are not # indexed, abi_serialise is the ABI serialisation function used for # returning a series of typed values from a function. unindexed_types = [ type_ for type_, indexed in zip(event['types'], event['indexed']) if not indexed ] unindexed_args = decode_abi(unindexed_types, log_data) # topics[n]: EVENT_INDEXED_ARGS[n - 1] # EVENT_INDEXED_ARGS is the series of EVENT_ARGS that are indexed indexed_count = 1 # skip topics[0] result = {} for name, type_, indexed in zip( event['names'], event['types'], event['indexed']): if indexed: topic_bytes = utils.zpad( utils.encode_int(log_topics[indexed_count]), 32, ) indexed_count += 1 value = decode_single(process_type(type_), topic_bytes) else: value = unindexed_args.pop(0) result[name] = value result['_event_type'] = utils.to_string(event['name']) return result
219,311
Return a dictionary representation of the Log instance. Note: This function won't work with anonymous events. Args: log (processblock.Log): The Log instance that needs to be parsed. noprint (bool): Flag to turn off priting of the decoded log instance.
def listen(self, log, noprint=True): try: result = self.decode_event(log.topics, log.data) except ValueError: return # api compatibility if not noprint: print(result) return result
219,312
Return the compile contract code. Args: filepath (str): The path to the contract source code. libraries (dict): A dictionary mapping library name to it's address. combined (str): The argument for solc's --combined-json. optimize (bool): Enable/disables compiler optimization. Returns: dict: A mapping from the contract name to it's binary.
def compile_file(filepath, libraries=None, combined='bin,abi', optimize=True, extra_args=None): workdir, filename = os.path.split(filepath) args = solc_arguments( libraries=libraries, combined=combined, optimize=optimize, extra_args=extra_args) args.insert(0, get_compiler_path()) args.append(filename) output = subprocess.check_output(args, cwd=workdir) return solc_parse_output(output)
219,642
gpp -- model for the graph partitioning problem Parameters: - V: set/list of nodes in the graph - E: set/list of edges in the graph Returns a model, ready to be solved.
def gpp(V,E): model = Model("gpp") x = {} y = {} for i in V: x[i] = model.addVar(vtype="B", name="x(%s)"%i) for (i,j) in E: y[i,j] = model.addVar(vtype="B", name="y(%s,%s)"%(i,j)) model.addCons(quicksum(x[i] for i in V) == len(V)/2, "Partition") for (i,j) in E: model.addCons(x[i] - x[j] <= y[i,j], "Edge(%s,%s)"%(i,j)) model.addCons(x[j] - x[i] <= y[i,j], "Edge(%s,%s)"%(j,i)) model.setObjective(quicksum(y[i,j] for (i,j) in E), "minimize") model.data = x return model
220,064
gpp -- model for the graph partitioning problem in soco Parameters: - V: set/list of nodes in the graph - E: set/list of edges in the graph Returns a model, ready to be solved.
def gpp_soco(V,E): model = Model("gpp model -- soco") x,s,z = {},{},{} for i in V: x[i] = model.addVar(vtype="B", name="x(%s)"%i) for (i,j) in E: s[i,j] = model.addVar(vtype="C", name="s(%s,%s)"%(i,j)) z[i,j] = model.addVar(vtype="C", name="z(%s,%s)"%(i,j)) model.addCons(quicksum(x[i] for i in V) == len(V)/2, "Partition") for (i,j) in E: model.addCons((x[i] + x[j] -1)*(x[i] + x[j] -1) <= s[i,j], "S(%s,%s)"%(i,j)) model.addCons((x[j] - x[i])*(x[j] - x[i]) <= z[i,j], "Z(%s,%s)"%(i,j)) model.addCons(s[i,j] + z[i,j] == 1, "P(%s,%s)"%(i,j)) # # triangle inequalities (seem to make model slower) # for i in V: # for j in V: # for k in V: # if (i,j) in E and (j,k) in E and (i,k) in E: # print("\t***",(i,j,k) # model.addCons(z[i,j] + z[j,k] + z[i,k] <= 2, "T1(%s,%s,%s)"%(i,j,k)) # model.addCons(z[i,j] + s[j,k] + s[i,k] <= 2, "T2(%s,%s,%s)"%(i,j,k)) # model.addCons(s[i,j] + s[j,k] + z[i,k] <= 2, "T3(%s,%s,%s)"%(i,j,k)) # model.addCons(s[i,j] + z[j,k] + s[i,k] <= 2, "T4(%s,%s,%s)"%(i,j,k)) model.setObjective(quicksum(z[i,j] for (i,j) in E), "minimize") model.data = x,s,z return model
220,065
make_data: prepare data for a random graph Parameters: - n: number of vertices - prob: probability of existence of an edge, for each pair of vertices Returns a tuple with a list of vertices and a list edges.
def make_data(n,prob): V = range(1,n+1) E = [(i,j) for i in V for j in V if i < j and random.random() < prob] return V,E
220,066
maxflow: maximize flow from source to sink, taking into account arc capacities M Parameters: - V: set of vertices - M[i,j]: dictionary or capacity for arcs (i,j) - source: flow origin - sink: flow target Returns a model, ready to be solved.
def maxflow(V,M,source,sink): # create max-flow underlying model, on which to find cuts model = Model("maxflow") f = {} # flow variable for (i,j) in M: f[i,j] = model.addVar(lb=-M[i,j], ub=M[i,j], name="flow(%s,%s)"%(i,j)) cons = {} for i in V: if i != source and i != sink: cons[i] = model.addCons( quicksum(f[i,j] for j in V if i<j and (i,j) in M) - \ quicksum(f[j,i] for j in V if i>j and (j,i) in M) == 0, "FlowCons(%s)"%i) model.setObjective(quicksum(f[i,j] for (i,j) in M if i==source), "maximize") # model.write("tmp.lp") model.data = f,cons return model
220,067