docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Compute value Tensor v.
Args:
memory_antecedent: a Tensor with dimensions
{memory_input_dim} + other_dims
Returns:
a Tensor with dimensions
memory_heads_dims + {value_dim} + other_dims | def compute_v(self, memory_antecedent):
if self.shared_kv:
raise ValueError("compute_v cannot be called with shared_kv")
ret = mtf.einsum(
[memory_antecedent, self.wv], reduced_dims=[self.memory_input_dim])
if self.combine_dims:
ret = mtf.replace_dimensions(ret, ret.shape.dims[-1], self.v_dims)
return ret | 213,547 |
Compute output of multihead attention.
Args:
o: a Tensor with dimensions
query_heads_dims + {value_dim} + other_dims
output_shape: an optional Shape
Returns:
a Tensor with shape:
{output_dim} + other_dims | def compute_output(self, o, output_shape=None):
if self.combine_dims:
o = mtf.transpose(o, o.shape - self.o_dims + self.o_dims)
o = mtf.replace_dimensions(o, self.o_dims, self.wo.shape.dims[0])
reduced_dims = [self.wo.shape.dims[0]]
else:
reduced_dims = self.o_dims
return mtf.einsum(
[o, self.wo], output_shape=output_shape, reduced_dims=reduced_dims) | 213,548 |
Create a T2tVocabulary.
Args:
filepath: a string | def __init__(self, filepath):
self._filepath = filepath
self._subword_text_encoder = text_encoder.SubwordTextEncoder(filepath) | 213,550 |
Encode a tf.Scalar string to a tf.Tensor.
This will be necessary for on-the-fly tokenization.
Args:
s: a tf.Scalar with dtype tf.string
Returns:
a 1d tf.Tensor with dtype tf.int32 | def encode_tf(self, s):
ids = subword_text_encoder_ops.subword_text_encoder_encode(
s, self._filepath)
# the c++ op apppends 1=EOS - drop it.
return ids[:-1] | 213,551 |
Create a layer stack.
Args:
include_encdec_attention: a boolean
num_layers: an integer
d_ff: an integer
num_heads: an integer
d_kv: an integer
dropout_rate: a float
Returns:
a LayerStack | def simple_layer_stack(include_encdec_attention,
num_layers=6,
d_ff=2048,
num_heads=8,
d_kv=128,
dropout_rate=0.1):
ret = []
for _ in xrange(num_layers):
ret.append(
transformer_layers.SelfAttention(
num_heads=num_heads,
key_value_size=d_kv,
attention_kwargs={"dropout_rate": dropout_rate}))
if include_encdec_attention:
ret.append(
transformer_layers.EncDecAttention(
num_heads=num_heads,
key_value_size=d_kv,
attention_kwargs={"dropout_rate": dropout_rate}))
ret.append(
transformer_layers.DenseReluDense(
hidden_size=d_ff,
dropout_rate=dropout_rate))
return transformer.LayerStack(ret) | 213,552 |
The model.
Args:
image: tf.Tensor with shape [batch, 28*28]
labels: a tf.Tensor with shape [batch] and dtype tf.int32
mesh: a mtf.Mesh
Returns:
logits: a mtf.Tensor with shape [batch, 10]
loss: a mtf.Tensor with shape [] | def mnist_model(image, labels, mesh):
batch_dim = mtf.Dimension("batch", FLAGS.batch_size)
row_blocks_dim = mtf.Dimension("row_blocks", 4)
col_blocks_dim = mtf.Dimension("col_blocks", 4)
rows_dim = mtf.Dimension("rows_size", 7)
cols_dim = mtf.Dimension("cols_size", 7)
classes_dim = mtf.Dimension("classes", 10)
one_channel_dim = mtf.Dimension("one_channel", 1)
x = mtf.import_tf_tensor(
mesh, tf.reshape(image, [FLAGS.batch_size, 4, 7, 4, 7, 1]),
mtf.Shape(
[batch_dim, row_blocks_dim, rows_dim,
col_blocks_dim, cols_dim, one_channel_dim]))
x = mtf.transpose(x, [
batch_dim, row_blocks_dim, col_blocks_dim,
rows_dim, cols_dim, one_channel_dim])
# add some convolutional layers to demonstrate that convolution works.
fh_dim = mtf.Dimension("fh", 9)
fw_dim = mtf.Dimension("fw", 9)
filters1_dim = mtf.Dimension("filters1", 16)
filters2_dim = mtf.Dimension("filters2", 16)
kernel1 = mtf.get_variable(
mesh, "kernel1", [fh_dim, fw_dim, one_channel_dim, filters1_dim])
kernel2 = mtf.get_variable(
mesh, "kernel2", [fh_dim, fw_dim, filters1_dim, filters2_dim])
f1 = mtf.relu(mtf.conv2d_with_blocks(
x, kernel1, strides=[1, 1, 1, 1], padding="SAME",
h_blocks_dim=row_blocks_dim, w_blocks_dim=col_blocks_dim))
f2 = mtf.relu(mtf.conv2d_with_blocks(
f1, kernel2, strides=[1, 1, 1, 1], padding="SAME",
h_blocks_dim=row_blocks_dim, w_blocks_dim=col_blocks_dim))
x = mtf.reduce_mean(f2, reduced_dim=filters2_dim)
# add some fully-connected dense layers.
hidden_dim1 = mtf.Dimension("hidden1", FLAGS.hidden_size)
hidden_dim2 = mtf.Dimension("hidden2", FLAGS.hidden_size)
h1 = mtf.layers.dense(
x, hidden_dim1,
reduced_dims=x.shape.dims[-4:],
activation=mtf.relu, name="hidden1")
h2 = mtf.layers.dense(
h1, hidden_dim2,
activation=mtf.relu, name="hidden2")
logits = mtf.layers.dense(h2, classes_dim, name="logits")
if labels is None:
loss = None
else:
labels = mtf.import_tf_tensor(
mesh, tf.reshape(labels, [FLAGS.batch_size]), mtf.Shape([batch_dim]))
loss = mtf.layers.softmax_cross_entropy_with_logits(
logits, mtf.one_hot(labels, classes_dim), classes_dim)
loss = mtf.reduce_mean(loss)
return logits, loss | 213,558 |
Prints the solution associated with solver.
If solver has already had Solve() called on it, prints the solution. This
includes each variable and its assignment, along with the objective function
and its optimal value.
If solver has not had Solve() called on it, or there is no feasible solution,
this will probably crash.
Args:
model: A pywrapcp.CpModel object.
solver: A pywrapcp.CpSolver object.
Returns:
Nothing, but prints the solution associated with solver. | def print_solution(model, solver):
model_proto = model.Proto()
response_proto = solver.ResponseProto()
variables_in_objective_map = {}
maximization = False
if model_proto.HasField('objective'):
objective = model_proto.objective
for i in range(len(objective.vars)):
variables_in_objective_map[objective.vars[i]] = objective.coeffs[i]
if objective.scaling_factor < 0.0:
maximization = True
variable_assignments = []
variables_in_objective = []
num_vars = len(model_proto.variables)
for var_index in range(num_vars):
if not model_proto.variables[var_index].name:
continue
variable_name = model_proto.variables[var_index].name
if var_index in variables_in_objective_map:
coefficient = variables_in_objective_map[var_index]
if coefficient:
if maximization:
coefficient *= -1
if coefficient < 0:
variables_in_objective.append(' - {} * {}'.format(
-coefficient, variable_name))
elif coefficient > 0:
variables_in_objective.append(' + {} * {}'.format(
coefficient, variable_name))
variable_assignments.append(' {} = {}\n'.format(
variable_name, response_proto.solution[var_index]))
print(''.join(variable_assignments), end='')
# Strip the leading '+' if it exists.
if variables_in_objective and variables_in_objective[0][1] == '+':
variables_in_objective[0] = variables_in_objective[0][2:]
print('{}:{}'.format('Maximize' if maximization else 'Minimize',
''.join(variables_in_objective)))
print('Objective value: {}\n'.format(solver.ObjectiveValue())) | 213,564 |
Name for a local variable.
Args:
splittable_dimensions: frozenset of names of splittable dimensions.
assignment: dict from names of splittable dimensions to names of mesh
dimensions.
Returns:
A string, the variable name. | def _local_var_name(splittable_dimensions, assignment):
assignment_string = []
for splittable in sorted(splittable_dimensions):
if splittable in assignment:
assignment_string.append("{}:{}".format(splittable,
assignment[splittable]))
else:
assignment_string.append("{}".format(splittable))
return "y_(" + ",".join(assignment_string) + ")" | 213,565 |
Generates all ways to map splittable dimensions to mesh dimensions.
Args:
splittable_dimensions: a frozenset of the names of splittable dimensions.
mesh_dimension_to_size: a dictionary from mesh dimension name to size.
Returns:
A list of the valid assignments. Each assignment is a dict keyed by every
splittable dimension, whose value is either a mesh dimension or None. | def _generate_assignments(splittable_dimensions, mesh_dimension_to_size):
assignments = []
for assignment_size in six.moves.xrange(
1 + min(len(splittable_dimensions), len(mesh_dimension_to_size))):
for s_dims_chosen in itertools.combinations(splittable_dimensions,
assignment_size):
for m_dims_chosen in itertools.permutations(mesh_dimension_to_size,
assignment_size):
assignments.append(dict(zip(s_dims_chosen, m_dims_chosen)))
return assignments | 213,566 |
Uses a auto_mtf.memory_estimator to set up the integer program.
Args:
memory_estimator: a memory_estimator.MemoryEstimator.
scheduler_alg: an optional string, see scheduler.MinimizePeakMemory. | def __init__(self, memory_estimator, scheduler_alg="LIST"):
self._estimator = memory_estimator
self._scheduler_alg = scheduler_alg
self._layout_validator = self._estimator.get_layout_validator()
self._graph = self._estimator.get_graph_interface()
self._memory_contents = None # [frozenset(string)]
# Initialize the model.
self._model = cp_model.CpModel()
self._preprocess_input()
self._initialize_variables()
self._add_constraints()
self._build_objective_function() | 213,567 |
Solves the current integer program and returns the computed layout.
Args:
print_solution: An optional boolean indicating whether to print the full
solution in human-readable format.
Returns:
The computed layout (as a string).
Raises:
SolverError: the internal solver could not find a solution, or the
solution found is infeasible. | def solve(self, print_solution=False):
# Solve and see how well the solver did.
self._cp_solver = cp_model.CpSolver()
status = self._cp_solver.Solve(self._model)
if status != cp_model.OPTIMAL:
if status == cp_model.FEASIBLE:
logging.warning("A potentially suboptimal solution was found.")
else:
logging.error("Solver returned status %d.", status)
raise SolverError("The solver could not solve the problem and returned "
"status {}.".format(status))
# TODO(joshuawang): Verify the solver's solution.
if print_solution:
print_cp_model_solution.print_solution(self._model, self._cp_solver)
# Reconstruct layout from solution.
layout = []
for mtf_dimension_name in (
self._layout_validator.splittable_mtf_dimension_names):
for mesh_dimension_name in (
self._layout_validator.mesh_dimension_name_to_size):
value = self._cp_solver.Value(self._global_vars[(mtf_dimension_name,
mesh_dimension_name)])
if value: # Value is integer.
layout.append(mtf_dimension_name + ":" + mesh_dimension_name)
layout.sort()
return ";".join(layout) | 213,572 |
The current objective value for the given layout.
TODO(joshuawang): The current function does not check that the given
layout is valid.
Args:
layout: a string, representing a layout to evaluate (e.g.
"d_ff:m1;heads:m2").
Returns:
A float, the objective value. | def evaluate_layout(self, layout):
layout_dict = {}
if layout:
for pair in layout.split(";"):
mtf_dimension_name, mesh_dimension_name = pair.split(":", 1)
if (mtf_dimension_name in
self._layout_validator.splittable_mtf_dimension_names):
layout_dict[mtf_dimension_name] = mesh_dimension_name
else:
logging.warning("Skipping unsplittable dimension %s.",
mtf_dimension_name)
tensor_memory = {} # {string: float}, size of each tensor under our layout
for tensor_name in self._graph.get_all_tensor_names():
if self._graph.is_tensor_on_canonical_device(tensor_name):
tensor_memory[tensor_name] = self._graph.get_tensor_size(
tensor_name, layout_dict,
self._layout_validator.mesh_dimension_name_to_size)
else:
tensor_memory[tensor_name] = 0.0
peak_memory_usage = 0.0
for tensor_names in self._get_memory_contents():
memory_usage = 0.0
for tensor_name in tensor_names:
memory_usage += tensor_memory[tensor_name]
peak_memory_usage = max(peak_memory_usage, memory_usage)
return peak_memory_usage | 213,573 |
Choose a device for the input variable.
Args:
var: an Variable.
Returns:
The device for placing the var. | def device_function(self, var):
if var.type not in ('Variable', 'VariableV2', 'VarHandleOp'):
tf.logging.debug('Place {} on last device: {}.'.format(
var.name, self._last_device))
return self._last_device
shape = tf.TensorShape(var.get_attr('shape'))
assert shape.num_elements() is not None
size = var.get_attr('dtype').size
mem, device = heapq.heappop(self._mem_device_heap)
mem += shape.num_elements() * size
heapq.heappush(self._mem_device_heap, (mem, device))
tf.logging.debug('Place variable {} on {} and consumes {} Bytes.'.format(
var.name, device, mem))
self._last_device = device
return device | 213,575 |
Encode from strings to token ids.
Args:
dataset: a tf.data.Dataset with string values.
vocabulary: a mesh_tensorflow.transformer.Vocabulary
Returns:
a tf.data.Dataset with integer-vector values ending in EOS=1 | def encode_dataset(dataset, vocabulary):
def encode(features):
return {k: vocabulary.encode_tf(v) for k, v in features.items()}
return dataset.map(encode, num_parallel_calls=tf.data.experimental.AUTOTUNE) | 213,580 |
Reads a tensorflow_datasets dataset.
Args:
dataset_name: a string
text2self: a boolean
tfds_data_dir: a boolean
dataset_split: a string
batch_size: an integer
sequence_length: an integer
vocabulary: ignored
Returns:
a tf.data.Dataset of batches | def pretokenized_tfds_dataset(dataset_name=gin.REQUIRED,
text2self=gin.REQUIRED,
tfds_data_dir=gin.REQUIRED,
dataset_split=gin.REQUIRED,
batch_size=gin.REQUIRED,
sequence_length=gin.REQUIRED,
vocabulary=None):
del vocabulary
dataset = tfds.load(
dataset_name,
split=dataset_split,
as_supervised=True,
data_dir=tfds_data_dir)
if dataset_split == "train":
dataset = dataset.repeat()
dataset = dataset.shuffle(1000)
def shift_and_append_eos(t):
# tfds encoder does not reserve an EOS token, so we need to shift
# in order to do so. We also append EOS=1.
return tf.concat([t + 1, [1]], 0)
def feature_map(inputs, targets):
if text2self:
return {"targets": shift_and_append_eos(targets)}
else:
return {"inputs": shift_and_append_eos(inputs),
"targets": shift_and_append_eos(targets)}
dataset = dataset.map(feature_map,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return pack_and_batch(dataset, batch_size, sequence_length) | 213,581 |
Turns a supervised dataset into a dataset with a feature dictionary.
if text2self, then the features dictionary contains a "targets" key.
else, the features dictionary contains "inputs" and "targets" keys.
Args:
dataset: a tf.data.Dataset
text2self: a boolean
Returns:
a tf.data.Dataset | def supervised_to_dict(dataset, text2self):
def my_fn(inputs, targets):
if text2self:
return {"targets": targets}
else:
return {"inputs": inputs, "targets": targets}
return dataset.map(my_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) | 213,584 |
Encode all features.
Args:
dataset: a tf.data.Dataset
vocabulary: a vocabulary.Vocabulary
Returns:
a tf.data.Dataset | def encode_all_features(dataset, vocabulary):
def my_fn(features):
ret = {}
for k, v in features.items():
v = vocabulary.encode_tf(v)
v = tf.concat([tf.to_int64(v), [1]], 0)
ret[k] = v
return ret
return dataset.map(my_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) | 213,585 |
Loads the Tensor2tensor dataset specified by dataset_name.
Args:
dataset_name: TensorFlow Datasets dataset name.
text2self: a boolean
data_dir: string, data_dir for TensorFlow Datasets
dataset_split: a string - "train" or "dev"
batch_size: an integer
sequence_length: an integer
vocabulary: ignored
Returns:
A tf.data.Dataset of batches | def pretokenized_t2t_dataset(dataset_name=gin.REQUIRED,
text2self=False,
data_dir=gin.REQUIRED,
dataset_split="train",
batch_size=gin.REQUIRED,
sequence_length=gin.REQUIRED,
vocabulary=None):
del vocabulary
filepattern = os.path.join(
data_dir, dataset_name + "-" + dataset_split + "-*")
filenames = tf.gfile.Glob(filepattern)
tf.logging.info("Found %s files matching %s" % (len(filenames), filepattern))
if not filenames:
raise ValueError("No matching files found")
dataset = pretokenized_tfrecord_dataset(
filenames=filenames,
text2self=text2self,
eos_included=True,
repeat=dataset_split == "train",
batch_size=batch_size,
sequence_length=sequence_length)
if dataset_split == "train":
dataset = dataset.shuffle(1000)
return dataset | 213,587 |
Helper-function for packing a dataset which has already been batched.
See pack_dataset()
Uses tf.while_loop. Slow.
Args:
dataset: a dataset containing padded batches of examples.
keys: a list of strings
length: an integer
Returns:
a dataset. | def _pack_with_tf_ops(dataset, keys, length):
empty_example = {}
for k in keys:
empty_example[k] = tf.zeros([0], dtype=tf.int32)
empty_example[k + "_position"] = tf.zeros([0], dtype=tf.int32)
keys_etc = empty_example.keys()
def write_packed_example(partial, outputs):
new_partial = empty_example.copy()
new_outputs = {}
for k in keys_etc:
new_outputs[k] = outputs[k].write(
outputs[k].size(),
tf.pad(partial[k], [[0, length - tf.size(partial[k])]]))
return new_partial, new_outputs
def map_fn(x):
partial = empty_example.copy()
i = tf.zeros([], dtype=tf.int32)
dynamic_batch_size = tf.shape(x[keys[0]])[0]
outputs = {}
for k in keys:
outputs[k] = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, element_shape=[length])
outputs[k + "_position"] = tf.TensorArray(
tf.int32, size=0, dynamic_size=True, element_shape=[length])
def cond_fn(i, partial, outputs):
del partial, outputs
return i < dynamic_batch_size
def body_fn(i, partial, outputs):
can_append = True
one_example = {}
for k in keys:
val = tf.cast(x[k][i], tf.int32)
val = val[:tf.reduce_sum(tf.cast(tf.not_equal(val, 0), tf.int32))]
one_example[k] = val
for k in keys:
can_append = tf.logical_and(
can_append,
tf.less_equal(
tf.size(partial[k]) + tf.size(one_example[k]), length))
def false_fn():
return write_packed_example(partial, outputs)
def true_fn():
return partial, outputs
partial, outputs = tf.cond(can_append, true_fn, false_fn)
new_partial = {}
for k in keys:
new_seq = one_example[k][:length]
new_seq_len = tf.size(new_seq)
new_partial[k] = tf.concat([partial[k], new_seq], 0)
new_partial[k + "_position"] = tf.concat(
[partial[k + "_position"],
tf.range(new_seq_len, dtype=tf.int32)], 0)
partial = new_partial
return i+1, partial, outputs
i, partial, outputs = tf.while_loop(
cond_fn, body_fn, (i, partial, outputs),
back_prop=False,
shape_invariants=(
tf.TensorShape([]),
{k: tf.TensorShape([None]) for k in keys_etc},
{k: tf.TensorShape(None) for k in keys_etc},
))
partial, outputs = write_packed_example(partial, outputs)
packed = {k: outputs[k].stack() for k in keys_etc}
for k in keys:
packed[k + "_segmentation"] = (
tf.cumsum(
tf.cast(tf.equal(packed[k + "_position"], 0), tf.int32), axis=1) *
tf.cast(tf.not_equal(packed[k], 0), tf.int32))
return packed
dataset = dataset.map(map_fn,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset.flat_map(tf.data.Dataset.from_tensor_slices) | 213,589 |
Helper-function for packing a dataset which has already been batched.
See pack_dataset()
Relies on custom ops which require a custom compiled binary.
Faster than _pack_with_tf_ops(), and denser packing.
Args:
dataset: a dataset containing padded batches of examples.
keys: a list of strings (must have length 1 or 2)
length: an integer
Returns:
a dataset. | def _pack_with_custom_ops(dataset, keys, length):
from tensor2tensor.data_generators.ops import pack_sequences_ops # pylint: disable=g-import-not-at-top
# faster and better packing but requires custom-built binary.
if len(keys) == 1:
k1, = keys
k2 = k1
elif len(keys) == 2:
k1, k2 = keys
else:
raise ValueError("must have 1 or 2 keys")
def map_fn_custom(x):
(k1_packed, k1_segmengation, k1_position,
k2_packed, k2_segmentation, k2_position) = (
pack_sequences_ops.pack_sequences2(x[k1], x[k2], length))
packed = {
k1: k1_packed,
k1 + "_segmentation": k1_segmengation,
k1 + "_position": k1_position,
}
if len(keys) == 2:
packed.update({
k2: k2_packed,
k2 + "_segmentation": k2_segmentation,
k2 + "_position": k2_position,
})
return packed
dataset = dataset.map(map_fn_custom,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.flat_map(tf.data.Dataset.from_tensor_slices)
return dataset | 213,590 |
Trim/pad to the first axis of t to be of size length.
Args:
t: a tf.Tensor
length: an integer
Returns:
a tf.Tensor | def _trim_and_pad(t, length):
t = t[:length]
paddings = [[0, length - tf.shape(t)[0]]] + [[0, 0]]*(t.get_shape().ndims - 1)
t = tf.pad(t, paddings)
return t | 213,591 |
Converts input to a Dimension.
Args:
d: Dimension, tuple (string, int), or None.
Returns:
Dimension or None.
Raises:
ValueError: If d cannot be converted to a Dimension. | def convert_to_dimension(d):
if d is None:
return None
if isinstance(d, Dimension):
if not isinstance(d.name, str) or not isinstance(d.size, int):
raise ValueError("Bad dimension %s" % (d,))
return d
name, size = d
if isinstance(name, str) and isinstance(size, int):
return Dimension(name, size)
else:
raise ValueError("could not convert %s to Dimension" % (d,)) | 213,593 |
Converts input to a Shape.
Args:
x: Shape, str, or None.
Returns:
Shape or None.
Raises:
ValueError: If x cannot be converted to a Shape. | def convert_to_shape(x):
if x is None:
return None
if isinstance(x, Shape):
return x
if isinstance(x, str):
x = _parse_string_to_list_of_pairs(x, seconds_to_int=True)
return Shape(x) | 213,594 |
Converts input to a LayoutRules.
Args:
x: LayoutRules, str, or set-like of string pairs.
Returns:
LayoutRules. | def convert_to_layout_rules(x):
if isinstance(x, LayoutRules):
return x
if isinstance(x, str):
x = _parse_string_to_list_of_pairs(x)
return LayoutRules(x) | 213,595 |
Convert list elements to laid-out-tensors when possible.
Args:
xs: a list
Returns:
a list | def convert_args_to_laid_out_tensors(xs):
ret = []
for x in xs:
if hasattr(x, "to_laid_out_tensor"):
ret.append(x.to_laid_out_tensor())
else:
ret.append(x)
return ret | 213,596 |
Component-wise operation with no broadcasting.
Args:
tf_fn: a component-wise function taking n tf.Tensor inputs and producing
a tf.Tensor output
xs: n Tensors
output_dtype: an optional dtype
grad_function: an optional python function
name: an optional string
Returns:
a Tensor | def cwise(tf_fn, xs, output_dtype=None, grad_function=None, name=None):
return slicewise(
tf_fn, xs, output_dtype=output_dtype, splittable_dims=xs[0].shape.dims,
grad_function=grad_function, name=name or "cwise") | 213,598 |
Convert argument of a binary operation to Tensors.
Args:
x1: a Tensor or something convertible to a tf Scalar
x2: a Tensor or something convertible to a tf Scalar
Returns:
new_x1: a Tensor
new_x2: a Tensor
Raises:
ValueError: on failure | def binary_arguments_to_tensors(x1, x2):
if not isinstance(x1, Tensor) and not isinstance(x2, Tensor):
raise ValueError("at least one of x1 and x2 must be an mtf Tensor")
elif isinstance(x1, Tensor) and isinstance(x2, Tensor):
return x1, x2
elif isinstance(x1, Tensor):
return x1, import_tf_tensor(
x1.mesh, tf.convert_to_tensor(x2, dtype=x1.dtype), Shape([]))
else:
return import_tf_tensor(x2.mesh, tf.convert_to_tensor(x1, dtype=x2.dtype),
Shape([])), x2 | 213,612 |
Binary minimum with broadcsting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor | def minimum(x1, x2, output_shape=None, name=None):
output_shape = convert_to_shape(output_shape)
with tf.name_scope(name, default_name="minimum"):
x1, x2 = binary_arguments_to_tensors(x1, x2)
return MinMaxOperation(
tf.minimum, x1, x2, output_shape=_infer_binary_broadcast_shape(
x1.shape, x2.shape, output_shape)).outputs[0] | 213,623 |
Returns slicewise function and reduced mesh dimensions.
Args:
input_shape: a Shape
output_shape: a Shape
input_tensor_layout: a TensorLayout
reduction_fn_string: "SUM" or "MAX"
Returns:
reduce_slice_fn: a function from tf.Tensor to tf.Tensor
reduced_mesh_axes: a list of integers | def _reduce_helper(input_shape,
output_shape,
input_tensor_layout,
reduction_fn_string="SUM"):
reduce_dims_indices = [
i for i, d in enumerate(input_shape.dims) if d not in output_shape.dims]
reduced_input_shape = Shape([
d for d in input_shape.dims if d in output_shape.dims])
perm = [reduced_input_shape.dims.index(d) for d in output_shape.dims]
def reduce_slice_fn(xslice):
ret = xslice
if reduce_dims_indices:
ret = reduction_fn(reduction_fn_string)(xslice, reduce_dims_indices)
if perm != list(xrange(len(perm))):
ret = tf.transpose(ret, perm)
return ret
reduced_mesh_axes = []
for i in reduce_dims_indices:
mesh_axis = input_tensor_layout[i]
if mesh_axis is not None:
reduced_mesh_axes.append(mesh_axis)
return reduce_slice_fn, reduced_mesh_axes | 213,625 |
Like tf.split.
Args:
x: a Tensor
split_dim: a Dimension in x.shape.dims
num_or_size_splits: either an integer dividing split_dim.size
or a list of integers adding up to split_dim.size
name: an optional string
Returns:
a list of Tensors. | def split(x, split_dim, num_or_size_splits, name=None):
return SplitOperation(x, split_dim, num_or_size_splits, name=name).outputs | 213,626 |
Stack multiple Tensors to make a new dimension.
Args:
xs: a list of Tensors with identical shapes.
dim_name: a string (name of the new dimension)
axis: an integer (index of the new dimension in the output shape)
name: an optional string
Returns:
a Tensor | def stack(xs, dim_name, axis=0, name=None):
ret = StackOperation(xs, dim_name, axis, name).outputs[0]
return ret | 213,627 |
Cumulative sum.
Args:
x: a Tensor
dim: a Dimension
exclusive: a boolean
Returns:
a Tensor with the same shape as x. | def cumsum(x, dim, exclusive=False):
with tf.variable_scope("cumsum"):
new_name = "tmp_dim_cumsum"
new_dim = Dimension(new_name, dim.size)
new_shape = x.shape.rename_dimension(dim.name, new_name)
comparator = less if exclusive else less_equal
m = cast(
comparator(mtf_range(x.mesh, dim, dtype=tf.float32),
mtf_range(x.mesh, new_dim, dtype=tf.float32)), x.dtype)
ret = einsum([x, m], output_shape=new_shape)
return reshape(ret, x.shape) | 213,628 |
Returns slicewise function and reduced mesh dimensions.
Assumes the output shape contains no new dimensions.
Args:
input_shapes: a list of Shapes
output_shape: a Shape
mesh_impl: a MeshImpl
Returns:
einsum_slice_fn: a function from tf.Tensors to tf.Tensor
reduced_mesh_axes: a list of integers | def _einsum_helper(input_shapes, output_shape, mesh_impl):
input_shape_union = _shape_union(input_shapes)
total_num_dims = input_shape_union.ndims
# list of input shapes that contain all dimensions.
full_shapes = [
s for s in input_shapes + [output_shape] if s.ndims == total_num_dims]
full_shape = full_shapes[0] if full_shapes else input_shape_union
reduce_slice_fn, reduced_mesh_axes = _reduce_helper(
full_shape, output_shape, mesh_impl.tensor_layout(full_shape))
def einsum_slice_fn_naive(*slices):
# naive einsum implementation where we broadcast all inputs to the full
# shape, multiply componentwise, then reduce.
return reduce_slice_fn(functools.reduce(tf.multiply, [
_expand_dims(x, input_shape, full_shape)
for x, input_shape in zip(slices, input_shapes)]))
if full_shapes:
# it is not wasteful of space to broadcast fully and then reduce.
# this helps to avoid some inefficient GPU implementations.
einsum_slice_fn = einsum_slice_fn_naive
else:
# call tf.einsum
equation = _einsum_equation(input_shapes, output_shape)
def einsum_slice_fn(*slices):
if slices[0].dtype.is_floating:
return mesh_impl.einsum(equation, *slices)
else:
return einsum_slice_fn_naive(*slices)
return einsum_slice_fn, reduced_mesh_axes | 213,629 |
Shift operation.
Shift x right by +offset in dimension dim.
Args:
x: a Tensor
offset: an integer. If negative, shift left instead of right.
dim: a Dimension of x
wrap: a boolean - whether to wrap (True) or pad with zeros (False).
name: an optional string
Returns:
a Tensor with the same shape and dtype as x | def shift(x, offset, dim, wrap, name=None):
return ShiftOperation(x, offset, dim, wrap, name=name).outputs[0] | 213,633 |
Import a laid_out_tensor.
For expert users.
The input must be laid out appropriately given the eventual MeshImpl,
and layout.
Args:
mesh: a Mesh
laid_out_tensor: a LaidOutTensor
shape: a mtf.Shape
name: an optional string
Returns:
a mtf.Tensor | def import_laid_out_tensor(mesh, laid_out_tensor, shape, name=None):
return ImportLaidOutTensorOperation(
mesh, laid_out_tensor, convert_to_shape(shape), name=name).outputs[0] | 213,636 |
Assign a new value to a variable.
Args:
var: either a Variable operation or its output Tensor.
new_val: a Tensor
assign_fn: a function from
(mtf.Variable, tf.Variable, tf.Tensor) -> tf.Operation
Returns:
an Operation
Raises:
ValueError: if var is not a Variable and var.operation is not a Variable | def assign(var, new_val, assign_fn=assign_slice):
if isinstance(var, Tensor):
var = var.operation
if not isinstance(var, Variable):
raise ValueError("var must be a mtf.Variable or its output Tensor.")
return Assign([var], [new_val], assign_fn=assign_fn) | 213,642 |
Call tf.Print.
Args:
x: a Tensor.
data: a list of Tensor
message: a string
**kwargs: keyword arguments to tf.Print
Returns:
a Tensor which is identical in value to x | def Print(x, data, message, **kwargs): # pylint: disable=invalid-name
return PrintOperation(x, data, message, **kwargs).outputs[0] | 213,646 |
Reshape a Tensor, renaming one dimension.
Args:
x: a Tensor
old_name: a string
new_name: a string
Returns:
a Tensor | def rename_dimension(x, old_name, new_name):
return reshape(x, x.shape.rename_dimension(old_name, new_name)) | 213,649 |
Replace dimensions in a Tensor or Shape.
old_dim_or_dims consists of a single dimension or a list of dimensions
that must occur consecutively in the input shape. They are replaced
by the dimensions in new_dim_or_dims.
Args:
tensor_or_shape: a Tensor or a Shape
old_dim_or_dims: a Dimension or a list of Dimensions
new_dim_or_dims: a Dimensions or a list of Dimensions
Returns:
a new Tensor or a Shape | def replace_dimensions(tensor_or_shape, old_dim_or_dims, new_dim_or_dims):
if isinstance(tensor_or_shape, Tensor):
return reshape(tensor_or_shape, replace_dimensions(
tensor_or_shape.shape, old_dim_or_dims, new_dim_or_dims))
if not isinstance(tensor_or_shape, Shape):
raise ValueError(
"tensor_or_shape must be a Tensor or Shape got %s" % (tensor_or_shape,))
in_dims = tensor_or_shape.dims
if isinstance(old_dim_or_dims, Dimension):
old_dim_or_dims = [old_dim_or_dims]
if isinstance(new_dim_or_dims, Dimension):
new_dim_or_dims = [new_dim_or_dims]
if not isinstance(old_dim_or_dims, list) or not old_dim_or_dims:
raise ValueError(
"old_dim_or_dims must be a Dimension or a list of Dimension got %s"
% (old_dim_or_dims,))
if not isinstance(new_dim_or_dims, list) or not new_dim_or_dims:
raise ValueError(
"new_dim_or_dims must be a Dimension or a list of Dimension got %s"
% (new_dim_or_dims,))
try:
positions = [in_dims.index(d) for d in old_dim_or_dims]
pos = positions[0]
if positions != list(range(pos, pos + len(positions))):
raise ValueError()
except ValueError:
raise ValueError(
"old_dim_or_dims must be a subsequence of the input's dimensions"
" old_dim_or_dims=%s input's dimensions=%s" %
(old_dim_or_dims, in_dims))
return Shape(in_dims[:pos] + new_dim_or_dims +
in_dims[pos + len(old_dim_or_dims):]) | 213,650 |
Reduction on 1 or more axes.
If reduced_dim is present, then only that dimension is reduced out.
Alternatively, specify output_shape.
Do not specify both reduced_dim and output_shape.
If neither is specified, then all dimensions are reduced out.
Args:
x: a Tensor
disable_positional_args: None
output_shape: an optional Shape. Must be a subsequence of x.shape.
reduced_dim: a mtf.Dimension
name: an optional string
Returns:
a Tensor | def reduce_sum(x,
disable_positional_args=None,
output_shape=None,
reduced_dim=None,
name=None):
output_shape = convert_to_shape(output_shape)
reduced_dim = convert_to_dimension(reduced_dim)
assert disable_positional_args is None
output_shape = _reduction_output_shape(x, output_shape, reduced_dim)
if output_shape == x.shape:
return x
return ReduceOperation(x, output_shape, "SUM", name=name).outputs[0] | 213,654 |
Reduction on 1 or more axes.
If reduced_dim is present, then only that dimension is reduced out.
Alternatively, specify output_shape.
Do not specify both reduced_dim and output_shape.
If neither is specified, then all dimensions are reduced out.
Args:
x: a Tensor
disable_positional_args: None
output_shape: an optional Shape. Must be a subsequence of x.shape.
reduced_dim: a mtf.Dimension
name: an optional string
Returns:
a Tensor | def reduce_mean(x,
disable_positional_args=None,
output_shape=None,
reduced_dim=None,
name=None):
output_shape = convert_to_shape(output_shape)
reduced_dim = convert_to_dimension(reduced_dim)
assert disable_positional_args is None
output_shape = _reduction_output_shape(x, output_shape, reduced_dim)
with tf.variable_scope(name, default_name="reduce_mean"):
if output_shape == x.shape:
return x
return reduce_sum(
x, output_shape=output_shape) * (output_shape.size / x.shape.size) | 213,655 |
Reduction on 1 or more axes.
Args:
x: a Tensor
disable_positional_args: None
output_shape: an optional Shape. Must be a subsequence of x.shape.
reduced_dim: an optional Dimension
name: an optional string
Returns:
a Tensor | def reduce_max(x,
disable_positional_args=None,
output_shape=None,
reduced_dim=None,
name=None):
output_shape = convert_to_shape(output_shape)
reduced_dim = convert_to_dimension(reduced_dim)
assert disable_positional_args is None
output_shape = _reduction_output_shape(x, output_shape, reduced_dim)
if output_shape is None:
output_shape = Shape([])
if output_shape == x.shape:
return x
return ReduceOperation(
x, output_shape, "MAX", name=name or "reduce_max").outputs[0] | 213,656 |
Argmax and Max.
Args:
x: a Tensor
reduced_dim: a Dimension in x.shape.dims
dtype: a tf.dtype (for the output)
name: an optional string
Returns:
indices: a Tensor with given dtype
values: optional Tensor equal to mtf.reduce_max(x, reduced_dim=reduced_dim) | def top_1(x, reduced_dim, dtype=tf.int32, name=None):
reduced_dim = convert_to_dimension(reduced_dim)
with tf.name_scope(name, default_name="top_1"):
max_val = reduce_max(x, reduced_dim=reduced_dim)
is_max = to_float(equal(x, max_val))
pos = mtf_range(x.mesh, reduced_dim, tf.float32)
ret = reduce_max(is_max * pos, reduced_dim=reduced_dim)
ret = cast(ret, dtype)
return ret, max_val | 213,659 |
Like tf.top_k.
This operation returns two tensors with the same shape. The output shape
is identical to the shape of x, except that reduced_dim is replaced by
new_dim.
Args:
x: a Tensor
reduced_dim: a Dimension in x.shape.dims.
new_dim: a Dimension. The size determines k.
dtype: optional dtype for indices.
name: optional string.
Returns:
indices: a Tensor with given dtype.
values: a Tensor with same type as x. | def top_k(x, reduced_dim, new_dim, dtype=tf.int32, name=None):
reduced_dim = convert_to_dimension(reduced_dim)
new_dim = convert_to_dimension(new_dim)
indices = []
values = []
k = new_dim.size
with tf.name_scope(name, default_name="top_k"):
for i in xrange(k):
max_index, max_val = top_1(x, reduced_dim, dtype)
indices.append(max_index)
values.append(max_val)
if i + 1 < k:
x += one_hot(max_index, reduced_dim, on_value=-1e9, dtype=x.dtype)
axis = x.shape.dims.index(reduced_dim)
return stack(indices, new_dim.name, axis), stack(values, new_dim.name, axis) | 213,661 |
Either argmax or random sampling.
Args:
x: a Tensor.
dim: a Dimension in x.shape.dims
temperature: a float 0.0=argmax 1.0=random
dtype: a tf.dtype (for the output)
name: an optional string
Returns:
a Tensor with type dtype. | def sample_with_temperature(x, dim, temperature=1.0, dtype=tf.int32, name=None):
dim = convert_to_dimension(dim)
with tf.name_scope(name, default_name="sample_with_temperature"):
if temperature != 0.0:
# gumbel trick.
# Note: we don't want to generate 0 or 1 because:
# * -log(-log(0)) is -infinity
# * -log(-log(1)) is +infinity.
# np.finfo(x.dtype.as_numpy_dtype).tiny doesn't work on bfloat16
tiny_val = 1e-9
g = -log(-log(
random_uniform(
x.mesh,
x.shape,
minval=tiny_val,
maxval=1.,
dtype=x.dtype)))
x += g * temperature
return argmax(x, dim, dtype, name) | 213,662 |
Binary addition with broadcsting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor | def add(x1, x2, output_shape=None, name=None):
output_shape = convert_to_shape(output_shape)
if not isinstance(x2, Tensor):
return ScalarAddOperation(x1, x2).outputs[0]
with tf.name_scope(name, default_name="add"):
x1, x2 = binary_arguments_to_tensors(x1, x2)
return AddOperation(
x1, x2, output_shape=_infer_binary_broadcast_shape(
x1.shape, x2.shape, output_shape)).outputs[0] | 213,663 |
Binary subtraction with broadcsting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor | def sub(x1, x2, output_shape=None, name=None):
output_shape = convert_to_shape(output_shape)
if not isinstance(x2, Tensor):
return ScalarAddOperation(x1, -x2).outputs[0]
with tf.name_scope(name, default_name="sub"):
x1, x2 = binary_arguments_to_tensors(x1, x2)
return add(x1, negative(x2), output_shape=output_shape) | 213,664 |
Binary multiplication with broadcasting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor | def multiply(x1, x2, output_shape=None, name=None):
if not isinstance(x2, Tensor):
return ScalarMultiplyOperation(x1, x2).outputs[0]
with tf.name_scope(name, default_name="mul"):
x1, x2 = binary_arguments_to_tensors(x1, x2)
return einsum(
[x1, x2],
output_shape=_infer_binary_broadcast_shape(
x1.shape, x2.shape, output_shape)) | 213,665 |
Binary division with broadcasting.
Args:
x1: a Tensor
x2: a Tensor
output_shape: an optional Shape
name: an optional string
Returns:
a Tensor | def divide(x1, x2, output_shape=None, name=None):
output_shape = convert_to_shape(output_shape)
if not isinstance(x2, Tensor):
return ScalarMultiplyOperation(x1, 1.0 / x2).outputs[0]
with tf.name_scope(name, default_name="divide"):
x1, x2 = binary_arguments_to_tensors(x1, x2)
return multiply(x1, reciprocal(x2), output_shape=output_shape) | 213,666 |
Slice operation.
Call externally as mtf.slice()
Args:
x: a list of Tensors
begin: integer, where to begin slicing from along the axis
size: integer, size to slice from axis.
slice_dim_name: string, dimension name of slicing axis.
name: an optional string
Returns:
a Tensor with shape extended by output_shape for the last axis. | def mtf_slice(x, begin, size, slice_dim_name, name=None):
return SliceOperation(
x, begin, size, slice_dim_name, name=name).outputs[0] | 213,667 |
Slice operation.
Args:
x: a list of Tensors
paddings: list of integers of size 2, padding size before and after for dim.
dim_name: string, name for the padding dim
name: an optional string
Returns:
a Tensor with shape extended by output_shape for the last axis. | def pad(x, paddings, dim_name, name=None):
return PadOperation(
x, paddings, dim_name, name=name).outputs[0] | 213,668 |
Shorthand for einsum([one_hot(indices, dim)], weights, reduced_dims=[dim]).
Args:
weights: a Tensor
indices: a Tensor with integer type
dim: a Dimension
output_shape: an optional mtf.Shape
Returns:
a Tensor | def gather(weights, indices, dim, output_shape=None):
dim = convert_to_dimension(dim)
output_shape = convert_to_shape(output_shape)
if weights.dtype == tf.bool:
return cast(gather(to_float(weights), indices, dim, output_shape), tf.bool)
return einsum([one_hot(indices, dim, dtype=weights.dtype), weights],
reduced_dims=[dim], output_shape=output_shape) | 213,670 |
Compute gradients in dtf.
Args:
ys: a list of Tensors
xs: a list of Tensors
grad_ys: an optional list of Tensors
Returns:
grad_xs: a list of Tensors | def gradients(ys, xs, grad_ys=None):
graph = ys[0].graph
if not grad_ys:
grad_ys = [Constant(y.mesh, 1.0, y.shape, y.dtype).outputs[0] for y in ys]
# figure out what Tensors are downstream of xs
downstream = set(xs)
for op in graph.operations:
if op.has_gradient:
if set(op.inputs) & downstream:
downstream |= set(op.outputs)
tensor_to_gradient = dict(zip(ys, grad_ys))
for op in graph.operations[::-1]:
grad_outputs = [tensor_to_gradient.get(out) for out in op.outputs]
if op.has_gradient and any(grad_outputs) and (set(op.inputs) & downstream):
with tf.variable_scope(op.name + "/gradients"):
input_grads = op.gradient(grad_outputs)
for inp, grad in zip(op.inputs, input_grads):
if inp in downstream and grad is not None:
if inp in tensor_to_gradient:
tensor_to_gradient[inp] += grad
else:
tensor_to_gradient[inp] = grad
return [tensor_to_gradient.get(x, None) for x in xs] | 213,671 |
Infer shape of the output of a binary op with broadcasting.
If the output shape is not given with given_output_shape, then we check
to see if one of the shapes is a subsequence of the other one, and we
return the one that is the supersequence. Otherwise, we list the dimensions
of shape1, followed by all new dimensions in shape2.
Args:
shape1: a Shape
shape2: a Shape
given_output_shape: an optional Shape
Returns:
a Shape | def _infer_binary_broadcast_shape(shape1, shape2, given_output_shape=None):
shape1 = convert_to_shape(shape1)
shape2 = convert_to_shape(shape2)
given_output_shape = convert_to_shape(given_output_shape)
if given_output_shape is not None:
return given_output_shape
if is_subsequence(shape1.dims, shape2.dims):
return shape2
if is_subsequence(shape2.dims, shape1.dims):
return shape1
return Shape(
shape1.dims + [d for d in shape2.dims if d not in shape1.dims]) | 213,672 |
Expand dimensions and transpose if necessary.
Args:
x: a tf.Tensor
input_shape: a Shape
output_shape: a Shape whose dimensions are a superset of
those in input_shape
Returns:
a tf.Tensor | def _expand_dims(x, input_shape, output_shape):
verify_no_new_dims([output_shape], input_shape)
if input_shape == output_shape or input_shape.ndims == 0:
return x
perm = [input_shape.dims.index(d) for d in output_shape.dims
if d in input_shape.dims]
x = tf.transpose(x, perm)
for i, d in enumerate(output_shape.dims):
if d not in input_shape.dims:
x = tf.expand_dims(x, i)
return x | 213,673 |
Turn shapes into an einsum equation.
e.g. "ij,jk->ik"
Args:
input_shapes: a list of Shapes
output_shape: a Shape
Returns:
a string | def _einsum_equation(input_shapes, output_shape):
ret = []
next_letter = ord("a")
dim_to_letter = {}
for shape_num, shape in enumerate(input_shapes + [output_shape]):
if shape_num == len(input_shapes):
ret.append("->")
elif shape_num > 0:
ret.append(",")
for d in shape.dims:
if d not in dim_to_letter:
dim_to_letter[d] = chr(next_letter)
next_letter += 1
ret.append(dim_to_letter[d])
return "".join(ret) | 213,674 |
Verifies that all dimensions in the output are in at least one input.
Args:
input_shapes: a list of Shapes
output_shape: a Shape
Raises:
ValueError: if there are new dimensions in the output. | def verify_no_new_dims(input_shapes, output_shape):
all_input_dims = set(sum([s.dims for s in input_shapes], []))
all_output_dims = set(output_shape.dims)
if not all_output_dims.issubset(all_input_dims):
raise ValueError(
"No new dimensions allowed in output"
" input_shapes = %s output_shape= %s"
% ([s.dims for s in input_shapes], output_shape.dims)) | 213,676 |
Coordinates of a processor in the mesh.
Args:
mesh_shape: a Shape
pnum: an integer less than len(mesh_shape)
Returns:
a list of integers with length len(mesh_shape) | def pnum_to_processor_coordinates(mesh_shape, pnum):
ret = []
for dimsize in mesh_shape.to_integer_list[::-1]:
ret.append(pnum % dimsize)
pnum //= dimsize
return ret[::-1] | 213,677 |
Inverse of pnum_to_processor_coordinates.
Args:
mesh_shape: a Shape
coord: a list of integers with length len(mesh_shape)
Returns:
an integer less than len(mesh_shape) | def processor_coordinates_to_pnum(mesh_shape, coord):
ret = 0
multiplier = 1
for c, d in zip(coord[::-1], mesh_shape.to_integer_list[::-1]):
ret += multiplier * c
multiplier *= d
return ret | 213,678 |
Group number for grouped allreduce.
Args:
mesh_shape: a Shape
group_dims: a list of integers (the dimensions reduced over)
pnum: an integer
Returns:
an integer | def pnum_to_group(mesh_shape, group_dims, pnum):
coord = pnum_to_processor_coordinates(mesh_shape, pnum)
remaining_shape = Shape(
[d for i, d in enumerate(mesh_shape) if i not in group_dims])
remaining_coord = [d for i, d in enumerate(coord) if i not in group_dims]
return processor_coordinates_to_pnum(remaining_shape, remaining_coord) | 213,679 |
Groups of processors which differ only in the given dimensions.
Args:
mesh_shape: a Shape
group_dims: a list of integers
Returns:
a list of lists of integers (processor numbers) | def processor_groups(mesh_shape, group_dims):
group_numbers = [
pnum_to_group(mesh_shape, group_dims, pnum)
for pnum in xrange(mesh_shape.size)]
ret = []
for pnum, g in enumerate(group_numbers):
while len(ret) <= g:
ret.append([])
ret[g].append(pnum)
return ret | 213,680 |
Numerically stable version of log(reduce_sum(exp(x))).
Unlike other reductions, the output has the same shape as the input.
Note: with a minor change, we could allow multiple reduced dimensions.
Args:
x: a Tensor
reduced_dim: a dimension in x
extra_logit: an optional Tensor broadcastable to (x.shape - reduced_dim)
name: an optional string
Returns:
a Tensor with the same shape and dtype as x. | def reduce_logsumexp(x, reduced_dim, extra_logit=None, name=None):
reduced_dim = convert_to_dimension(reduced_dim)
with tf.variable_scope(name, default_name="reduce_logsumexp"):
reduced_shape = x.shape - reduced_dim
max_logit = reduce_max(stop_gradient(x), output_shape=reduced_shape)
if extra_logit is not None:
if isinstance(extra_logit, Tensor):
extra_logit = stop_gradient(extra_logit)
max_logit = maximum(max_logit, extra_logit)
x -= max_logit
exp_x = exp(x)
sum_exp_x = reduce_sum(exp_x, output_shape=reduced_shape)
if extra_logit is not None:
sum_exp_x += exp(extra_logit - max_logit)
return log(sum_exp_x) + max_logit | 213,681 |
log(softmax(x)).
Args:
x: a Tensor whose shape contains vocab_dim
reduced_dim: a Dimension
extra_logit: an optional Tensor broadcastable to (x.shape - reduced_dim)
name: an optional string
Returns:
a Tensor with the same shape as x | def log_softmax(x, reduced_dim, extra_logit=None, name=None):
return x - reduce_logsumexp(
x, reduced_dim, extra_logit=extra_logit, name=name) | 213,682 |
Create a 1d mesh tensor with a range from [0, dim.size).
Call externally as mtf.range()
Args:
mesh: a Mesh
dim: a Dimension
dtype: a tf.DType
name: an optional string
Returns:
a Tensor | def mtf_range(mesh, dim, dtype, name=None):
dim = convert_to_dimension(dim)
with tf.variable_scope(name, default_name="range"):
if dtype == tf.bfloat16:
# tf.range(dtype=bfloat16) gives the wrong shape.
# TODO(noam): report the bug.
tf_range = tf.cast(tf.range(dim.size), tf.bfloat16)
else:
tf_range = tf.range(dim.size, dtype=dtype)
return import_tf_tensor(mesh, tf_range, shape=Shape([dim])) | 213,684 |
print counters hierarchically.
Each counter is a pair of a string and a number.
The string can have slashes, meaning that the number also counts towards
each prefix. e.g. "parameters/trainable" counts towards both "parameters"
and "parameters/trainable".
Args:
counters: a list of (string, number) pairs
Returns:
a string | def pretty_print_counters(counters):
totals = collections.defaultdict(int)
for (name, val) in counters:
prefixes = [name[:i] for i in xrange(len(name)) if name[i] == "/"] + [name]
for p in prefixes:
totals[p] += val
parts = []
for name, val in sorted(six.iteritems(totals)):
parts.append(" " * name.count("/") + "%s: %.3g" % (name, val))
return "\n".join(parts) | 213,685 |
r"""Parses a string into a list of pairs.
In the input string, each pair is separated by a colon, and the delimiters
between pairs are any of " ,.;".
e.g. "rows:32,cols:32"
Args:
s: str to parse.
seconds_to_int: Boolean. If True, then the second elements are returned
as integers; otherwise they are strings.
Returns:
List of tuple pairs.
Raises:
ValueError: Badly formatted string. | def _parse_string_to_list_of_pairs(s, seconds_to_int=False):
r
ret = []
for p in [s.split(":") for s in re.sub("[,.;]", " ", s).split()]:
if len(p) != 2:
raise ValueError("bad input to _parse_string_to_list_of_pairs %s" % s)
if seconds_to_int:
ret.append((p[0], int(p[1])))
else:
ret.append(tuple(p))
return ret | 213,686 |
Call a function once on each device.
Args:
devices: a list of n devices
fn: a function
*args: arguments, each of which is a list of length n
**kwargs: keyword-args, each of which is a list of length n
Returns:
a list of length n
Raises:
ValueError: if the arguments are not all lists of length n | def parallel(devices, fn, *args, **kwargs):
if not isinstance(devices, list):
raise ValueError("devices must be a list")
for x in list(args) + list(six.itervalues(kwargs)):
if not isinstance(x, list) or len(x) != len(devices):
raise ValueError(
"Argument not a list with same length as devices "
"arg=%s devices=%s" % (x, devices))
ret = []
for i, device in enumerate(devices):
with tf.device(device):
with tf.variable_scope("parallel_%d" % i):
my_args = [x[i] for x in args]
my_kwargs = {k: v[i] for k, v in six.iteritems(kwargs)}
ret.append(fn(*my_args, **my_kwargs))
return ret | 213,687 |
Random uniform.
Args:
mesh: a Mesh
shape: a Shape
**kwargs: keyword args for tf.random.uniform, except seed
Returns:
a Tensor | def random_uniform(mesh, shape, **kwargs):
shape = convert_to_shape(shape)
return RandomOperation(mesh, shape, tf.random.uniform, **kwargs).outputs[0] | 213,690 |
Dropout layer.
Args:
x: a Tensor
keep_prob: a float between 0.0 and 1.0
noise_shape: an optional Shape (a subset of x.shape)
name: an optional string
Returns:
a Tensor | def dropout(x, keep_prob, noise_shape=None, name=None):
noise_shape = convert_to_shape(noise_shape)
if noise_shape is None:
noise_shape = x.shape
with tf.variable_scope(name, default_name="dropout"):
if keep_prob == 1.0:
return x
noise = cast(less(random_uniform(
x.mesh, noise_shape, dtype=x.dtype), keep_prob), x.dtype)
noise /= keep_prob
return x * noise | 213,691 |
Cumulative product of a list.
Args:
l: a list of integers
Returns:
a list with one more element (starting with 1) | def _cumprod(l):
ret = [1]
for item in l:
ret.append(ret[-1] * item)
return ret | 213,692 |
Log the sizes and shapes of variables, and the total size.
Args:
var_list: a list of variables; defaults to trainable_variables
tag: a string; defaults to "Trainable Variables"
verbose: bool, if True, log every weight; otherwise, log total size only.
mesh_to_impl: an optional map from Mesh to MeshImpl | def log_variable_sizes(var_list, tag, verbose=True, mesh_to_impl=None):
if not var_list:
return
name_to_var = {v.name: v for v in var_list}
total_size = 0
total_slice_size = 0
for v_name in sorted(list(name_to_var)):
v = name_to_var[v_name]
v_size = v.shape.size
if mesh_to_impl is not None:
slice_size = mesh_to_impl[v.mesh].slice_size(v.shape)
else:
slice_size = 0
total_slice_size += slice_size
if verbose:
tf.logging.info(
"Variable %s size %s slice_size %s %s",
v.name.ljust(60),
str(v_size).ljust(12),
str(slice_size).ljust(12),
str(v.shape).ljust(60))
if isinstance(v, StackedVariable):
for n in v.original_names:
tf.logging.info(" " + n)
total_size += v_size
tf.logging.info("%s count: %s Total size: %s Total slice_size: %s",
tag.ljust(30), str(len(var_list)).ljust(6),
str(total_size).ljust(15),
str(total_slice_size).ljust(15)) | 213,693 |
A shape containing the union of all dimensions in the input shapes.
Args:
shapes: a list of Shapes
Returns:
a Shape | def _shape_union(shapes):
return Shape(sorted(list(set(sum([s.dims for s in shapes], []))))) | 213,696 |
Flatten all but last num_nonbatch_dims into one dimension.
Args:
x: a tf.Tensor:
num_nonbatch_dims: an integer
Returns:
a tf.Tensor with 1 + num_nonbatch_dims dimensions. | def _tf_flatten_batch_dims(x, num_nonbatch_dims):
shape = x.shape.as_list()
assert None not in shape
new_shape = ([list_product(shape[:-num_nonbatch_dims])]
+ shape[-num_nonbatch_dims:])
if new_shape != shape:
x = tf.reshape(x, new_shape)
return x | 213,697 |
Reverse op of _tf_flatten_batch_dims.
Un-flatten the first dimension of x to match all but the last
num_nonbatch_dims dimensions of prototype.
Args:
x: a tf.Tensor with 1 + num_nonbatch_dims dimensions
num_nonbatch_dims: an integer
prototype: a tf.Tensor
Returns:
a tf.Tensor | def _tf_restore_batch_dims(x, num_nonbatch_dims, prototype):
assert x.shape.ndims == 1 + num_nonbatch_dims
new_shape = (
prototype.shape.as_list()[:-num_nonbatch_dims] + x.shape.as_list()[1:])
assert None not in new_shape
if new_shape != x.shape.as_list():
x = tf.reshape(x, new_shape)
return x | 213,698 |
Concat each block with the margins of adjacent blocks.
Get left and right blocks_dim and concatenate along block_size_dim.
Args:
x: a Tensor.
blocks_dim: a Dimension in x.shape
block_size_dim: a Dimension in x.shape
halo_size: an integer
wrap: a boolean
Returns:
a Tensor with the same shape as x, other than in block_size_dim, whose
size is increased by 2*halo_size. | def halo_exchange(x, blocks_dim, block_size_dim, halo_size, wrap=False):
if halo_size == 0:
return x
block_size = block_size_dim.size
partial_size = halo_size % block_size
num_complete_blocks = halo_size // block_size
parts = [x]
for i in xrange(1, num_complete_blocks + 1):
parts = ([shift(x, i, blocks_dim, wrap)] + parts +
[shift(x, -i, blocks_dim, wrap)])
if partial_size > 0:
left_margin = mtf_slice(x, 0, partial_size, block_size_dim.name)
right_margin = mtf_slice(
x, block_size_dim.size - partial_size, partial_size,
block_size_dim.name)
parts = (
[shift(right_margin, num_complete_blocks + 1, blocks_dim, wrap)]
+ parts +
[shift(left_margin, -(num_complete_blocks + 1), blocks_dim, wrap)])
return concat(parts, block_size_dim.name) | 213,699 |
How many ways does a tensor dimension get split.
This is used to "cheat" when building the mtf graph and peek at how a
tensor dimension will be split. Returns 1 if the tensor dimension is not
split.
Args:
layout: an input to convert_to_layout_rules
mesh_shape: an input to convert_to_shape
tensor_dim: a Dimension
Returns:
an integer | def tensor_dim_to_mesh_dim_size(layout, mesh_shape, tensor_dim):
layout_rules = convert_to_layout_rules(layout)
mesh_shape = convert_to_shape(mesh_shape)
mesh_axis = layout_rules.tensor_dimension_to_mesh_axis(tensor_dim, mesh_shape)
if mesh_axis is None:
return 1
else:
return mesh_shape.dims[mesh_axis].size | 213,701 |
Constructs a shape for a Tensor or Mesh.
Args:
dims: List-like of Dimensions.
Raises:
ValueError: If Dimensions are repeated. | def __init__(self, dims):
self._dims = [convert_to_dimension(d) for d in tuple(dims)]
if len(set(dims)) != len(dims):
raise ValueError("Shape must not have repeated dimensions %s" % dims) | 213,705 |
Mesh axis associated with tensor dimension (or None).
Args:
tensor_dimension: Dimension.
mesh_shape: Shape.
Returns:
Integer or None.
Raises:
ValueError: If one Tensor dimension maps to two mesh dimensions. | def tensor_dimension_to_mesh_axis(self, tensor_dimension, mesh_shape):
val = [i for i, mesh_dimension in enumerate(mesh_shape)
if (tensor_dimension.name, mesh_dimension.name) in self._pairs]
if len(val) > 1:
raise ValueError(
"Tensor dimension maps to multiple mesh dimensions"
" tensor_dimension=%s mesh_shape=%s layout=%s"
% (tensor_dimension, mesh_shape, self._pairs))
return val[0] if val else None | 213,712 |
Computes TensorLayout given a Tensor Shape and a Mesh Shape.
Args:
tensor_shape: Shape.
mesh_shape: Shape.
Returns:
TensorLayout.
Raises:
ValueError: If two Tensor Dimensions map to the same Mesh Dimensions. | def tensor_layout(self, tensor_shape, mesh_shape):
ret = [self.tensor_dimension_to_mesh_axis(d, mesh_shape)
for d in tensor_shape]
not_nones = [a for a in ret if a is not None]
if len(not_nones) != len(set(not_nones)):
raise ValueError(
"Two Tensor Dimensions may not map to the same Mesh Dimension:"
" layout=%s tensor_shape=%s mesh_shape=%s " %
(self, tensor_shape, mesh_shape))
return TensorLayout(ret) | 213,713 |
For each mesh axis, which Tensor axis maps to it.
Args:
mesh_ndims: int.
Returns:
Tuple of optional integers, with length mesh_ndims. | def mesh_axis_to_tensor_axis(self, mesh_ndims):
ta2ma = self._tensor_axis_to_mesh_axis
return tuple(
[ta2ma.index(mesh_axis) if mesh_axis in ta2ma else None
for mesh_axis in xrange(mesh_ndims)]) | 213,714 |
Like tf.Graph.unique_name, returns a unique operation name for `name`.
Args:
name: The name for an operation.
mark_as_used: whether to mark this name as being used.
Returns:
A string to use as the name for the operation. | def unique_name(self, name, mark_as_used=True):
scope_name = tf.get_variable_scope().name
if scope_name:
name = scope_name + "/" + name
# As in TensorFlow, treat names as case insensitive when deciding whether
# they are in use.
name_key = name.lower()
i = self._names_in_use.get(name_key, 0)
if mark_as_used:
self._names_in_use[name_key] = i + 1
if i > 0:
base_name_key = name_key
while name_key in self._names_in_use:
name_key = "%s_%d" % (base_name_key, i)
i += 1
if mark_as_used:
self._names_in_use[name_key] = 1
name = "%s_%d" % (name, i-1)
return name | 213,716 |
Turn a Tensor into a tf.Tensor.
Args:
x: Tensor.
Returns:
tf.Tensor. | def export_to_tf_tensor(self, x):
mesh_impl = self.mesh_impl(x)
return mesh_impl.export_to_tf_tensor(
x, self.tensors[x].to_laid_out_tensor()) | 213,721 |
Creates a mesh implementation.
Args:
shape: Shape.
layout_rules: LayoutRules. | def __init__(self, shape, layout_rules):
self._shape = convert_to_shape(shape)
self._layout_rules = convert_to_layout_rules(layout_rules) | 213,729 |
Compute TensorLayout for a Tensor or a Shape.
Args:
arg: Tensor or Shape.
Returns:
TensorLayout. | def tensor_layout(self, arg):
if isinstance(arg, Tensor):
arg = arg.shape
return self.layout_rules.tensor_layout(arg, self.shape) | 213,730 |
For each mesh axis, give the product of previous tensor axes.
Args:
tensor_shape: Shape.
Returns:
list with length self.ndims where each element is an integer or None. | def mesh_axis_to_cumprod(self, tensor_shape):
tensor_layout = self.tensor_layout(tensor_shape)
ma2ta = tensor_layout.mesh_axis_to_tensor_axis(self.ndims)
ta2cumprod = tensor_shape.cumprod
return [None if ta is None else ta2cumprod[ta] for ta in ma2ta] | 213,731 |
Shape of each slice of the Tensor.
Args:
tensor_shape: Shape.
Returns:
list of integers with length tensor_shape.ndims.
Raises:
ValueError: If a Tensor dimension is not divisible by the corresponding
Mesh dimension. | def slice_shape(self, tensor_shape):
tensor_layout = self.tensor_layout(tensor_shape)
ret = []
for tensor_dim, mesh_axis in zip(
tensor_shape, tensor_layout.tensor_axis_to_mesh_axis):
if mesh_axis is None:
ret.append(tensor_dim.size)
else:
mesh_dim = self.shape[mesh_axis]
if tensor_dim.size % mesh_dim.size != 0:
raise ValueError(
"Tensor dimension size not divisible by mesh dimension size:"
" tensor_shape=%s tensor_layout=%s"
% (tensor_shape, tensor_layout))
ret.append(tensor_dim.size // mesh_dim.size)
return ret | 213,732 |
Begin position for the tensor slice for the given processor.
Args:
tensor_shape: Shape.
pnum: int <= self.size.
Returns:
list of integers with length tensor_shape.ndims. | def slice_begin(self, tensor_shape, pnum):
tensor_layout = self.tensor_layout(tensor_shape)
coordinates = pnum_to_processor_coordinates(self.shape, pnum)
ret = []
for dim_size, mesh_axis in zip(
tensor_shape.to_integer_list, tensor_layout.tensor_axis_to_mesh_axis):
if mesh_axis is None:
ret.append(0)
else:
ret.append(
dim_size // self.shape[mesh_axis].size * coordinates[mesh_axis])
return ret | 213,733 |
Calls tf.Print.
Args:
x: LaidOutTensor.
data: list of LaidOutTensor.
message: str.
**kwargs: keyword arguments to tf.print.
Returns:
LaidOutTensor. | def Print(self, x, data, message, **kwargs): # pylint: disable=invalid-name
del data, message, kwargs
tf.logging.warning("Warning - mtf.Print not implemented for this mesh type")
return x | 213,734 |
Receive the slice from processor pcoord - offset.
Args:
x: a LaidOutTensor
mesh_axis: an integer
offset: an integer
wrap: a boolean. If True, then wrap around. Otherwise, pad with zeros. | def shift_by_n_processors(self, x, mesh_axis, offset, wrap):
n = self.shape[mesh_axis].size
source_pcoord = []
for i in xrange(n):
c = i - offset
if c != c % n:
if wrap:
c = c % n
else:
c = None
source_pcoord.append(c)
return self.receive(x, mesh_axis, source_pcoord) | 213,736 |
Returns a LaidOutTensor containing the processor coordinate.
Args:
mesh_axis: int.
Returns:
LaidOutTensor where each slice is an integer scalar. | def laid_out_pcoord(self, mesh_axis):
divisor = list_product(self.shape.to_integer_list[mesh_axis + 1:])
modulus = self.shape[mesh_axis].size
def my_fn(pnum):
return (pnum // divisor) % modulus
return self.slicewise(my_fn, self.laid_out_pnum()) | 213,737 |
A LaidOutTensor with an int32 scalar, identical for identical slices.
This is useful for synchronizing random operations.
Args:
tensor_shape: a TensorShape
Returns:
a LaidOutTensor where each slice is an integer scalar. | def laid_out_slice_num(self, tensor_shape):
ret = self.slicewise(lambda: tf.to_int32(0))
tensor_layout = self.tensor_layout(tensor_shape)
for mesh_axis in tensor_layout.tensor_axis_to_mesh_axis:
if mesh_axis is not None:
def my_fn(x, pcoord, mesh_dim_size):
return x * mesh_dim_size + pcoord
ret = self.slicewise(
my_fn, ret, self.laid_out_pcoord(mesh_axis),
self.shape[mesh_axis].size)
return ret | 213,738 |
Implementation of a broadcast operation.
Args:
old_slices: LaidOutTensor.
old_shape: Shape.
new_shape: Shape.
Returns:
LaidOutTensor. | def broadcast_impl(self, old_slices, old_shape, new_shape):
new_slice_shape = self.slice_shape(new_shape)
def tf_fn(x):
return (tf.zeros(new_slice_shape, dtype=x.dtype) +
_expand_dims(x, old_shape, new_shape))
return self.slicewise(tf_fn, old_slices) | 213,739 |
Turns a single tf.Tensor into a list of slices, one for each processor.
Args:
tf_tensor: tf.Tensor.
tensor_shape: Shape.
Returns:
list of tf.tensor with length self.size. | def make_slices(self, tf_tensor, tensor_shape):
tensor_layout = self.tensor_layout(tensor_shape)
slice_shape = self.slice_shape(tensor_shape)
def my_fn(pnum):
if tensor_layout.is_fully_replicated:
return tf_tensor
else:
slice_begin = self.slice_begin(tensor_shape, pnum)
return tf.slice(tf_tensor, slice_begin, slice_shape)
return parallel([tf_tensor.device] * self.size, my_fn,
list(xrange(self.size))) | 213,740 |
Turns a set of slices into a single tensor.
Args:
slices: list of tf.Tensor with length self.size.
tensor_shape: Shape.
device: optional str. If absent, we use the devices of the slices.
Returns:
tf.Tensor. | def combine_slices(self, slices, tensor_shape, device=None):
if tensor_shape.ndims == 0:
return slices[0]
ret = slices[:]
tensor_layout = self.tensor_layout(tensor_shape)
for mesh_dim, tensor_axis in zip(
self.shape, tensor_layout.mesh_axis_to_tensor_axis(self.ndims)):
slice_size = len(ret) // mesh_dim.size
if tensor_axis is None:
ret = ret[:slice_size]
else:
if device:
devices = [device] * slice_size
else:
devices = [ret[i].device for i in xrange(slice_size)]
concat_inputs = []
for i in xrange(slice_size):
concat_inputs.append(
[ret[i + slice_size * j] for j in xrange(mesh_dim.size)])
ret = parallel(
devices, tf.concat, concat_inputs,
axis=[tensor_axis] * len(devices))
assert len(ret) == 1
return ret[0] | 213,741 |
Create a LazyAllreduceSum.
Args:
mesh_impl: a mesh_impl
laid_out_input: a LaidOutTensor
mesh_axes: a list of mesh axes
add_counter_fn: a function taking no arguments which calls
lowering.add_counter if and when the allreduce executes.
Returns:
a LazyAllreduceSum | def __init__(self,
mesh_impl,
laid_out_input,
mesh_axes,
add_counter_fn=None):
self.mesh_impl = mesh_impl
self.laid_out_input = laid_out_input
self.mesh_axes = mesh_axes
self.add_counter_fn = add_counter_fn
self._reduced = None | 213,742 |
Add to another LazyAllreduceSum.
Args:
other: a LazyAllreduceSum or a LaidOutTensor
Returns:
a LazyAllreduceSum or a LaidOutTensor | def __add__(self, other):
if (isinstance(other, LazyAllreduceSum) and
self.mesh_impl == other.mesh_impl and
self.mesh_axes == other.mesh_axes):
return LazyAllreduceSum(
self.mesh_impl,
self.mesh_impl.slicewise(
tf.add, self.laid_out_input, other.laid_out_input),
self.mesh_axes,
add_counter_fn=self.add_counter_fn)
else:
return self.mesh_impl.slicewise(
tf.add, self.to_laid_out_tensor(), other.to_laid_out_tensor()) | 213,744 |
Create a Tensor.
Args:
operation: the Operation that outputs this tensor
shape: a Shape
dtype: a tf.DType
name: an optional string
index: optional integer, the index among operation's output tensors | def __init__(self, operation, shape, dtype, name=None, index=0):
if not isinstance(shape, Shape):
raise ValueError("shape must be a Shape got %s" % shape.to_string)
if not isinstance(dtype, tf.DType):
raise ValueError("dtype must be a tf.DType got %s" % dtype)
self._mesh = operation.mesh
self._operation = operation
self._shape = shape
self._dtype = dtype
if name is None:
name = self.operation.name + ":" + str(index)
self._name = name | 213,745 |
Initializer.
Args:
inputs: a list of Tensor
mesh: an optional Mesh (if unspecified, will be inferred from first input)
name: a string, which will get uniquified (in TensorFlow style)
Raises:
ValueError: mesh was not provided and there were no inputs to infer from. | def __init__(self, inputs, mesh=None, name=None):
if mesh is None:
if not inputs:
raise ValueError("mesh must be specified if no inputs")
mesh = inputs[0].mesh
self._inputs = inputs
self._outputs = []
self._mesh = mesh
# In a default operation, all dimensions are splittable.
self._splittable_dims, self._unsplittable_dims = (
self._initialize_all_dimensions_as_splittable())
assert name is not None
self._name = mesh.graph.unique_name(name)
mesh.graph.operations.append(self) | 213,746 |
Create a shift operation.
Shift x right by +offset in dimension dim.
If offset is negative, shift left.
If wrap is true then wrap-around. Else, pad with zeros.
Args:
x: a Tensor
offset: an integer
dim: a Dimension of x
wrap: a boolean - whether to wrap or pad.
name: an optional string | def __init__(self, x, offset, dim, wrap, name=None):
super(ShiftOperation, self).__init__([x], name=name or "shift")
self._dim = dim
self._axis = x.shape.dims.index(dim)
self._offset = offset
self._wrap = wrap
self._outputs = [Tensor(self, x.shape, x.dtype)] | 213,788 |
Create a StackedVariable.
Args:
vs: a list of Variables | def __init__(self, vs):
shape = Shape([Dimension("stacked", len(vs))] + vs[0].shape.dims)
name = "stacked/" + vs[0].name
# TODO(noam): verify that vs are the same shape, etc.
super(StackedVariable, self).__init__(
vs[0].mesh, name, shape, vs[0].dtype, None, vs[0].trainable)
self._name = name
self._masters = [v.get_master() for v in vs]
self._original_names = [v.name for v in vs]
# Rerun to take the new output into account.
self._splittable_dims, self._unsplittable_dims = (
self._initialize_all_dimensions_as_splittable()) | 213,806 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.