repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
nats-io/asyncio-nats
nats/aio/client.py
https://github.com/nats-io/asyncio-nats/blob/39e840be0b12ce326edac0bba69aeb1be930dcb8/nats/aio/client.py#L478-L585
def subscribe(self, subject, queue="", cb=None, future=None, max_msgs=0, is_async=False, pending_msgs_limit=DEFAULT_SUB_PENDING_MSGS_LIMIT, pending_bytes_limit=DEFAULT_SUB_PENDING_BYTES_LIMIT, ): """ Takes a subject string and optional queue string to send a SUB cmd, and a callback which to which messages (Msg) will be dispatched to be processed sequentially by default. """ if subject == "": raise ErrBadSubject if self.is_closed: raise ErrConnectionClosed if self.is_draining: raise ErrConnectionDraining sub = Subscription(subject=subject, queue=queue, max_msgs=max_msgs, is_async=is_async, ) if cb is not None: if asyncio.iscoroutinefunction(cb): sub.coro = cb elif sub.is_async: raise NatsError( "nats: must use coroutine for async subscriptions") else: # NOTE: Consider to deprecate this eventually, it should always # be coroutines otherwise they could affect the single thread, # for now still allow to be flexible. sub.cb = cb sub.pending_msgs_limit = pending_msgs_limit sub.pending_bytes_limit = pending_bytes_limit sub.pending_queue = asyncio.Queue( maxsize=pending_msgs_limit, loop=self._loop, ) # Close the delivery coroutine over the sub and error handler # instead of having subscription type hold over state of the conn. err_cb = self._error_cb @asyncio.coroutine def wait_for_msgs(): nonlocal sub nonlocal err_cb while True: try: msg = yield from sub.pending_queue.get() sub.pending_size -= len(msg.data) try: # Invoke depending of type of handler. if sub.coro is not None: if sub.is_async: # NOTE: Deprecate this usage in a next release, # the handler implementation ought to decide # the concurrency level at which the messages # should be processed. self._loop.create_task(sub.coro(msg)) else: yield from sub.coro(msg) elif sub.cb is not None: if sub.is_async: raise NatsError( "nats: must use coroutine for async subscriptions") else: # Schedule regular callbacks to be processed sequentially. self._loop.call_soon(sub.cb, msg) except asyncio.CancelledError: # In case the coroutine handler gets cancelled # then stop task loop and return. break except Exception as e: # All errors from calling a handler # are async errors. if err_cb is not None: yield from err_cb(e) except asyncio.CancelledError: break # Start task for each subscription, it should be cancelled # on both unsubscribe and closing as well. sub.wait_for_msgs_task = self._loop.create_task( wait_for_msgs()) elif future is not None: # Used to handle the single response from a request. sub.future = future else: raise NatsError("nats: invalid subscription type") self._ssid += 1 ssid = self._ssid self._subs[ssid] = sub yield from self._subscribe(sub, ssid) return ssid
[ "def", "subscribe", "(", "self", ",", "subject", ",", "queue", "=", "\"\"", ",", "cb", "=", "None", ",", "future", "=", "None", ",", "max_msgs", "=", "0", ",", "is_async", "=", "False", ",", "pending_msgs_limit", "=", "DEFAULT_SUB_PENDING_MSGS_LIMIT", ",", "pending_bytes_limit", "=", "DEFAULT_SUB_PENDING_BYTES_LIMIT", ",", ")", ":", "if", "subject", "==", "\"\"", ":", "raise", "ErrBadSubject", "if", "self", ".", "is_closed", ":", "raise", "ErrConnectionClosed", "if", "self", ".", "is_draining", ":", "raise", "ErrConnectionDraining", "sub", "=", "Subscription", "(", "subject", "=", "subject", ",", "queue", "=", "queue", ",", "max_msgs", "=", "max_msgs", ",", "is_async", "=", "is_async", ",", ")", "if", "cb", "is", "not", "None", ":", "if", "asyncio", ".", "iscoroutinefunction", "(", "cb", ")", ":", "sub", ".", "coro", "=", "cb", "elif", "sub", ".", "is_async", ":", "raise", "NatsError", "(", "\"nats: must use coroutine for async subscriptions\"", ")", "else", ":", "# NOTE: Consider to deprecate this eventually, it should always", "# be coroutines otherwise they could affect the single thread,", "# for now still allow to be flexible.", "sub", ".", "cb", "=", "cb", "sub", ".", "pending_msgs_limit", "=", "pending_msgs_limit", "sub", ".", "pending_bytes_limit", "=", "pending_bytes_limit", "sub", ".", "pending_queue", "=", "asyncio", ".", "Queue", "(", "maxsize", "=", "pending_msgs_limit", ",", "loop", "=", "self", ".", "_loop", ",", ")", "# Close the delivery coroutine over the sub and error handler", "# instead of having subscription type hold over state of the conn.", "err_cb", "=", "self", ".", "_error_cb", "@", "asyncio", ".", "coroutine", "def", "wait_for_msgs", "(", ")", ":", "nonlocal", "sub", "nonlocal", "err_cb", "while", "True", ":", "try", ":", "msg", "=", "yield", "from", "sub", ".", "pending_queue", ".", "get", "(", ")", "sub", ".", "pending_size", "-=", "len", "(", "msg", ".", "data", ")", "try", ":", "# Invoke depending of type of handler.", "if", "sub", ".", "coro", "is", "not", "None", ":", "if", "sub", ".", "is_async", ":", "# NOTE: Deprecate this usage in a next release,", "# the handler implementation ought to decide", "# the concurrency level at which the messages", "# should be processed.", "self", ".", "_loop", ".", "create_task", "(", "sub", ".", "coro", "(", "msg", ")", ")", "else", ":", "yield", "from", "sub", ".", "coro", "(", "msg", ")", "elif", "sub", ".", "cb", "is", "not", "None", ":", "if", "sub", ".", "is_async", ":", "raise", "NatsError", "(", "\"nats: must use coroutine for async subscriptions\"", ")", "else", ":", "# Schedule regular callbacks to be processed sequentially.", "self", ".", "_loop", ".", "call_soon", "(", "sub", ".", "cb", ",", "msg", ")", "except", "asyncio", ".", "CancelledError", ":", "# In case the coroutine handler gets cancelled", "# then stop task loop and return.", "break", "except", "Exception", "as", "e", ":", "# All errors from calling a handler", "# are async errors.", "if", "err_cb", "is", "not", "None", ":", "yield", "from", "err_cb", "(", "e", ")", "except", "asyncio", ".", "CancelledError", ":", "break", "# Start task for each subscription, it should be cancelled", "# on both unsubscribe and closing as well.", "sub", ".", "wait_for_msgs_task", "=", "self", ".", "_loop", ".", "create_task", "(", "wait_for_msgs", "(", ")", ")", "elif", "future", "is", "not", "None", ":", "# Used to handle the single response from a request.", "sub", ".", "future", "=", "future", "else", ":", "raise", "NatsError", "(", "\"nats: invalid subscription type\"", ")", "self", ".", "_ssid", "+=", "1", "ssid", "=", "self", ".", "_ssid", "self", ".", "_subs", "[", "ssid", "]", "=", "sub", "yield", "from", "self", ".", "_subscribe", "(", "sub", ",", "ssid", ")", "return", "ssid" ]
Takes a subject string and optional queue string to send a SUB cmd, and a callback which to which messages (Msg) will be dispatched to be processed sequentially by default.
[ "Takes", "a", "subject", "string", "and", "optional", "queue", "string", "to", "send", "a", "SUB", "cmd", "and", "a", "callback", "which", "to", "which", "messages", "(", "Msg", ")", "will", "be", "dispatched", "to", "be", "processed", "sequentially", "by", "default", "." ]
python
test
fastai/fastai
fastai/callbacks/tensorboard.py
https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/fastai/callbacks/tensorboard.py#L345-L357
def write(self)->None: "Writes model gradient statistics to Tensorboard." if len(self.gradients) == 0: return norms = [x.data.norm() for x in self.gradients] self._write_avg_norm(norms=norms) self._write_median_norm(norms=norms) self._write_max_norm(norms=norms) self._write_min_norm(norms=norms) self._write_num_zeros() self._write_avg_gradient() self._write_median_gradient() self._write_max_gradient() self._write_min_gradient()
[ "def", "write", "(", "self", ")", "->", "None", ":", "if", "len", "(", "self", ".", "gradients", ")", "==", "0", ":", "return", "norms", "=", "[", "x", ".", "data", ".", "norm", "(", ")", "for", "x", "in", "self", ".", "gradients", "]", "self", ".", "_write_avg_norm", "(", "norms", "=", "norms", ")", "self", ".", "_write_median_norm", "(", "norms", "=", "norms", ")", "self", ".", "_write_max_norm", "(", "norms", "=", "norms", ")", "self", ".", "_write_min_norm", "(", "norms", "=", "norms", ")", "self", ".", "_write_num_zeros", "(", ")", "self", ".", "_write_avg_gradient", "(", ")", "self", ".", "_write_median_gradient", "(", ")", "self", ".", "_write_max_gradient", "(", ")", "self", ".", "_write_min_gradient", "(", ")" ]
Writes model gradient statistics to Tensorboard.
[ "Writes", "model", "gradient", "statistics", "to", "Tensorboard", "." ]
python
train
ArduPilot/MAVProxy
MAVProxy/modules/mavproxy_param.py
https://github.com/ArduPilot/MAVProxy/blob/f50bdeff33064876f7dc8dc4683d278ff47f75d5/MAVProxy/modules/mavproxy_param.py#L405-L410
def check_new_target_system(self): '''handle a new target_system''' sysid = self.get_sysid() if sysid in self.pstate: return self.add_new_target_system(sysid)
[ "def", "check_new_target_system", "(", "self", ")", ":", "sysid", "=", "self", ".", "get_sysid", "(", ")", "if", "sysid", "in", "self", ".", "pstate", ":", "return", "self", ".", "add_new_target_system", "(", "sysid", ")" ]
handle a new target_system
[ "handle", "a", "new", "target_system" ]
python
train
swharden/SWHLab
doc/oldcode/swhlab/core/common.py
https://github.com/swharden/SWHLab/blob/a86c3c65323cec809a4bd4f81919644927094bf5/doc/oldcode/swhlab/core/common.py#L213-L218
def html_temp_launch(html): """given text, make it a temporary HTML file and launch it.""" fname = tempfile.gettempdir()+"/swhlab/temp.html" with open(fname,'w') as f: f.write(html) webbrowser.open(fname)
[ "def", "html_temp_launch", "(", "html", ")", ":", "fname", "=", "tempfile", ".", "gettempdir", "(", ")", "+", "\"/swhlab/temp.html\"", "with", "open", "(", "fname", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "html", ")", "webbrowser", ".", "open", "(", "fname", ")" ]
given text, make it a temporary HTML file and launch it.
[ "given", "text", "make", "it", "a", "temporary", "HTML", "file", "and", "launch", "it", "." ]
python
valid
kubernetes-client/python
kubernetes/client/apis/core_v1_api.py
https://github.com/kubernetes-client/python/blob/5e512ff564c244c50cab780d821542ed56aa965a/kubernetes/client/apis/core_v1_api.py#L5188-L5209
def connect_put_node_proxy_with_path(self, name, path, **kwargs): """ connect PUT requests to proxy of Node This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_put_node_proxy_with_path(name, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the NodeProxyOptions (required) :param str path: path to the resource (required) :param str path2: Path is the URL path to use for the current proxy request to node. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.connect_put_node_proxy_with_path_with_http_info(name, path, **kwargs) else: (data) = self.connect_put_node_proxy_with_path_with_http_info(name, path, **kwargs) return data
[ "def", "connect_put_node_proxy_with_path", "(", "self", ",", "name", ",", "path", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async_req'", ")", ":", "return", "self", ".", "connect_put_node_proxy_with_path_with_http_info", "(", "name", ",", "path", ",", "*", "*", "kwargs", ")", "else", ":", "(", "data", ")", "=", "self", ".", "connect_put_node_proxy_with_path_with_http_info", "(", "name", ",", "path", ",", "*", "*", "kwargs", ")", "return", "data" ]
connect PUT requests to proxy of Node This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.connect_put_node_proxy_with_path(name, path, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the NodeProxyOptions (required) :param str path: path to the resource (required) :param str path2: Path is the URL path to use for the current proxy request to node. :return: str If the method is called asynchronously, returns the request thread.
[ "connect", "PUT", "requests", "to", "proxy", "of", "Node", "This", "method", "makes", "a", "synchronous", "HTTP", "request", "by", "default", ".", "To", "make", "an", "asynchronous", "HTTP", "request", "please", "pass", "async_req", "=", "True", ">>>", "thread", "=", "api", ".", "connect_put_node_proxy_with_path", "(", "name", "path", "async_req", "=", "True", ")", ">>>", "result", "=", "thread", ".", "get", "()" ]
python
train
numba/llvmlite
llvmlite/ir/values.py
https://github.com/numba/llvmlite/blob/fcadf8af11947f3fd041c5d6526c5bf231564883/llvmlite/ir/values.py#L161-L166
def literal_struct(cls, elems): """ Construct a literal structure constant made of the given members. """ tys = [el.type for el in elems] return cls(types.LiteralStructType(tys), elems)
[ "def", "literal_struct", "(", "cls", ",", "elems", ")", ":", "tys", "=", "[", "el", ".", "type", "for", "el", "in", "elems", "]", "return", "cls", "(", "types", ".", "LiteralStructType", "(", "tys", ")", ",", "elems", ")" ]
Construct a literal structure constant made of the given members.
[ "Construct", "a", "literal", "structure", "constant", "made", "of", "the", "given", "members", "." ]
python
train
bapakode/OmMongo
ommongo/fields/fields.py
https://github.com/bapakode/OmMongo/blob/52b5a5420516dc709f2d2eb065818c7973991ce3/ommongo/fields/fields.py#L588-L591
def unwrap(self, value, session=None): ''' Validates ``value`` and unwraps it with ``ComputedField.computed_type``''' self.validate_unwrap(value) return self.computed_type.unwrap(value, session=session)
[ "def", "unwrap", "(", "self", ",", "value", ",", "session", "=", "None", ")", ":", "self", ".", "validate_unwrap", "(", "value", ")", "return", "self", ".", "computed_type", ".", "unwrap", "(", "value", ",", "session", "=", "session", ")" ]
Validates ``value`` and unwraps it with ``ComputedField.computed_type``
[ "Validates", "value", "and", "unwraps", "it", "with", "ComputedField", ".", "computed_type" ]
python
train
edx/edx-organizations
organizations/data.py
https://github.com/edx/edx-organizations/blob/51000d5d359d880a6eb3a79345f60744f1982c00/organizations/data.py#L53-L61
def _activate_organization(organization): """ Activates an inactivated (soft-deleted) organization as well as any inactive relationships """ [_activate_organization_course_relationship(record) for record in internal.OrganizationCourse.objects.filter(organization_id=organization.id, active=False)] [_activate_record(record) for record in internal.Organization.objects.filter(id=organization.id, active=False)]
[ "def", "_activate_organization", "(", "organization", ")", ":", "[", "_activate_organization_course_relationship", "(", "record", ")", "for", "record", "in", "internal", ".", "OrganizationCourse", ".", "objects", ".", "filter", "(", "organization_id", "=", "organization", ".", "id", ",", "active", "=", "False", ")", "]", "[", "_activate_record", "(", "record", ")", "for", "record", "in", "internal", ".", "Organization", ".", "objects", ".", "filter", "(", "id", "=", "organization", ".", "id", ",", "active", "=", "False", ")", "]" ]
Activates an inactivated (soft-deleted) organization as well as any inactive relationships
[ "Activates", "an", "inactivated", "(", "soft", "-", "deleted", ")", "organization", "as", "well", "as", "any", "inactive", "relationships" ]
python
valid
PlaidWeb/Publ
publ/queries.py
https://github.com/PlaidWeb/Publ/blob/ce7893632ddc3cb70b4978a41ffd7dd06fa13565/publ/queries.py#L145-L157
def where_entry_date(query, datespec): """ Where clause for entries which match a textual date spec datespec -- The date spec to check for, in YYYY[[-]MM[[-]DD]] format """ date, interval, _ = utils.parse_date(datespec) start_date, end_date = date.span(interval) return orm.select( e for e in query if e.local_date >= start_date.naive and e.local_date <= end_date.naive )
[ "def", "where_entry_date", "(", "query", ",", "datespec", ")", ":", "date", ",", "interval", ",", "_", "=", "utils", ".", "parse_date", "(", "datespec", ")", "start_date", ",", "end_date", "=", "date", ".", "span", "(", "interval", ")", "return", "orm", ".", "select", "(", "e", "for", "e", "in", "query", "if", "e", ".", "local_date", ">=", "start_date", ".", "naive", "and", "e", ".", "local_date", "<=", "end_date", ".", "naive", ")" ]
Where clause for entries which match a textual date spec datespec -- The date spec to check for, in YYYY[[-]MM[[-]DD]] format
[ "Where", "clause", "for", "entries", "which", "match", "a", "textual", "date", "spec" ]
python
train
mediawiki-utilities/python-mwtypes
mwtypes/files/functions.py
https://github.com/mediawiki-utilities/python-mwtypes/blob/d996562e40437a7fff39a1c00fb5544b5708b5ed/mwtypes/files/functions.py#L118-L129
def writer(path): """ Creates a compressed file writer from for a path with a specified compression type. """ filename, extension = extract_extension(path) if extension in FILE_WRITERS: writer_func = FILE_WRITERS[extension] return writer_func(path) else: raise RuntimeError("Output compression {0} not supported. Type {1}" .format(extension, tuple(FILE_WRITERS.keys())))
[ "def", "writer", "(", "path", ")", ":", "filename", ",", "extension", "=", "extract_extension", "(", "path", ")", "if", "extension", "in", "FILE_WRITERS", ":", "writer_func", "=", "FILE_WRITERS", "[", "extension", "]", "return", "writer_func", "(", "path", ")", "else", ":", "raise", "RuntimeError", "(", "\"Output compression {0} not supported. Type {1}\"", ".", "format", "(", "extension", ",", "tuple", "(", "FILE_WRITERS", ".", "keys", "(", ")", ")", ")", ")" ]
Creates a compressed file writer from for a path with a specified compression type.
[ "Creates", "a", "compressed", "file", "writer", "from", "for", "a", "path", "with", "a", "specified", "compression", "type", "." ]
python
train
saltstack/salt
salt/modules/libcloud_storage.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/libcloud_storage.py#L242-L286
def download_object(container_name, object_name, destination_path, profile, overwrite_existing=False, delete_on_failure=True, **libcloud_kwargs): ''' Download an object to the specified destination path. :param container_name: Container name :type container_name: ``str`` :param object_name: Object name :type object_name: ``str`` :param destination_path: Full path to a file or a directory where the incoming file will be saved. :type destination_path: ``str`` :param profile: The profile key :type profile: ``str`` :param overwrite_existing: True to overwrite an existing file, defaults to False. :type overwrite_existing: ``bool`` :param delete_on_failure: True to delete a partially downloaded file if the download was not successful (hash mismatch / file size). :type delete_on_failure: ``bool`` :param libcloud_kwargs: Extra arguments for the driver's download_object method :type libcloud_kwargs: ``dict`` :return: True if an object has been successfully downloaded, False otherwise. :rtype: ``bool`` CLI Example: .. code-block:: bash salt myminion libcloud_storage.download_object MyFolder me.jpg /tmp/me.jpg profile1 ''' conn = _get_driver(profile=profile) obj = conn.get_object(container_name, object_name) libcloud_kwargs = salt.utils.args.clean_kwargs(**libcloud_kwargs) return conn.download_object(obj, destination_path, overwrite_existing, delete_on_failure, **libcloud_kwargs)
[ "def", "download_object", "(", "container_name", ",", "object_name", ",", "destination_path", ",", "profile", ",", "overwrite_existing", "=", "False", ",", "delete_on_failure", "=", "True", ",", "*", "*", "libcloud_kwargs", ")", ":", "conn", "=", "_get_driver", "(", "profile", "=", "profile", ")", "obj", "=", "conn", ".", "get_object", "(", "container_name", ",", "object_name", ")", "libcloud_kwargs", "=", "salt", ".", "utils", ".", "args", ".", "clean_kwargs", "(", "*", "*", "libcloud_kwargs", ")", "return", "conn", ".", "download_object", "(", "obj", ",", "destination_path", ",", "overwrite_existing", ",", "delete_on_failure", ",", "*", "*", "libcloud_kwargs", ")" ]
Download an object to the specified destination path. :param container_name: Container name :type container_name: ``str`` :param object_name: Object name :type object_name: ``str`` :param destination_path: Full path to a file or a directory where the incoming file will be saved. :type destination_path: ``str`` :param profile: The profile key :type profile: ``str`` :param overwrite_existing: True to overwrite an existing file, defaults to False. :type overwrite_existing: ``bool`` :param delete_on_failure: True to delete a partially downloaded file if the download was not successful (hash mismatch / file size). :type delete_on_failure: ``bool`` :param libcloud_kwargs: Extra arguments for the driver's download_object method :type libcloud_kwargs: ``dict`` :return: True if an object has been successfully downloaded, False otherwise. :rtype: ``bool`` CLI Example: .. code-block:: bash salt myminion libcloud_storage.download_object MyFolder me.jpg /tmp/me.jpg profile1
[ "Download", "an", "object", "to", "the", "specified", "destination", "path", "." ]
python
train
KelSolaar/Umbra
umbra/ui/widgets/notification_QLabel.py
https://github.com/KelSolaar/Umbra/blob/66f45f08d9d723787f1191989f8b0dda84b412ce/umbra/ui/widgets/notification_QLabel.py#L735-L742
def __fade_in(self): """ Starts the Widget fade in. """ self.__timer.stop() self.__vector = self.__fade_speed self.__timer.start()
[ "def", "__fade_in", "(", "self", ")", ":", "self", ".", "__timer", ".", "stop", "(", ")", "self", ".", "__vector", "=", "self", ".", "__fade_speed", "self", ".", "__timer", ".", "start", "(", ")" ]
Starts the Widget fade in.
[ "Starts", "the", "Widget", "fade", "in", "." ]
python
train
waqasbhatti/astrobase
astrobase/fakelcs/recovery.py
https://github.com/waqasbhatti/astrobase/blob/2922a14619d183fb28005fa7d02027ac436f2265/astrobase/fakelcs/recovery.py#L1950-L2064
def parallel_periodicvar_recovery(simbasedir, period_tolerance=1.0e-3, liststartind=None, listmaxobjects=None, nworkers=None): '''This is a parallel driver for `periodicvar_recovery`. Parameters ---------- simbasedir : str The base directory where all of the fake LCs and period-finding results are. period_tolerance : float The maximum difference that this function will consider between an actual period (or its aliases) and a recovered period to consider it as as a 'recovered' period. liststartindex : int The starting index of processing. This refers to the filename list generated by running `glob.glob` on the period-finding result pickles in `simbasedir/periodfinding`. listmaxobjects : int The maximum number of objects to process in this run. Use this with `liststartindex` to effectively distribute working on a large list of input period-finding result pickles over several sessions or machines. nperiodworkers : int This is the number of parallel period-finding worker processes to use. Returns ------- str Returns the filename of the pickle produced containing all of the period recovery results. ''' # figure out the periodfinding pickles directory pfpkldir = os.path.join(simbasedir,'periodfinding') if not os.path.exists(pfpkldir): LOGERROR('no "periodfinding" subdirectory in %s, can\'t continue' % simbasedir) return None # find all the periodfinding pickles pfpkl_list = glob.glob(os.path.join(pfpkldir,'*periodfinding*pkl*')) if len(pfpkl_list) > 0: if liststartind: pfpkl_list = pfpkl_list[liststartind:] if listmaxobjects: pfpkl_list = pfpkl_list[:listmaxobjects] tasks = [(x, simbasedir, period_tolerance) for x in pfpkl_list] pool = mp.Pool(nworkers) results = pool.map(periodrec_worker, tasks) pool.close() pool.join() resdict = {x['objectid']:x for x in results if x is not None} actual_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and x['actual_vartype'] in PERIODIC_VARTYPES)], dtype=np.unicode_ ) recovered_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and 'actual' in x['best_recovered_status'])], dtype=np.unicode_ ) alias_twice_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and 'twice' in x['best_recovered_status'])], dtype=np.unicode_ ) alias_half_periodicvars = np.array( [x['objectid'] for x in results if (x is not None and 'half' in x['best_recovered_status'])], dtype=np.unicode_ ) all_objectids = [x['objectid'] for x in results] outdict = {'simbasedir':os.path.abspath(simbasedir), 'objectids':all_objectids, 'period_tolerance':period_tolerance, 'actual_periodicvars':actual_periodicvars, 'recovered_periodicvars':recovered_periodicvars, 'alias_twice_periodicvars':alias_twice_periodicvars, 'alias_half_periodicvars':alias_half_periodicvars, 'details':resdict} outfile = os.path.join(simbasedir,'periodicvar-recovery.pkl') with open(outfile, 'wb') as outfd: pickle.dump(outdict, outfd, pickle.HIGHEST_PROTOCOL) return outdict else: LOGERROR( 'no periodfinding result pickles found in %s, can\'t continue' % pfpkldir ) return None
[ "def", "parallel_periodicvar_recovery", "(", "simbasedir", ",", "period_tolerance", "=", "1.0e-3", ",", "liststartind", "=", "None", ",", "listmaxobjects", "=", "None", ",", "nworkers", "=", "None", ")", ":", "# figure out the periodfinding pickles directory", "pfpkldir", "=", "os", ".", "path", ".", "join", "(", "simbasedir", ",", "'periodfinding'", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "pfpkldir", ")", ":", "LOGERROR", "(", "'no \"periodfinding\" subdirectory in %s, can\\'t continue'", "%", "simbasedir", ")", "return", "None", "# find all the periodfinding pickles", "pfpkl_list", "=", "glob", ".", "glob", "(", "os", ".", "path", ".", "join", "(", "pfpkldir", ",", "'*periodfinding*pkl*'", ")", ")", "if", "len", "(", "pfpkl_list", ")", ">", "0", ":", "if", "liststartind", ":", "pfpkl_list", "=", "pfpkl_list", "[", "liststartind", ":", "]", "if", "listmaxobjects", ":", "pfpkl_list", "=", "pfpkl_list", "[", ":", "listmaxobjects", "]", "tasks", "=", "[", "(", "x", ",", "simbasedir", ",", "period_tolerance", ")", "for", "x", "in", "pfpkl_list", "]", "pool", "=", "mp", ".", "Pool", "(", "nworkers", ")", "results", "=", "pool", ".", "map", "(", "periodrec_worker", ",", "tasks", ")", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "resdict", "=", "{", "x", "[", "'objectid'", "]", ":", "x", "for", "x", "in", "results", "if", "x", "is", "not", "None", "}", "actual_periodicvars", "=", "np", ".", "array", "(", "[", "x", "[", "'objectid'", "]", "for", "x", "in", "results", "if", "(", "x", "is", "not", "None", "and", "x", "[", "'actual_vartype'", "]", "in", "PERIODIC_VARTYPES", ")", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", "recovered_periodicvars", "=", "np", ".", "array", "(", "[", "x", "[", "'objectid'", "]", "for", "x", "in", "results", "if", "(", "x", "is", "not", "None", "and", "'actual'", "in", "x", "[", "'best_recovered_status'", "]", ")", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", "alias_twice_periodicvars", "=", "np", ".", "array", "(", "[", "x", "[", "'objectid'", "]", "for", "x", "in", "results", "if", "(", "x", "is", "not", "None", "and", "'twice'", "in", "x", "[", "'best_recovered_status'", "]", ")", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", "alias_half_periodicvars", "=", "np", ".", "array", "(", "[", "x", "[", "'objectid'", "]", "for", "x", "in", "results", "if", "(", "x", "is", "not", "None", "and", "'half'", "in", "x", "[", "'best_recovered_status'", "]", ")", "]", ",", "dtype", "=", "np", ".", "unicode_", ")", "all_objectids", "=", "[", "x", "[", "'objectid'", "]", "for", "x", "in", "results", "]", "outdict", "=", "{", "'simbasedir'", ":", "os", ".", "path", ".", "abspath", "(", "simbasedir", ")", ",", "'objectids'", ":", "all_objectids", ",", "'period_tolerance'", ":", "period_tolerance", ",", "'actual_periodicvars'", ":", "actual_periodicvars", ",", "'recovered_periodicvars'", ":", "recovered_periodicvars", ",", "'alias_twice_periodicvars'", ":", "alias_twice_periodicvars", ",", "'alias_half_periodicvars'", ":", "alias_half_periodicvars", ",", "'details'", ":", "resdict", "}", "outfile", "=", "os", ".", "path", ".", "join", "(", "simbasedir", ",", "'periodicvar-recovery.pkl'", ")", "with", "open", "(", "outfile", ",", "'wb'", ")", "as", "outfd", ":", "pickle", ".", "dump", "(", "outdict", ",", "outfd", ",", "pickle", ".", "HIGHEST_PROTOCOL", ")", "return", "outdict", "else", ":", "LOGERROR", "(", "'no periodfinding result pickles found in %s, can\\'t continue'", "%", "pfpkldir", ")", "return", "None" ]
This is a parallel driver for `periodicvar_recovery`. Parameters ---------- simbasedir : str The base directory where all of the fake LCs and period-finding results are. period_tolerance : float The maximum difference that this function will consider between an actual period (or its aliases) and a recovered period to consider it as as a 'recovered' period. liststartindex : int The starting index of processing. This refers to the filename list generated by running `glob.glob` on the period-finding result pickles in `simbasedir/periodfinding`. listmaxobjects : int The maximum number of objects to process in this run. Use this with `liststartindex` to effectively distribute working on a large list of input period-finding result pickles over several sessions or machines. nperiodworkers : int This is the number of parallel period-finding worker processes to use. Returns ------- str Returns the filename of the pickle produced containing all of the period recovery results.
[ "This", "is", "a", "parallel", "driver", "for", "periodicvar_recovery", "." ]
python
valid
fermiPy/fermipy
fermipy/gtanalysis.py
https://github.com/fermiPy/fermipy/blob/9df5e7e3728307fd58c5bba36fd86783c39fbad4/fermipy/gtanalysis.py#L4982-L5001
def model_counts_spectrum(self, name, logemin, logemax, weighted=False): """Return the model counts spectrum of a source. Parameters ---------- name : str Source name. """ # EAC, we need this b/c older version of the ST don't have the right signature try: cs = np.array(self.like.logLike.modelCountsSpectrum( str(name), weighted)) except (TypeError, NotImplementedError): cs = np.array(self.like.logLike.modelCountsSpectrum(str(name))) imin = utils.val_to_edge(self.log_energies, logemin)[0] imax = utils.val_to_edge(self.log_energies, logemax)[0] if imax <= imin: raise Exception('Invalid energy range.') return cs[imin:imax]
[ "def", "model_counts_spectrum", "(", "self", ",", "name", ",", "logemin", ",", "logemax", ",", "weighted", "=", "False", ")", ":", "# EAC, we need this b/c older version of the ST don't have the right signature", "try", ":", "cs", "=", "np", ".", "array", "(", "self", ".", "like", ".", "logLike", ".", "modelCountsSpectrum", "(", "str", "(", "name", ")", ",", "weighted", ")", ")", "except", "(", "TypeError", ",", "NotImplementedError", ")", ":", "cs", "=", "np", ".", "array", "(", "self", ".", "like", ".", "logLike", ".", "modelCountsSpectrum", "(", "str", "(", "name", ")", ")", ")", "imin", "=", "utils", ".", "val_to_edge", "(", "self", ".", "log_energies", ",", "logemin", ")", "[", "0", "]", "imax", "=", "utils", ".", "val_to_edge", "(", "self", ".", "log_energies", ",", "logemax", ")", "[", "0", "]", "if", "imax", "<=", "imin", ":", "raise", "Exception", "(", "'Invalid energy range.'", ")", "return", "cs", "[", "imin", ":", "imax", "]" ]
Return the model counts spectrum of a source. Parameters ---------- name : str Source name.
[ "Return", "the", "model", "counts", "spectrum", "of", "a", "source", "." ]
python
train
chrisspen/dtree
dtree.py
https://github.com/chrisspen/dtree/blob/9e9c9992b22ad9a7e296af7e6837666b05db43ef/dtree.py#L1028-L1037
def get_gain(self, attr_name): """ Calculates the information gain from splitting on the given attribute. """ subset_entropy = 0.0 for value in iterkeys(self._attr_value_counts[attr_name]): value_prob = self.get_value_prob(attr_name, value) e = self.get_entropy(attr_name, value) subset_entropy += value_prob * e return (self.main_entropy - subset_entropy)
[ "def", "get_gain", "(", "self", ",", "attr_name", ")", ":", "subset_entropy", "=", "0.0", "for", "value", "in", "iterkeys", "(", "self", ".", "_attr_value_counts", "[", "attr_name", "]", ")", ":", "value_prob", "=", "self", ".", "get_value_prob", "(", "attr_name", ",", "value", ")", "e", "=", "self", ".", "get_entropy", "(", "attr_name", ",", "value", ")", "subset_entropy", "+=", "value_prob", "*", "e", "return", "(", "self", ".", "main_entropy", "-", "subset_entropy", ")" ]
Calculates the information gain from splitting on the given attribute.
[ "Calculates", "the", "information", "gain", "from", "splitting", "on", "the", "given", "attribute", "." ]
python
train
saltstack/salt
salt/modules/bcache.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/bcache.py#L211-L264
def back_make(dev, cache_mode='writeback', force=False, attach=True, bucket_size=None): ''' Create a backing device for attachment to a set. Because the block size must be the same, a cache set already needs to exist. CLI example: .. code-block:: bash salt '*' bcache.back_make sdc cache_mode=writeback attach=True :param cache_mode: writethrough, writeback, writearound or none. :param force: Overwrite existing bcaches :param attach: Immediately attach the backing device to the set :param bucket_size: Size of a bucket (see kernel doc) ''' # pylint: disable=too-many-return-statements cache = uuid() if not cache: log.error('No bcache set found') return False elif _sysfs_attr(_bcpath(dev)): if not force: log.error('%s already contains a bcache. Wipe it manually or use force', dev) return False elif uuid(dev) and not detach(dev): return False elif not stop(dev): return False dev = _devpath(dev) block_size = _size_map(_fssys('block_size')) # You might want to override, we pick the cache set's as sane default if bucket_size is None: bucket_size = _size_map(_fssys('bucket_size')) cmd = 'make-bcache --block {0} --bucket {1} --{2} --bdev {3}'.format(block_size, bucket_size, cache_mode, dev) if force: cmd += ' --wipe-bcache' if not _run_all(cmd, 'error', 'Error creating backing device {0}: %s'.format(dev)): return False elif not _sysfs_attr('fs/bcache/register', _devpath(dev), 'error', 'Error registering backing device {0}'.format(dev)): return False elif not _wait(lambda: _sysfs_attr(_bcpath(dev)) is not False, 'error', 'Backing device {0} did not register'.format(dev)): return False elif attach: return attach_(dev) return True
[ "def", "back_make", "(", "dev", ",", "cache_mode", "=", "'writeback'", ",", "force", "=", "False", ",", "attach", "=", "True", ",", "bucket_size", "=", "None", ")", ":", "# pylint: disable=too-many-return-statements", "cache", "=", "uuid", "(", ")", "if", "not", "cache", ":", "log", ".", "error", "(", "'No bcache set found'", ")", "return", "False", "elif", "_sysfs_attr", "(", "_bcpath", "(", "dev", ")", ")", ":", "if", "not", "force", ":", "log", ".", "error", "(", "'%s already contains a bcache. Wipe it manually or use force'", ",", "dev", ")", "return", "False", "elif", "uuid", "(", "dev", ")", "and", "not", "detach", "(", "dev", ")", ":", "return", "False", "elif", "not", "stop", "(", "dev", ")", ":", "return", "False", "dev", "=", "_devpath", "(", "dev", ")", "block_size", "=", "_size_map", "(", "_fssys", "(", "'block_size'", ")", ")", "# You might want to override, we pick the cache set's as sane default", "if", "bucket_size", "is", "None", ":", "bucket_size", "=", "_size_map", "(", "_fssys", "(", "'bucket_size'", ")", ")", "cmd", "=", "'make-bcache --block {0} --bucket {1} --{2} --bdev {3}'", ".", "format", "(", "block_size", ",", "bucket_size", ",", "cache_mode", ",", "dev", ")", "if", "force", ":", "cmd", "+=", "' --wipe-bcache'", "if", "not", "_run_all", "(", "cmd", ",", "'error'", ",", "'Error creating backing device {0}: %s'", ".", "format", "(", "dev", ")", ")", ":", "return", "False", "elif", "not", "_sysfs_attr", "(", "'fs/bcache/register'", ",", "_devpath", "(", "dev", ")", ",", "'error'", ",", "'Error registering backing device {0}'", ".", "format", "(", "dev", ")", ")", ":", "return", "False", "elif", "not", "_wait", "(", "lambda", ":", "_sysfs_attr", "(", "_bcpath", "(", "dev", ")", ")", "is", "not", "False", ",", "'error'", ",", "'Backing device {0} did not register'", ".", "format", "(", "dev", ")", ")", ":", "return", "False", "elif", "attach", ":", "return", "attach_", "(", "dev", ")", "return", "True" ]
Create a backing device for attachment to a set. Because the block size must be the same, a cache set already needs to exist. CLI example: .. code-block:: bash salt '*' bcache.back_make sdc cache_mode=writeback attach=True :param cache_mode: writethrough, writeback, writearound or none. :param force: Overwrite existing bcaches :param attach: Immediately attach the backing device to the set :param bucket_size: Size of a bucket (see kernel doc)
[ "Create", "a", "backing", "device", "for", "attachment", "to", "a", "set", ".", "Because", "the", "block", "size", "must", "be", "the", "same", "a", "cache", "set", "already", "needs", "to", "exist", "." ]
python
train
edx/django-user-tasks
user_tasks/tasks.py
https://github.com/edx/django-user-tasks/blob/6a9cf3821f4d8e202e6b48703e6a62e2a889adfb/user_tasks/tasks.py#L74-L95
def status(self): """ Get the :py:class:`~user_tasks.models.UserTaskStatus` model instance for this UserTaskMixin. """ task_id = self.request.id try: # Most calls are for existing objects, don't waste time # preparing creation arguments unless necessary return UserTaskStatus.objects.get(task_id=task_id) except UserTaskStatus.DoesNotExist: # Probably an eager task that skipped the before_task_publish # signal (or an atomic view where the new record hasn't been # committed yet). Create a record for it. arguments_dict = self.arguments_as_dict(*self.request.args, **self.request.kwargs) name = self.generate_name(arguments_dict) task_class = '.'.join([self.__class__.__module__, self.__class__.__name__]) total_steps = self.calculate_total_steps(arguments_dict) user_id = arguments_dict['user_id'] # Use get_or_create() again just in case another process created it in the meantime return UserTaskStatus.objects.get_or_create( task_id=task_id, defaults={'user_id': user_id, 'name': name, 'task_class': task_class, 'total_steps': total_steps})[0]
[ "def", "status", "(", "self", ")", ":", "task_id", "=", "self", ".", "request", ".", "id", "try", ":", "# Most calls are for existing objects, don't waste time", "# preparing creation arguments unless necessary", "return", "UserTaskStatus", ".", "objects", ".", "get", "(", "task_id", "=", "task_id", ")", "except", "UserTaskStatus", ".", "DoesNotExist", ":", "# Probably an eager task that skipped the before_task_publish", "# signal (or an atomic view where the new record hasn't been", "# committed yet). Create a record for it.", "arguments_dict", "=", "self", ".", "arguments_as_dict", "(", "*", "self", ".", "request", ".", "args", ",", "*", "*", "self", ".", "request", ".", "kwargs", ")", "name", "=", "self", ".", "generate_name", "(", "arguments_dict", ")", "task_class", "=", "'.'", ".", "join", "(", "[", "self", ".", "__class__", ".", "__module__", ",", "self", ".", "__class__", ".", "__name__", "]", ")", "total_steps", "=", "self", ".", "calculate_total_steps", "(", "arguments_dict", ")", "user_id", "=", "arguments_dict", "[", "'user_id'", "]", "# Use get_or_create() again just in case another process created it in the meantime", "return", "UserTaskStatus", ".", "objects", ".", "get_or_create", "(", "task_id", "=", "task_id", ",", "defaults", "=", "{", "'user_id'", ":", "user_id", ",", "'name'", ":", "name", ",", "'task_class'", ":", "task_class", ",", "'total_steps'", ":", "total_steps", "}", ")", "[", "0", "]" ]
Get the :py:class:`~user_tasks.models.UserTaskStatus` model instance for this UserTaskMixin.
[ "Get", "the", ":", "py", ":", "class", ":", "~user_tasks", ".", "models", ".", "UserTaskStatus", "model", "instance", "for", "this", "UserTaskMixin", "." ]
python
train
apache/incubator-heron
heron/tools/tracker/src/python/handlers/machineshandler.py
https://github.com/apache/incubator-heron/blob/ad10325a0febe89ad337e561ebcbe37ec5d9a5ac/heron/tools/tracker/src/python/handlers/machineshandler.py#L58-L103
def get(self): """ get method """ clusters = self.get_arguments(constants.PARAM_CLUSTER) environs = self.get_arguments(constants.PARAM_ENVIRON) topology_names = self.get_arguments(constants.PARAM_TOPOLOGY) ret = {} if len(topology_names) > 1: if not clusters: message = "Missing argument" + constants.PARAM_CLUSTER self.write_error_response(message) return if not environs: message = "Missing argument" + constants.PARAM_ENVIRON self.write_error_response(message) return ret = {} topologies = self.tracker.topologies for topology in topologies: cluster = topology.cluster environ = topology.environ topology_name = topology.name if not cluster or not environ: continue # This cluster is not asked for. if clusters and cluster not in clusters: continue # This environ is not asked for. if environs and environ not in environs: continue if topology_names and topology_name not in topology_names: continue if cluster not in ret: ret[cluster] = {} if environ not in ret[cluster]: ret[cluster][environ] = {} ret[cluster][environ][topology_name] = topology.get_machines() self.write_success_response(ret)
[ "def", "get", "(", "self", ")", ":", "clusters", "=", "self", ".", "get_arguments", "(", "constants", ".", "PARAM_CLUSTER", ")", "environs", "=", "self", ".", "get_arguments", "(", "constants", ".", "PARAM_ENVIRON", ")", "topology_names", "=", "self", ".", "get_arguments", "(", "constants", ".", "PARAM_TOPOLOGY", ")", "ret", "=", "{", "}", "if", "len", "(", "topology_names", ")", ">", "1", ":", "if", "not", "clusters", ":", "message", "=", "\"Missing argument\"", "+", "constants", ".", "PARAM_CLUSTER", "self", ".", "write_error_response", "(", "message", ")", "return", "if", "not", "environs", ":", "message", "=", "\"Missing argument\"", "+", "constants", ".", "PARAM_ENVIRON", "self", ".", "write_error_response", "(", "message", ")", "return", "ret", "=", "{", "}", "topologies", "=", "self", ".", "tracker", ".", "topologies", "for", "topology", "in", "topologies", ":", "cluster", "=", "topology", ".", "cluster", "environ", "=", "topology", ".", "environ", "topology_name", "=", "topology", ".", "name", "if", "not", "cluster", "or", "not", "environ", ":", "continue", "# This cluster is not asked for.", "if", "clusters", "and", "cluster", "not", "in", "clusters", ":", "continue", "# This environ is not asked for.", "if", "environs", "and", "environ", "not", "in", "environs", ":", "continue", "if", "topology_names", "and", "topology_name", "not", "in", "topology_names", ":", "continue", "if", "cluster", "not", "in", "ret", ":", "ret", "[", "cluster", "]", "=", "{", "}", "if", "environ", "not", "in", "ret", "[", "cluster", "]", ":", "ret", "[", "cluster", "]", "[", "environ", "]", "=", "{", "}", "ret", "[", "cluster", "]", "[", "environ", "]", "[", "topology_name", "]", "=", "topology", ".", "get_machines", "(", ")", "self", ".", "write_success_response", "(", "ret", ")" ]
get method
[ "get", "method" ]
python
valid
cggh/scikit-allel
allel/stats/selection.py
https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/stats/selection.py#L661-L736
def xpnsl(h1, h2, use_threads=True): """Cross-population version of the NSL statistic. Parameters ---------- h1 : array_like, int, shape (n_variants, n_haplotypes) Haplotype array for the first population. h2 : array_like, int, shape (n_variants, n_haplotypes) Haplotype array for the second population. use_threads : bool, optional If True use multiple threads to compute. Returns ------- score : ndarray, float, shape (n_variants,) Unstandardized XPNSL scores. """ # check inputs h1 = asarray_ndim(h1, 2) check_integer_dtype(h1) h2 = asarray_ndim(h2, 2) check_integer_dtype(h2) check_dim0_aligned(h1, h2) h1 = memoryview_safe(h1) h2 = memoryview_safe(h2) if use_threads and multiprocessing.cpu_count() > 1: # use multiple threads # setup threadpool pool = ThreadPool(min(4, multiprocessing.cpu_count())) # scan forward res1_fwd = pool.apply_async(nsl_scan, args=(h1,)) res2_fwd = pool.apply_async(nsl_scan, args=(h2,)) # scan backward res1_rev = pool.apply_async(nsl_scan, args=(h1[::-1],)) res2_rev = pool.apply_async(nsl_scan, args=(h2[::-1],)) # wait for both to finish pool.close() pool.join() # obtain results nsl1_fwd = res1_fwd.get() nsl2_fwd = res2_fwd.get() nsl1_rev = res1_rev.get() nsl2_rev = res2_rev.get() # cleanup pool.terminate() else: # compute without threads # scan forward nsl1_fwd = nsl_scan(h1) nsl2_fwd = nsl_scan(h2) # scan backward nsl1_rev = nsl_scan(h1[::-1]) nsl2_rev = nsl_scan(h2[::-1]) # handle reverse scans nsl1_rev = nsl1_rev[::-1] nsl2_rev = nsl2_rev[::-1] # compute unstandardized score nsl1 = nsl1_fwd + nsl1_rev nsl2 = nsl2_fwd + nsl2_rev score = np.log(nsl1 / nsl2) return score
[ "def", "xpnsl", "(", "h1", ",", "h2", ",", "use_threads", "=", "True", ")", ":", "# check inputs", "h1", "=", "asarray_ndim", "(", "h1", ",", "2", ")", "check_integer_dtype", "(", "h1", ")", "h2", "=", "asarray_ndim", "(", "h2", ",", "2", ")", "check_integer_dtype", "(", "h2", ")", "check_dim0_aligned", "(", "h1", ",", "h2", ")", "h1", "=", "memoryview_safe", "(", "h1", ")", "h2", "=", "memoryview_safe", "(", "h2", ")", "if", "use_threads", "and", "multiprocessing", ".", "cpu_count", "(", ")", ">", "1", ":", "# use multiple threads", "# setup threadpool", "pool", "=", "ThreadPool", "(", "min", "(", "4", ",", "multiprocessing", ".", "cpu_count", "(", ")", ")", ")", "# scan forward", "res1_fwd", "=", "pool", ".", "apply_async", "(", "nsl_scan", ",", "args", "=", "(", "h1", ",", ")", ")", "res2_fwd", "=", "pool", ".", "apply_async", "(", "nsl_scan", ",", "args", "=", "(", "h2", ",", ")", ")", "# scan backward", "res1_rev", "=", "pool", ".", "apply_async", "(", "nsl_scan", ",", "args", "=", "(", "h1", "[", ":", ":", "-", "1", "]", ",", ")", ")", "res2_rev", "=", "pool", ".", "apply_async", "(", "nsl_scan", ",", "args", "=", "(", "h2", "[", ":", ":", "-", "1", "]", ",", ")", ")", "# wait for both to finish", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "# obtain results", "nsl1_fwd", "=", "res1_fwd", ".", "get", "(", ")", "nsl2_fwd", "=", "res2_fwd", ".", "get", "(", ")", "nsl1_rev", "=", "res1_rev", ".", "get", "(", ")", "nsl2_rev", "=", "res2_rev", ".", "get", "(", ")", "# cleanup", "pool", ".", "terminate", "(", ")", "else", ":", "# compute without threads", "# scan forward", "nsl1_fwd", "=", "nsl_scan", "(", "h1", ")", "nsl2_fwd", "=", "nsl_scan", "(", "h2", ")", "# scan backward", "nsl1_rev", "=", "nsl_scan", "(", "h1", "[", ":", ":", "-", "1", "]", ")", "nsl2_rev", "=", "nsl_scan", "(", "h2", "[", ":", ":", "-", "1", "]", ")", "# handle reverse scans", "nsl1_rev", "=", "nsl1_rev", "[", ":", ":", "-", "1", "]", "nsl2_rev", "=", "nsl2_rev", "[", ":", ":", "-", "1", "]", "# compute unstandardized score", "nsl1", "=", "nsl1_fwd", "+", "nsl1_rev", "nsl2", "=", "nsl2_fwd", "+", "nsl2_rev", "score", "=", "np", ".", "log", "(", "nsl1", "/", "nsl2", ")", "return", "score" ]
Cross-population version of the NSL statistic. Parameters ---------- h1 : array_like, int, shape (n_variants, n_haplotypes) Haplotype array for the first population. h2 : array_like, int, shape (n_variants, n_haplotypes) Haplotype array for the second population. use_threads : bool, optional If True use multiple threads to compute. Returns ------- score : ndarray, float, shape (n_variants,) Unstandardized XPNSL scores.
[ "Cross", "-", "population", "version", "of", "the", "NSL", "statistic", "." ]
python
train
jgrassler/mkdocs-pandoc
mkdocs_pandoc/filters/tables.py
https://github.com/jgrassler/mkdocs-pandoc/blob/11edfb90830325dca85bd0369bb8e2da8d6815b3/mkdocs_pandoc/filters/tables.py#L60-L169
def convert_table(self, block): """"Converts a table to grid table format""" lines_orig = block.split('\n') lines_orig.pop() # Remove extra newline at end of block widest_cell = [] # Will hold the width of the widest cell for each column widest_word = [] # Will hold the width of the widest word for each column widths = [] # Will hold the computed widths of grid table columns rows = [] # Will hold table cells during processing lines = [] # Will hold the finished table has_border = False # Will be set to True if this is a bordered table width_unit = 0.0 # This number is used to divide up self.width according # to the following formula: # # self.width = width_unit * maxwidth # # Where maxwidth is the sum over all elements of # widest_cell. # Only process tables, leave everything else untouched if not self.test(None, block): return lines_orig if lines_orig[0].startswith('|'): has_border = True # Initialize width arrays for i in range(0, len(self._split_row(lines_orig[0], has_border))): widest_cell.append(0) widest_word.append(0) widths.append(0) # Parse lines into array of cells and record width of widest cell/word for line in lines_orig: row = self._split_row(line, has_border) # pad widest_cell to account for under length first row for i in range(0, len(row) - len(widest_cell)): widest_cell.append(0) widest_word.append(0) widths.append(0) for i in range(0, len(row)): # Record cell width if len(row[i]) > widest_cell[i]: widest_cell[i] = len(row[i]) # Record longest word words = row[i].split() for word in words: # Keep URLs from throwing the word length count off too badly. match = re.match(r'\[(.*?)\]\(.*?\)', word) if match: word = match.group(1) if len(word) > widest_word[i]: widest_word[i] = len(word) rows.append(row) # Remove table header divider line from rows rows.pop(1) # Compute first approximation of column widths based on maximum cell width for width in widest_cell: width_unit += float(width) width_unit = self.width / width_unit for i in range(0, len(widest_cell)): widths[i] = int(widest_cell[i] * width_unit) # Add rounding errors to narrowest column if sum(widths) < self.width: widths[widths.index(min(widths))] += self.width - sum(widths) # Attempt to correct first approximation of column widths based on # words that fail to fit their cell's width (if this fails textwrap # will break up long words but since it does not add hyphens this # should be avoided) for i in range(0, len(widths)): if widths[i] < widest_word[i]: offset = widest_word[i] - widths[i] for j in range(0, len(widths)): if widths[j] - widest_word[j] >= offset: widths[j] -= offset widths[i] += offset offset = 0 lines.append(self.ruler_line(widths, linetype='-')) # Only add header row if it contains more than just whitespace if ''.join(rows[0]).strip() != '': lines.extend(self.wrap_row(widths, rows[0])) lines.append(self.ruler_line(widths, linetype='=')) for row in rows[1:]: # Skip empty rows if ''.join(row).strip() == '': continue lines.extend(self.wrap_row(widths, row)) lines.append(self.ruler_line(widths, linetype='-')) # Append empty line after table lines.append('') return lines
[ "def", "convert_table", "(", "self", ",", "block", ")", ":", "lines_orig", "=", "block", ".", "split", "(", "'\\n'", ")", "lines_orig", ".", "pop", "(", ")", "# Remove extra newline at end of block", "widest_cell", "=", "[", "]", "# Will hold the width of the widest cell for each column", "widest_word", "=", "[", "]", "# Will hold the width of the widest word for each column", "widths", "=", "[", "]", "# Will hold the computed widths of grid table columns", "rows", "=", "[", "]", "# Will hold table cells during processing", "lines", "=", "[", "]", "# Will hold the finished table", "has_border", "=", "False", "# Will be set to True if this is a bordered table", "width_unit", "=", "0.0", "# This number is used to divide up self.width according", "# to the following formula:", "#", "# self.width = width_unit * maxwidth", "#", "# Where maxwidth is the sum over all elements of", "# widest_cell.", "# Only process tables, leave everything else untouched", "if", "not", "self", ".", "test", "(", "None", ",", "block", ")", ":", "return", "lines_orig", "if", "lines_orig", "[", "0", "]", ".", "startswith", "(", "'|'", ")", ":", "has_border", "=", "True", "# Initialize width arrays", "for", "i", "in", "range", "(", "0", ",", "len", "(", "self", ".", "_split_row", "(", "lines_orig", "[", "0", "]", ",", "has_border", ")", ")", ")", ":", "widest_cell", ".", "append", "(", "0", ")", "widest_word", ".", "append", "(", "0", ")", "widths", ".", "append", "(", "0", ")", "# Parse lines into array of cells and record width of widest cell/word", "for", "line", "in", "lines_orig", ":", "row", "=", "self", ".", "_split_row", "(", "line", ",", "has_border", ")", "# pad widest_cell to account for under length first row", "for", "i", "in", "range", "(", "0", ",", "len", "(", "row", ")", "-", "len", "(", "widest_cell", ")", ")", ":", "widest_cell", ".", "append", "(", "0", ")", "widest_word", ".", "append", "(", "0", ")", "widths", ".", "append", "(", "0", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "row", ")", ")", ":", "# Record cell width", "if", "len", "(", "row", "[", "i", "]", ")", ">", "widest_cell", "[", "i", "]", ":", "widest_cell", "[", "i", "]", "=", "len", "(", "row", "[", "i", "]", ")", "# Record longest word", "words", "=", "row", "[", "i", "]", ".", "split", "(", ")", "for", "word", "in", "words", ":", "# Keep URLs from throwing the word length count off too badly.", "match", "=", "re", ".", "match", "(", "r'\\[(.*?)\\]\\(.*?\\)'", ",", "word", ")", "if", "match", ":", "word", "=", "match", ".", "group", "(", "1", ")", "if", "len", "(", "word", ")", ">", "widest_word", "[", "i", "]", ":", "widest_word", "[", "i", "]", "=", "len", "(", "word", ")", "rows", ".", "append", "(", "row", ")", "# Remove table header divider line from rows", "rows", ".", "pop", "(", "1", ")", "# Compute first approximation of column widths based on maximum cell width", "for", "width", "in", "widest_cell", ":", "width_unit", "+=", "float", "(", "width", ")", "width_unit", "=", "self", ".", "width", "/", "width_unit", "for", "i", "in", "range", "(", "0", ",", "len", "(", "widest_cell", ")", ")", ":", "widths", "[", "i", "]", "=", "int", "(", "widest_cell", "[", "i", "]", "*", "width_unit", ")", "# Add rounding errors to narrowest column", "if", "sum", "(", "widths", ")", "<", "self", ".", "width", ":", "widths", "[", "widths", ".", "index", "(", "min", "(", "widths", ")", ")", "]", "+=", "self", ".", "width", "-", "sum", "(", "widths", ")", "# Attempt to correct first approximation of column widths based on", "# words that fail to fit their cell's width (if this fails textwrap", "# will break up long words but since it does not add hyphens this", "# should be avoided)", "for", "i", "in", "range", "(", "0", ",", "len", "(", "widths", ")", ")", ":", "if", "widths", "[", "i", "]", "<", "widest_word", "[", "i", "]", ":", "offset", "=", "widest_word", "[", "i", "]", "-", "widths", "[", "i", "]", "for", "j", "in", "range", "(", "0", ",", "len", "(", "widths", ")", ")", ":", "if", "widths", "[", "j", "]", "-", "widest_word", "[", "j", "]", ">=", "offset", ":", "widths", "[", "j", "]", "-=", "offset", "widths", "[", "i", "]", "+=", "offset", "offset", "=", "0", "lines", ".", "append", "(", "self", ".", "ruler_line", "(", "widths", ",", "linetype", "=", "'-'", ")", ")", "# Only add header row if it contains more than just whitespace", "if", "''", ".", "join", "(", "rows", "[", "0", "]", ")", ".", "strip", "(", ")", "!=", "''", ":", "lines", ".", "extend", "(", "self", ".", "wrap_row", "(", "widths", ",", "rows", "[", "0", "]", ")", ")", "lines", ".", "append", "(", "self", ".", "ruler_line", "(", "widths", ",", "linetype", "=", "'='", ")", ")", "for", "row", "in", "rows", "[", "1", ":", "]", ":", "# Skip empty rows", "if", "''", ".", "join", "(", "row", ")", ".", "strip", "(", ")", "==", "''", ":", "continue", "lines", ".", "extend", "(", "self", ".", "wrap_row", "(", "widths", ",", "row", ")", ")", "lines", ".", "append", "(", "self", ".", "ruler_line", "(", "widths", ",", "linetype", "=", "'-'", ")", ")", "# Append empty line after table", "lines", ".", "append", "(", "''", ")", "return", "lines" ]
Converts a table to grid table format
[ "Converts", "a", "table", "to", "grid", "table", "format" ]
python
train
bram85/topydo
topydo/ui/columns/CommandLineWidget.py
https://github.com/bram85/topydo/blob/b59fcfca5361869a6b78d4c9808c7c6cd0a18b58/topydo/ui/columns/CommandLineWidget.py#L63-L76
def _history_move(self, p_step): """ Changes current value of the command-line to the value obtained from history_tmp list with index calculated by addition of p_step to the current position in the command history (history_pos attribute). Also saves value of the command-line (before changing it) to history_tmp for potential later access. """ if len(self.history) > 0: # don't pollute real history - use temporary storage self.history_tmp[self.history_pos] = self.edit_text self.history_pos = self.history_pos + p_step self.set_edit_text(self.history_tmp[self.history_pos])
[ "def", "_history_move", "(", "self", ",", "p_step", ")", ":", "if", "len", "(", "self", ".", "history", ")", ">", "0", ":", "# don't pollute real history - use temporary storage", "self", ".", "history_tmp", "[", "self", ".", "history_pos", "]", "=", "self", ".", "edit_text", "self", ".", "history_pos", "=", "self", ".", "history_pos", "+", "p_step", "self", ".", "set_edit_text", "(", "self", ".", "history_tmp", "[", "self", ".", "history_pos", "]", ")" ]
Changes current value of the command-line to the value obtained from history_tmp list with index calculated by addition of p_step to the current position in the command history (history_pos attribute). Also saves value of the command-line (before changing it) to history_tmp for potential later access.
[ "Changes", "current", "value", "of", "the", "command", "-", "line", "to", "the", "value", "obtained", "from", "history_tmp", "list", "with", "index", "calculated", "by", "addition", "of", "p_step", "to", "the", "current", "position", "in", "the", "command", "history", "(", "history_pos", "attribute", ")", "." ]
python
train
Esri/ArcREST
src/arcrest/manageorg/_portals.py
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/manageorg/_portals.py#L91-L100
def portal(self, portalID=None): """returns a specific reference to a portal""" if portalID is None: portalID = self.portalSelf.id url = "%s/%s" % (self.root, portalID) return Portal(url=url, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port, initalize=True)
[ "def", "portal", "(", "self", ",", "portalID", "=", "None", ")", ":", "if", "portalID", "is", "None", ":", "portalID", "=", "self", ".", "portalSelf", ".", "id", "url", "=", "\"%s/%s\"", "%", "(", "self", ".", "root", ",", "portalID", ")", "return", "Portal", "(", "url", "=", "url", ",", "securityHandler", "=", "self", ".", "_securityHandler", ",", "proxy_url", "=", "self", ".", "_proxy_url", ",", "proxy_port", "=", "self", ".", "_proxy_port", ",", "initalize", "=", "True", ")" ]
returns a specific reference to a portal
[ "returns", "a", "specific", "reference", "to", "a", "portal" ]
python
train
solvebio/solvebio-python
solvebio/cli/credentials.py
https://github.com/solvebio/solvebio-python/blob/b29614643043afd19c1d8074e8f25c6700d51a73/solvebio/cli/credentials.py#L76-L93
def get_credentials(): """ Returns the user's stored API key if a valid credentials file is found. Raises CredentialsError if no valid credentials file is found. """ try: netrc_path = netrc.path() auths = netrc(netrc_path).authenticators( urlparse(solvebio.api_host).netloc) except (IOError, TypeError, NetrcParseError) as e: raise CredentialsError( 'Could not open credentials file: ' + str(e)) if auths: # auths = (login, account, password) return auths[2] else: return None
[ "def", "get_credentials", "(", ")", ":", "try", ":", "netrc_path", "=", "netrc", ".", "path", "(", ")", "auths", "=", "netrc", "(", "netrc_path", ")", ".", "authenticators", "(", "urlparse", "(", "solvebio", ".", "api_host", ")", ".", "netloc", ")", "except", "(", "IOError", ",", "TypeError", ",", "NetrcParseError", ")", "as", "e", ":", "raise", "CredentialsError", "(", "'Could not open credentials file: '", "+", "str", "(", "e", ")", ")", "if", "auths", ":", "# auths = (login, account, password)", "return", "auths", "[", "2", "]", "else", ":", "return", "None" ]
Returns the user's stored API key if a valid credentials file is found. Raises CredentialsError if no valid credentials file is found.
[ "Returns", "the", "user", "s", "stored", "API", "key", "if", "a", "valid", "credentials", "file", "is", "found", ".", "Raises", "CredentialsError", "if", "no", "valid", "credentials", "file", "is", "found", "." ]
python
test
nok/sklearn-porter
sklearn_porter/estimator/classifier/AdaBoostClassifier/__init__.py
https://github.com/nok/sklearn-porter/blob/04673f768310bde31f9747a68a5e070592441ef2/sklearn_porter/estimator/classifier/AdaBoostClassifier/__init__.py#L199-L254
def create_branches(self, left_nodes, right_nodes, threshold, value, features, node, depth, init=False): """ Parse and port a single tree estimator. Parameters ---------- :param left_nodes : object The left children node. :param right_nodes : object The left children node. :param threshold : object The decision threshold. :param value : object The label or class. :param features : object The feature values. :param node : int The current node. :param depth : int The tree depth. :param init : bool, default: True Whether it's the initial tree or not. Returns ------- :return out : string The ported single tree as function or method. """ out = '' if threshold[node] != -2.: if not init: out += '\n' temp = self.temp('if', n_indents=depth, skipping=init) out += temp.format(features[node], '<=', self.repr(threshold[node])) if left_nodes[node] != -1.: out += self.create_branches( left_nodes, right_nodes, threshold, value, features, left_nodes[node], depth + 1) out += '\n' out += self.temp('else', n_indents=depth) if right_nodes[node] != -1.: out += self.create_branches( left_nodes, right_nodes, threshold, value, features, right_nodes[node], depth + 1) out += '\n' out += self.temp('endif', n_indents=depth) else: clazzes = [] temp = self.temp('arr', n_indents=depth) for i, val in enumerate(value[node][0]): clazz = temp.format(i, self.repr(val)) clazz = '\n' + clazz clazzes.append(clazz) out += self.temp('join').join(clazzes) + self.temp('join') return out
[ "def", "create_branches", "(", "self", ",", "left_nodes", ",", "right_nodes", ",", "threshold", ",", "value", ",", "features", ",", "node", ",", "depth", ",", "init", "=", "False", ")", ":", "out", "=", "''", "if", "threshold", "[", "node", "]", "!=", "-", "2.", ":", "if", "not", "init", ":", "out", "+=", "'\\n'", "temp", "=", "self", ".", "temp", "(", "'if'", ",", "n_indents", "=", "depth", ",", "skipping", "=", "init", ")", "out", "+=", "temp", ".", "format", "(", "features", "[", "node", "]", ",", "'<='", ",", "self", ".", "repr", "(", "threshold", "[", "node", "]", ")", ")", "if", "left_nodes", "[", "node", "]", "!=", "-", "1.", ":", "out", "+=", "self", ".", "create_branches", "(", "left_nodes", ",", "right_nodes", ",", "threshold", ",", "value", ",", "features", ",", "left_nodes", "[", "node", "]", ",", "depth", "+", "1", ")", "out", "+=", "'\\n'", "out", "+=", "self", ".", "temp", "(", "'else'", ",", "n_indents", "=", "depth", ")", "if", "right_nodes", "[", "node", "]", "!=", "-", "1.", ":", "out", "+=", "self", ".", "create_branches", "(", "left_nodes", ",", "right_nodes", ",", "threshold", ",", "value", ",", "features", ",", "right_nodes", "[", "node", "]", ",", "depth", "+", "1", ")", "out", "+=", "'\\n'", "out", "+=", "self", ".", "temp", "(", "'endif'", ",", "n_indents", "=", "depth", ")", "else", ":", "clazzes", "=", "[", "]", "temp", "=", "self", ".", "temp", "(", "'arr'", ",", "n_indents", "=", "depth", ")", "for", "i", ",", "val", "in", "enumerate", "(", "value", "[", "node", "]", "[", "0", "]", ")", ":", "clazz", "=", "temp", ".", "format", "(", "i", ",", "self", ".", "repr", "(", "val", ")", ")", "clazz", "=", "'\\n'", "+", "clazz", "clazzes", ".", "append", "(", "clazz", ")", "out", "+=", "self", ".", "temp", "(", "'join'", ")", ".", "join", "(", "clazzes", ")", "+", "self", ".", "temp", "(", "'join'", ")", "return", "out" ]
Parse and port a single tree estimator. Parameters ---------- :param left_nodes : object The left children node. :param right_nodes : object The left children node. :param threshold : object The decision threshold. :param value : object The label or class. :param features : object The feature values. :param node : int The current node. :param depth : int The tree depth. :param init : bool, default: True Whether it's the initial tree or not. Returns ------- :return out : string The ported single tree as function or method.
[ "Parse", "and", "port", "a", "single", "tree", "estimator", "." ]
python
train
ciena/afkak
afkak/kafkacodec.py
https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L250-L265
def decode_produce_response(cls, data): """ Decode bytes to a ProduceResponse :param bytes data: bytes to decode :returns: iterable of `afkak.common.ProduceResponse` """ ((correlation_id, num_topics), cur) = relative_unpack('>ii', data, 0) for _i in range(num_topics): topic, cur = read_short_ascii(data, cur) ((num_partitions,), cur) = relative_unpack('>i', data, cur) for _i in range(num_partitions): ((partition, error, offset), cur) = relative_unpack('>ihq', data, cur) yield ProduceResponse(topic, partition, error, offset)
[ "def", "decode_produce_response", "(", "cls", ",", "data", ")", ":", "(", "(", "correlation_id", ",", "num_topics", ")", ",", "cur", ")", "=", "relative_unpack", "(", "'>ii'", ",", "data", ",", "0", ")", "for", "_i", "in", "range", "(", "num_topics", ")", ":", "topic", ",", "cur", "=", "read_short_ascii", "(", "data", ",", "cur", ")", "(", "(", "num_partitions", ",", ")", ",", "cur", ")", "=", "relative_unpack", "(", "'>i'", ",", "data", ",", "cur", ")", "for", "_i", "in", "range", "(", "num_partitions", ")", ":", "(", "(", "partition", ",", "error", ",", "offset", ")", ",", "cur", ")", "=", "relative_unpack", "(", "'>ihq'", ",", "data", ",", "cur", ")", "yield", "ProduceResponse", "(", "topic", ",", "partition", ",", "error", ",", "offset", ")" ]
Decode bytes to a ProduceResponse :param bytes data: bytes to decode :returns: iterable of `afkak.common.ProduceResponse`
[ "Decode", "bytes", "to", "a", "ProduceResponse" ]
python
train
pybel/pybel
src/pybel/struct/summary/edge_summary.py
https://github.com/pybel/pybel/blob/c8a7a1bdae4c475fa2a8c77f3a9a5f6d79556ca0/src/pybel/struct/summary/edge_summary.py#L24-L35
def iter_annotation_value_pairs(graph) -> Iterable[Tuple[str, str]]: """Iterate over the key/value pairs, with duplicates, for each annotation used in a BEL graph. :param pybel.BELGraph graph: A BEL graph """ return ( (key, value) for _, _, data in graph.edges(data=True) if ANNOTATIONS in data for key, values in data[ANNOTATIONS].items() for value in values )
[ "def", "iter_annotation_value_pairs", "(", "graph", ")", "->", "Iterable", "[", "Tuple", "[", "str", ",", "str", "]", "]", ":", "return", "(", "(", "key", ",", "value", ")", "for", "_", ",", "_", ",", "data", "in", "graph", ".", "edges", "(", "data", "=", "True", ")", "if", "ANNOTATIONS", "in", "data", "for", "key", ",", "values", "in", "data", "[", "ANNOTATIONS", "]", ".", "items", "(", ")", "for", "value", "in", "values", ")" ]
Iterate over the key/value pairs, with duplicates, for each annotation used in a BEL graph. :param pybel.BELGraph graph: A BEL graph
[ "Iterate", "over", "the", "key", "/", "value", "pairs", "with", "duplicates", "for", "each", "annotation", "used", "in", "a", "BEL", "graph", "." ]
python
train
wheerd/multiset
multiset.py
https://github.com/wheerd/multiset/blob/1f002397096edae3da32d004e3159345a476999c/multiset.py#L222-L256
def union(self, *others): r"""Return a new multiset with all elements from the multiset and the others with maximal multiplicities. >>> ms = Multiset('aab') >>> sorted(ms.union('bc')) ['a', 'a', 'b', 'c'] You can also use the ``|`` operator for the same effect. However, the operator version will only accept a set as other operator, not any iterable, to avoid errors. >>> ms = Multiset('aab') >>> sorted(ms | Multiset('aaa')) ['a', 'a', 'a', 'b'] For a variant of the operation which modifies the multiset in place see :meth:`union_update`. Args: *others: The other sets to union the multiset with. Can also be any :class:`~typing.Iterable`\[~T] or :class:`~typing.Mapping`\[~T, :class:`int`] which are then converted to :class:`Multiset`\[~T]. Returns: The multiset resulting from the union. """ result = self.__copy__() _elements = result._elements _total = result._total for other in map(self._as_mapping, others): for element, multiplicity in other.items(): old_multiplicity = _elements.get(element, 0) if multiplicity > old_multiplicity: _elements[element] = multiplicity _total += multiplicity - old_multiplicity result._total = _total return result
[ "def", "union", "(", "self", ",", "*", "others", ")", ":", "result", "=", "self", ".", "__copy__", "(", ")", "_elements", "=", "result", ".", "_elements", "_total", "=", "result", ".", "_total", "for", "other", "in", "map", "(", "self", ".", "_as_mapping", ",", "others", ")", ":", "for", "element", ",", "multiplicity", "in", "other", ".", "items", "(", ")", ":", "old_multiplicity", "=", "_elements", ".", "get", "(", "element", ",", "0", ")", "if", "multiplicity", ">", "old_multiplicity", ":", "_elements", "[", "element", "]", "=", "multiplicity", "_total", "+=", "multiplicity", "-", "old_multiplicity", "result", ".", "_total", "=", "_total", "return", "result" ]
r"""Return a new multiset with all elements from the multiset and the others with maximal multiplicities. >>> ms = Multiset('aab') >>> sorted(ms.union('bc')) ['a', 'a', 'b', 'c'] You can also use the ``|`` operator for the same effect. However, the operator version will only accept a set as other operator, not any iterable, to avoid errors. >>> ms = Multiset('aab') >>> sorted(ms | Multiset('aaa')) ['a', 'a', 'a', 'b'] For a variant of the operation which modifies the multiset in place see :meth:`union_update`. Args: *others: The other sets to union the multiset with. Can also be any :class:`~typing.Iterable`\[~T] or :class:`~typing.Mapping`\[~T, :class:`int`] which are then converted to :class:`Multiset`\[~T]. Returns: The multiset resulting from the union.
[ "r", "Return", "a", "new", "multiset", "with", "all", "elements", "from", "the", "multiset", "and", "the", "others", "with", "maximal", "multiplicities", "." ]
python
train
gwpy/gwpy
gwpy/signal/qtransform.py
https://github.com/gwpy/gwpy/blob/7a92b917e7dd2d99b15895293a1fa1d66cdb210a/gwpy/signal/qtransform.py#L482-L583
def interpolate(self, tres="<default>", fres="<default>", logf=False, outseg=None): """Interpolate this `QGram` over a regularly-gridded spectrogram Parameters ---------- tres : `float`, optional desired time resolution (seconds) of output `Spectrogram`, default is `abs(outseg) / 1000.` fres : `float`, `int`, `None`, optional desired frequency resolution (Hertz) of output `Spectrogram`, or, if ``logf=True``, the number of frequency samples; give `None` to skip this step and return the original resolution, default is 0.5 Hz or 500 frequency samples logf : `bool`, optional boolean switch to enable (`True`) or disable (`False`) use of log-sampled frequencies in the output `Spectrogram` outseg : `~gwpy.segments.Segment`, optional GPS `[start, stop)` segment for output `Spectrogram`, default is the full duration of the input Returns ------- out : `~gwpy.spectrogram.Spectrogram` output `Spectrogram` of normalised Q energy See Also -------- scipy.interpolate this method uses `~scipy.interpolate.InterpolatedUnivariateSpline` to cast all frequency rows to a common time-axis, and then `~scipy.interpolate.interp2d` to apply the desired frequency resolution across the band Notes ----- This method will return a `Spectrogram` of dtype ``float32`` if ``norm`` is given, and ``float64`` otherwise. To optimize plot rendering with `~matplotlib.axes.Axes.pcolormesh`, the output `~gwpy.spectrogram.Spectrogram` can be given a log-sampled frequency axis by passing `logf=True` at runtime. The `fres` argument is then the number of points on the frequency axis. Note, this is incompatible with `~matplotlib.axes.Axes.imshow`. It is also highly recommended to use the `outseg` keyword argument when only a small window around a given GPS time is of interest. """ from scipy.interpolate import (interp2d, InterpolatedUnivariateSpline) from ..spectrogram import Spectrogram if outseg is None: outseg = self.energies[0].span frequencies = self.plane.frequencies dtype = self.energies[0].dtype # build regular Spectrogram from peak-Q data by interpolating each # (Q, frequency) `TimeSeries` to have the same time resolution if tres == "<default>": tres = abs(Segment(outseg)) / 1000. xout = numpy.arange(*outseg, step=tres) nx = xout.size ny = frequencies.size out = Spectrogram(numpy.empty((nx, ny), dtype=dtype), t0=outseg[0], dt=tres, frequencies=frequencies) # record Q in output out.q = self.plane.q # interpolate rows for i, row in enumerate(self.energies): xrow = numpy.arange(row.x0.value, (row.x0 + row.duration).value, row.dx.value) interp = InterpolatedUnivariateSpline(xrow, row.value) out[:, i] = interp(xout).astype(dtype, casting="same_kind", copy=False) if fres is None: return out # interpolate the spectrogram to increase its frequency resolution # --- this is done because Duncan doesn't like interpolated images # since they don't support log scaling interp = interp2d(xout, frequencies, out.value.T, kind='cubic') if not logf: if fres == "<default>": fres = .5 outfreq = numpy.arange( self.plane.frange[0], self.plane.frange[1], fres, dtype=dtype) else: if fres == "<default>": fres = 500 # using `~numpy.logspace` here to support numpy-1.7.1 for EPEL7, # but numpy-1.12.0 introduced the function `~numpy.geomspace` logfmin = numpy.log10(self.plane.frange[0]) logfmax = numpy.log10(self.plane.frange[1]) outfreq = numpy.logspace(logfmin, logfmax, num=int(fres)) new = type(out)( interp(xout, outfreq).T.astype( dtype, casting="same_kind", copy=False), t0=outseg[0], dt=tres, frequencies=outfreq, ) new.q = self.plane.q return new
[ "def", "interpolate", "(", "self", ",", "tres", "=", "\"<default>\"", ",", "fres", "=", "\"<default>\"", ",", "logf", "=", "False", ",", "outseg", "=", "None", ")", ":", "from", "scipy", ".", "interpolate", "import", "(", "interp2d", ",", "InterpolatedUnivariateSpline", ")", "from", ".", ".", "spectrogram", "import", "Spectrogram", "if", "outseg", "is", "None", ":", "outseg", "=", "self", ".", "energies", "[", "0", "]", ".", "span", "frequencies", "=", "self", ".", "plane", ".", "frequencies", "dtype", "=", "self", ".", "energies", "[", "0", "]", ".", "dtype", "# build regular Spectrogram from peak-Q data by interpolating each", "# (Q, frequency) `TimeSeries` to have the same time resolution", "if", "tres", "==", "\"<default>\"", ":", "tres", "=", "abs", "(", "Segment", "(", "outseg", ")", ")", "/", "1000.", "xout", "=", "numpy", ".", "arange", "(", "*", "outseg", ",", "step", "=", "tres", ")", "nx", "=", "xout", ".", "size", "ny", "=", "frequencies", ".", "size", "out", "=", "Spectrogram", "(", "numpy", ".", "empty", "(", "(", "nx", ",", "ny", ")", ",", "dtype", "=", "dtype", ")", ",", "t0", "=", "outseg", "[", "0", "]", ",", "dt", "=", "tres", ",", "frequencies", "=", "frequencies", ")", "# record Q in output", "out", ".", "q", "=", "self", ".", "plane", ".", "q", "# interpolate rows", "for", "i", ",", "row", "in", "enumerate", "(", "self", ".", "energies", ")", ":", "xrow", "=", "numpy", ".", "arange", "(", "row", ".", "x0", ".", "value", ",", "(", "row", ".", "x0", "+", "row", ".", "duration", ")", ".", "value", ",", "row", ".", "dx", ".", "value", ")", "interp", "=", "InterpolatedUnivariateSpline", "(", "xrow", ",", "row", ".", "value", ")", "out", "[", ":", ",", "i", "]", "=", "interp", "(", "xout", ")", ".", "astype", "(", "dtype", ",", "casting", "=", "\"same_kind\"", ",", "copy", "=", "False", ")", "if", "fres", "is", "None", ":", "return", "out", "# interpolate the spectrogram to increase its frequency resolution", "# --- this is done because Duncan doesn't like interpolated images", "# since they don't support log scaling", "interp", "=", "interp2d", "(", "xout", ",", "frequencies", ",", "out", ".", "value", ".", "T", ",", "kind", "=", "'cubic'", ")", "if", "not", "logf", ":", "if", "fres", "==", "\"<default>\"", ":", "fres", "=", ".5", "outfreq", "=", "numpy", ".", "arange", "(", "self", ".", "plane", ".", "frange", "[", "0", "]", ",", "self", ".", "plane", ".", "frange", "[", "1", "]", ",", "fres", ",", "dtype", "=", "dtype", ")", "else", ":", "if", "fres", "==", "\"<default>\"", ":", "fres", "=", "500", "# using `~numpy.logspace` here to support numpy-1.7.1 for EPEL7,", "# but numpy-1.12.0 introduced the function `~numpy.geomspace`", "logfmin", "=", "numpy", ".", "log10", "(", "self", ".", "plane", ".", "frange", "[", "0", "]", ")", "logfmax", "=", "numpy", ".", "log10", "(", "self", ".", "plane", ".", "frange", "[", "1", "]", ")", "outfreq", "=", "numpy", ".", "logspace", "(", "logfmin", ",", "logfmax", ",", "num", "=", "int", "(", "fres", ")", ")", "new", "=", "type", "(", "out", ")", "(", "interp", "(", "xout", ",", "outfreq", ")", ".", "T", ".", "astype", "(", "dtype", ",", "casting", "=", "\"same_kind\"", ",", "copy", "=", "False", ")", ",", "t0", "=", "outseg", "[", "0", "]", ",", "dt", "=", "tres", ",", "frequencies", "=", "outfreq", ",", ")", "new", ".", "q", "=", "self", ".", "plane", ".", "q", "return", "new" ]
Interpolate this `QGram` over a regularly-gridded spectrogram Parameters ---------- tres : `float`, optional desired time resolution (seconds) of output `Spectrogram`, default is `abs(outseg) / 1000.` fres : `float`, `int`, `None`, optional desired frequency resolution (Hertz) of output `Spectrogram`, or, if ``logf=True``, the number of frequency samples; give `None` to skip this step and return the original resolution, default is 0.5 Hz or 500 frequency samples logf : `bool`, optional boolean switch to enable (`True`) or disable (`False`) use of log-sampled frequencies in the output `Spectrogram` outseg : `~gwpy.segments.Segment`, optional GPS `[start, stop)` segment for output `Spectrogram`, default is the full duration of the input Returns ------- out : `~gwpy.spectrogram.Spectrogram` output `Spectrogram` of normalised Q energy See Also -------- scipy.interpolate this method uses `~scipy.interpolate.InterpolatedUnivariateSpline` to cast all frequency rows to a common time-axis, and then `~scipy.interpolate.interp2d` to apply the desired frequency resolution across the band Notes ----- This method will return a `Spectrogram` of dtype ``float32`` if ``norm`` is given, and ``float64`` otherwise. To optimize plot rendering with `~matplotlib.axes.Axes.pcolormesh`, the output `~gwpy.spectrogram.Spectrogram` can be given a log-sampled frequency axis by passing `logf=True` at runtime. The `fres` argument is then the number of points on the frequency axis. Note, this is incompatible with `~matplotlib.axes.Axes.imshow`. It is also highly recommended to use the `outseg` keyword argument when only a small window around a given GPS time is of interest.
[ "Interpolate", "this", "QGram", "over", "a", "regularly", "-", "gridded", "spectrogram" ]
python
train
rigetti/pyquil
pyquil/magic.py
https://github.com/rigetti/pyquil/blob/ec98e453084b0037d69d8c3245f6822a5422593d/pyquil/magic.py#L64-L102
def _if_statement(test, if_function, else_function) -> None: """ Evaluate an if statement within a @magicquil block. If the test value is a Quil Addr then unwind it into quil code equivalent to an if then statement using jumps. Both sides of the if statement need to be evaluated and placed into separate Programs, which is why we create new program contexts for their evaluation. If the test value is not a Quil Addr then fall back to what Python would normally do with an if statement. Params are: if <test>: <if_function> else: <else_function> NB: This function must be named exactly _if_statement and be in scope for the ast transformer """ if isinstance(test, Addr): token = _program_context.set(Program()) if_function() if_program = _program_context.get() _program_context.reset(token) if else_function: token = _program_context.set(Program()) else_function() else_program = _program_context.get() _program_context.reset(token) else: else_program = None program = _program_context.get() program.if_then(test, if_program, else_program) else: if test: if_function() elif else_function: else_function()
[ "def", "_if_statement", "(", "test", ",", "if_function", ",", "else_function", ")", "->", "None", ":", "if", "isinstance", "(", "test", ",", "Addr", ")", ":", "token", "=", "_program_context", ".", "set", "(", "Program", "(", ")", ")", "if_function", "(", ")", "if_program", "=", "_program_context", ".", "get", "(", ")", "_program_context", ".", "reset", "(", "token", ")", "if", "else_function", ":", "token", "=", "_program_context", ".", "set", "(", "Program", "(", ")", ")", "else_function", "(", ")", "else_program", "=", "_program_context", ".", "get", "(", ")", "_program_context", ".", "reset", "(", "token", ")", "else", ":", "else_program", "=", "None", "program", "=", "_program_context", ".", "get", "(", ")", "program", ".", "if_then", "(", "test", ",", "if_program", ",", "else_program", ")", "else", ":", "if", "test", ":", "if_function", "(", ")", "elif", "else_function", ":", "else_function", "(", ")" ]
Evaluate an if statement within a @magicquil block. If the test value is a Quil Addr then unwind it into quil code equivalent to an if then statement using jumps. Both sides of the if statement need to be evaluated and placed into separate Programs, which is why we create new program contexts for their evaluation. If the test value is not a Quil Addr then fall back to what Python would normally do with an if statement. Params are: if <test>: <if_function> else: <else_function> NB: This function must be named exactly _if_statement and be in scope for the ast transformer
[ "Evaluate", "an", "if", "statement", "within", "a", "@magicquil", "block", "." ]
python
train
saltstack/salt
salt/modules/zabbix.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/zabbix.py#L1894-L1951
def usermacro_get(macro=None, hostids=None, templateids=None, hostmacroids=None, globalmacroids=None, globalmacro=False, **kwargs): ''' Retrieve user macros according to the given parameters. Args: macro: name of the usermacro hostids: Return macros for the given hostids templateids: Return macros for the given templateids hostmacroids: Return macros with the given hostmacroids globalmacroids: Return macros with the given globalmacroids (implies globalmacro=True) globalmacro: if True, returns only global macros optional kwargs: _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring) _connection_password: zabbix password (can also be set in opts or pillar, see module's docstring) _connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring) Returns: Array with usermacro details, False if no usermacro found or on failure. CLI Example: .. code-block:: bash salt '*' zabbix.usermacro_get macro='{$SNMP_COMMUNITY}' ''' conn_args = _login(**kwargs) ret = {} try: if conn_args: method = 'usermacro.get' params = {"output": "extend", "filter": {}} if macro: # Python mistakenly interprets macro names starting and ending with '{' and '}' as a dict if isinstance(macro, dict): macro = "{" + six.text_type(macro.keys()[0]) +"}" if not macro.startswith('{') and not macro.endswith('}'): macro = "{" + macro + "}" params['filter'].setdefault('macro', macro) if hostids: params.setdefault('hostids', hostids) elif templateids: params.setdefault('templateids', hostids) if hostmacroids: params.setdefault('hostmacroids', hostmacroids) elif globalmacroids: globalmacro = True params.setdefault('globalmacroids', globalmacroids) if globalmacro: params = _params_extend(params, globalmacro=True) params = _params_extend(params, **kwargs) ret = _query(method, params, conn_args['url'], conn_args['auth']) return ret['result'] if ret['result'] else False else: raise KeyError except KeyError: return ret
[ "def", "usermacro_get", "(", "macro", "=", "None", ",", "hostids", "=", "None", ",", "templateids", "=", "None", ",", "hostmacroids", "=", "None", ",", "globalmacroids", "=", "None", ",", "globalmacro", "=", "False", ",", "*", "*", "kwargs", ")", ":", "conn_args", "=", "_login", "(", "*", "*", "kwargs", ")", "ret", "=", "{", "}", "try", ":", "if", "conn_args", ":", "method", "=", "'usermacro.get'", "params", "=", "{", "\"output\"", ":", "\"extend\"", ",", "\"filter\"", ":", "{", "}", "}", "if", "macro", ":", "# Python mistakenly interprets macro names starting and ending with '{' and '}' as a dict", "if", "isinstance", "(", "macro", ",", "dict", ")", ":", "macro", "=", "\"{\"", "+", "six", ".", "text_type", "(", "macro", ".", "keys", "(", ")", "[", "0", "]", ")", "+", "\"}\"", "if", "not", "macro", ".", "startswith", "(", "'{'", ")", "and", "not", "macro", ".", "endswith", "(", "'}'", ")", ":", "macro", "=", "\"{\"", "+", "macro", "+", "\"}\"", "params", "[", "'filter'", "]", ".", "setdefault", "(", "'macro'", ",", "macro", ")", "if", "hostids", ":", "params", ".", "setdefault", "(", "'hostids'", ",", "hostids", ")", "elif", "templateids", ":", "params", ".", "setdefault", "(", "'templateids'", ",", "hostids", ")", "if", "hostmacroids", ":", "params", ".", "setdefault", "(", "'hostmacroids'", ",", "hostmacroids", ")", "elif", "globalmacroids", ":", "globalmacro", "=", "True", "params", ".", "setdefault", "(", "'globalmacroids'", ",", "globalmacroids", ")", "if", "globalmacro", ":", "params", "=", "_params_extend", "(", "params", ",", "globalmacro", "=", "True", ")", "params", "=", "_params_extend", "(", "params", ",", "*", "*", "kwargs", ")", "ret", "=", "_query", "(", "method", ",", "params", ",", "conn_args", "[", "'url'", "]", ",", "conn_args", "[", "'auth'", "]", ")", "return", "ret", "[", "'result'", "]", "if", "ret", "[", "'result'", "]", "else", "False", "else", ":", "raise", "KeyError", "except", "KeyError", ":", "return", "ret" ]
Retrieve user macros according to the given parameters. Args: macro: name of the usermacro hostids: Return macros for the given hostids templateids: Return macros for the given templateids hostmacroids: Return macros with the given hostmacroids globalmacroids: Return macros with the given globalmacroids (implies globalmacro=True) globalmacro: if True, returns only global macros optional kwargs: _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring) _connection_password: zabbix password (can also be set in opts or pillar, see module's docstring) _connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring) Returns: Array with usermacro details, False if no usermacro found or on failure. CLI Example: .. code-block:: bash salt '*' zabbix.usermacro_get macro='{$SNMP_COMMUNITY}'
[ "Retrieve", "user", "macros", "according", "to", "the", "given", "parameters", "." ]
python
train
raamana/mrivis
mrivis/base.py
https://github.com/raamana/mrivis/blob/199ad096b8a1d825f69109e7218a81b2f1cec756/mrivis/base.py#L1067-L1079
def _set_roi_mask(self, roi_mask): """Sets a new ROI mask.""" if isinstance(roi_mask, np.ndarray): # not (roi_mask is None or roi_mask=='auto'): self._verify_shape_compatibility(roi_mask, 'ROI set') self.roi_mask = roi_mask self.roi_list = np.unique(roi_mask.flatten()) np.setdiff1d(self.roi_list, cfg.background_value) else: self.roi_mask = np.ones(self.carpet.shape[:-1]) # last dim is self.fixed_dim already self.roi_list = [1, ]
[ "def", "_set_roi_mask", "(", "self", ",", "roi_mask", ")", ":", "if", "isinstance", "(", "roi_mask", ",", "np", ".", "ndarray", ")", ":", "# not (roi_mask is None or roi_mask=='auto'):", "self", ".", "_verify_shape_compatibility", "(", "roi_mask", ",", "'ROI set'", ")", "self", ".", "roi_mask", "=", "roi_mask", "self", ".", "roi_list", "=", "np", ".", "unique", "(", "roi_mask", ".", "flatten", "(", ")", ")", "np", ".", "setdiff1d", "(", "self", ".", "roi_list", ",", "cfg", ".", "background_value", ")", "else", ":", "self", ".", "roi_mask", "=", "np", ".", "ones", "(", "self", ".", "carpet", ".", "shape", "[", ":", "-", "1", "]", ")", "# last dim is self.fixed_dim already", "self", ".", "roi_list", "=", "[", "1", ",", "]" ]
Sets a new ROI mask.
[ "Sets", "a", "new", "ROI", "mask", "." ]
python
train
techdragon/python-check-pypi-name
src/check_pypi_name/__init__.py
https://github.com/techdragon/python-check-pypi-name/blob/2abfa98878755ed9073b4f5448f4380f88e3e8f3/src/check_pypi_name/__init__.py#L7-L86
def check_pypi_name(pypi_package_name, pypi_registry_host=None): """ Check if a package name exists on pypi. TODO: Document the Registry URL construction. It may not be obvious how pypi_package_name and pypi_registry_host are used I'm appending the simple HTTP API parts of the registry standard specification. It will return True if the package name, or any equivalent variation as defined by PEP 503 normalisation rules (https://www.python.org/dev/peps/pep-0503/#normalized-names) is registered in the PyPI registry. >>> check_pypi_name('pip') True >>> check_pypi_name('Pip') True It will return False if the package name, or any equivalent variation as defined by PEP 503 normalisation rules (https://www.python.org/dev/peps/pep-0503/#normalized-names) is not registered in the PyPI registry. >>> check_pypi_name('testy_mc-test_case-has.a.cousin_who_should_never_write_a_package') False :param pypi_package_name: :param pypi_registry_host: :return: """ if pypi_registry_host is None: pypi_registry_host = 'pypi.python.org' # Just a helpful reminder why this bytearray size was chosen. # HTTP/1.1 200 OK # HTTP/1.1 404 Not Found receive_buffer = bytearray(b'------------') context = ssl.create_default_context() ssl_http_socket = context.wrap_socket(socket.socket(socket.AF_INET), server_hostname=pypi_registry_host) ssl_http_socket.connect((pypi_registry_host, 443)) ssl_http_socket.send(b''.join([ b"HEAD /simple/", pypi_package_name.encode('ascii'), b"/ HTTP/1.0", b"\r\n", b"Host: ", pypi_registry_host.encode('ascii'), b"\r\n", b"\r\n\r\n" ])) ssl_http_socket.recv_into(receive_buffer) # Early return when possible. if b'HTTP/1.1 200' in receive_buffer: ssl_http_socket.shutdown(1) ssl_http_socket.close() return True elif b'HTTP/1.1 404' in receive_buffer: ssl_http_socket.shutdown(1) ssl_http_socket.close() return False remaining_bytes = ssl_http_socket.recv(2048) redirect_path_location_start = remaining_bytes.find(b'Location:') + 10 redirect_path_location_end = remaining_bytes.find(b'\r\n', redirect_path_location_start) # Append the trailing slash to avoid a needless extra redirect. redirect_path = remaining_bytes[redirect_path_location_start:redirect_path_location_end] + b'/' ssl_http_socket.shutdown(1) ssl_http_socket.close() # Reset the bytearray to empty # receive_buffer = bytearray(b'------------') ssl_http_socket = context.wrap_socket(socket.socket(socket.AF_INET), server_hostname=pypi_registry_host) ssl_http_socket.connect((pypi_registry_host, 443)) ssl_http_socket.send(b''.join([ b"HEAD ", redirect_path, b" HTTP/1.0", b"\r\n", b"Host: ", pypi_registry_host.encode('ascii'), b"\r\n", b"\r\n\r\n"])) ssl_http_socket.recv_into(receive_buffer) if b'HTTP/1.1 200' in receive_buffer: return True elif b'HTTP/1.1 404' in receive_buffer: return False else: NotImplementedError('A definitive answer was not found by primary or secondary lookups.')
[ "def", "check_pypi_name", "(", "pypi_package_name", ",", "pypi_registry_host", "=", "None", ")", ":", "if", "pypi_registry_host", "is", "None", ":", "pypi_registry_host", "=", "'pypi.python.org'", "# Just a helpful reminder why this bytearray size was chosen.", "# HTTP/1.1 200 OK", "# HTTP/1.1 404 Not Found", "receive_buffer", "=", "bytearray", "(", "b'------------'", ")", "context", "=", "ssl", ".", "create_default_context", "(", ")", "ssl_http_socket", "=", "context", ".", "wrap_socket", "(", "socket", ".", "socket", "(", "socket", ".", "AF_INET", ")", ",", "server_hostname", "=", "pypi_registry_host", ")", "ssl_http_socket", ".", "connect", "(", "(", "pypi_registry_host", ",", "443", ")", ")", "ssl_http_socket", ".", "send", "(", "b''", ".", "join", "(", "[", "b\"HEAD /simple/\"", ",", "pypi_package_name", ".", "encode", "(", "'ascii'", ")", ",", "b\"/ HTTP/1.0\"", ",", "b\"\\r\\n\"", ",", "b\"Host: \"", ",", "pypi_registry_host", ".", "encode", "(", "'ascii'", ")", ",", "b\"\\r\\n\"", ",", "b\"\\r\\n\\r\\n\"", "]", ")", ")", "ssl_http_socket", ".", "recv_into", "(", "receive_buffer", ")", "# Early return when possible.", "if", "b'HTTP/1.1 200'", "in", "receive_buffer", ":", "ssl_http_socket", ".", "shutdown", "(", "1", ")", "ssl_http_socket", ".", "close", "(", ")", "return", "True", "elif", "b'HTTP/1.1 404'", "in", "receive_buffer", ":", "ssl_http_socket", ".", "shutdown", "(", "1", ")", "ssl_http_socket", ".", "close", "(", ")", "return", "False", "remaining_bytes", "=", "ssl_http_socket", ".", "recv", "(", "2048", ")", "redirect_path_location_start", "=", "remaining_bytes", ".", "find", "(", "b'Location:'", ")", "+", "10", "redirect_path_location_end", "=", "remaining_bytes", ".", "find", "(", "b'\\r\\n'", ",", "redirect_path_location_start", ")", "# Append the trailing slash to avoid a needless extra redirect.", "redirect_path", "=", "remaining_bytes", "[", "redirect_path_location_start", ":", "redirect_path_location_end", "]", "+", "b'/'", "ssl_http_socket", ".", "shutdown", "(", "1", ")", "ssl_http_socket", ".", "close", "(", ")", "# Reset the bytearray to empty", "# receive_buffer = bytearray(b'------------')", "ssl_http_socket", "=", "context", ".", "wrap_socket", "(", "socket", ".", "socket", "(", "socket", ".", "AF_INET", ")", ",", "server_hostname", "=", "pypi_registry_host", ")", "ssl_http_socket", ".", "connect", "(", "(", "pypi_registry_host", ",", "443", ")", ")", "ssl_http_socket", ".", "send", "(", "b''", ".", "join", "(", "[", "b\"HEAD \"", ",", "redirect_path", ",", "b\" HTTP/1.0\"", ",", "b\"\\r\\n\"", ",", "b\"Host: \"", ",", "pypi_registry_host", ".", "encode", "(", "'ascii'", ")", ",", "b\"\\r\\n\"", ",", "b\"\\r\\n\\r\\n\"", "]", ")", ")", "ssl_http_socket", ".", "recv_into", "(", "receive_buffer", ")", "if", "b'HTTP/1.1 200'", "in", "receive_buffer", ":", "return", "True", "elif", "b'HTTP/1.1 404'", "in", "receive_buffer", ":", "return", "False", "else", ":", "NotImplementedError", "(", "'A definitive answer was not found by primary or secondary lookups.'", ")" ]
Check if a package name exists on pypi. TODO: Document the Registry URL construction. It may not be obvious how pypi_package_name and pypi_registry_host are used I'm appending the simple HTTP API parts of the registry standard specification. It will return True if the package name, or any equivalent variation as defined by PEP 503 normalisation rules (https://www.python.org/dev/peps/pep-0503/#normalized-names) is registered in the PyPI registry. >>> check_pypi_name('pip') True >>> check_pypi_name('Pip') True It will return False if the package name, or any equivalent variation as defined by PEP 503 normalisation rules (https://www.python.org/dev/peps/pep-0503/#normalized-names) is not registered in the PyPI registry. >>> check_pypi_name('testy_mc-test_case-has.a.cousin_who_should_never_write_a_package') False :param pypi_package_name: :param pypi_registry_host: :return:
[ "Check", "if", "a", "package", "name", "exists", "on", "pypi", "." ]
python
test
Alignak-monitoring-contrib/alignak-backend-client
alignak_backend_client/backend_client.py
https://github.com/Alignak-monitoring-contrib/alignak-backend-client/blob/1e21f6ce703e66984d1f9b20fe7866460ab50b39/alignak_backend_client/backend_client.py#L441-L458
def file_dump(self, data, filename): # pylint: disable=no-self-use """ Dump the data to a JSON formatted file :param data: data to be dumped :param filename: name of the file to use. Only the file name, not the full path! :return: dumped file absolute file name """ dump = json.dumps(data, indent=4, separators=(',', ': '), sort_keys=True) path = os.path.join(self.folder or os.getcwd(), filename) try: dfile = open(path, "wt") dfile.write(dump) dfile.close() return path except (OSError, IndexError) as exp: # pragma: no cover, should never happen logger.exception("Error when writing the list dump file %s : %s", path, str(exp)) return None
[ "def", "file_dump", "(", "self", ",", "data", ",", "filename", ")", ":", "# pylint: disable=no-self-use", "dump", "=", "json", ".", "dumps", "(", "data", ",", "indent", "=", "4", ",", "separators", "=", "(", "','", ",", "': '", ")", ",", "sort_keys", "=", "True", ")", "path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "folder", "or", "os", ".", "getcwd", "(", ")", ",", "filename", ")", "try", ":", "dfile", "=", "open", "(", "path", ",", "\"wt\"", ")", "dfile", ".", "write", "(", "dump", ")", "dfile", ".", "close", "(", ")", "return", "path", "except", "(", "OSError", ",", "IndexError", ")", "as", "exp", ":", "# pragma: no cover, should never happen", "logger", ".", "exception", "(", "\"Error when writing the list dump file %s : %s\"", ",", "path", ",", "str", "(", "exp", ")", ")", "return", "None" ]
Dump the data to a JSON formatted file :param data: data to be dumped :param filename: name of the file to use. Only the file name, not the full path! :return: dumped file absolute file name
[ "Dump", "the", "data", "to", "a", "JSON", "formatted", "file", ":", "param", "data", ":", "data", "to", "be", "dumped", ":", "param", "filename", ":", "name", "of", "the", "file", "to", "use", ".", "Only", "the", "file", "name", "not", "the", "full", "path!", ":", "return", ":", "dumped", "file", "absolute", "file", "name" ]
python
test
zetaops/zengine
zengine/management_commands.py
https://github.com/zetaops/zengine/blob/b5bc32d3b37bca799f8985be916f04528ac79e4a/zengine/management_commands.py#L44-L92
def run(self): """ Creates new permissions. """ from pyoko.lib.utils import get_object_from_path from zengine.config import settings model = get_object_from_path(settings.PERMISSION_MODEL) perm_provider = get_object_from_path(settings.PERMISSION_PROVIDER) existing_perms = [] new_perms = [] for code, name, desc in perm_provider(): code = six.text_type(code) if self.manager.args.dry: exists = model.objects.filter(code=code, name=name) if exists: perm = exists[0] new = False else: new = True perm = model(code=code, name=name) else: try: perm = model.objects.get(code) existing_perms.append(perm) except ObjectDoesNotExist: perm = model(description=desc, code=code, name=name) perm.key = code perm.save() new_perms.append(perm) # perm, new = model.objects.get_or_create({'description': desc}, code=code, name=name) # if new: # new_perms.append(perm) # else: # existing_perms.append(perm) report = "\n\n%s permission(s) were found in DB. " % len(existing_perms) if new_perms: report += "\n%s new permission record added. " % len(new_perms) else: report += 'No new perms added. ' if new_perms: if not self.manager.args.dry: SelectBoxCache.flush(model.__name__) report += 'Total %s perms exists.' % (len(existing_perms) + len(new_perms)) report = "\n + " + "\n + ".join([p.name or p.code for p in new_perms]) + report if self.manager.args.dry: print("\n~~~~~~~~~~~~~~ DRY RUN ~~~~~~~~~~~~~~\n") print(report + "\n")
[ "def", "run", "(", "self", ")", ":", "from", "pyoko", ".", "lib", ".", "utils", "import", "get_object_from_path", "from", "zengine", ".", "config", "import", "settings", "model", "=", "get_object_from_path", "(", "settings", ".", "PERMISSION_MODEL", ")", "perm_provider", "=", "get_object_from_path", "(", "settings", ".", "PERMISSION_PROVIDER", ")", "existing_perms", "=", "[", "]", "new_perms", "=", "[", "]", "for", "code", ",", "name", ",", "desc", "in", "perm_provider", "(", ")", ":", "code", "=", "six", ".", "text_type", "(", "code", ")", "if", "self", ".", "manager", ".", "args", ".", "dry", ":", "exists", "=", "model", ".", "objects", ".", "filter", "(", "code", "=", "code", ",", "name", "=", "name", ")", "if", "exists", ":", "perm", "=", "exists", "[", "0", "]", "new", "=", "False", "else", ":", "new", "=", "True", "perm", "=", "model", "(", "code", "=", "code", ",", "name", "=", "name", ")", "else", ":", "try", ":", "perm", "=", "model", ".", "objects", ".", "get", "(", "code", ")", "existing_perms", ".", "append", "(", "perm", ")", "except", "ObjectDoesNotExist", ":", "perm", "=", "model", "(", "description", "=", "desc", ",", "code", "=", "code", ",", "name", "=", "name", ")", "perm", ".", "key", "=", "code", "perm", ".", "save", "(", ")", "new_perms", ".", "append", "(", "perm", ")", "# perm, new = model.objects.get_or_create({'description': desc}, code=code, name=name)", "# if new:", "# new_perms.append(perm)", "# else:", "# existing_perms.append(perm)", "report", "=", "\"\\n\\n%s permission(s) were found in DB. \"", "%", "len", "(", "existing_perms", ")", "if", "new_perms", ":", "report", "+=", "\"\\n%s new permission record added. \"", "%", "len", "(", "new_perms", ")", "else", ":", "report", "+=", "'No new perms added. '", "if", "new_perms", ":", "if", "not", "self", ".", "manager", ".", "args", ".", "dry", ":", "SelectBoxCache", ".", "flush", "(", "model", ".", "__name__", ")", "report", "+=", "'Total %s perms exists.'", "%", "(", "len", "(", "existing_perms", ")", "+", "len", "(", "new_perms", ")", ")", "report", "=", "\"\\n + \"", "+", "\"\\n + \"", ".", "join", "(", "[", "p", ".", "name", "or", "p", ".", "code", "for", "p", "in", "new_perms", "]", ")", "+", "report", "if", "self", ".", "manager", ".", "args", ".", "dry", ":", "print", "(", "\"\\n~~~~~~~~~~~~~~ DRY RUN ~~~~~~~~~~~~~~\\n\"", ")", "print", "(", "report", "+", "\"\\n\"", ")" ]
Creates new permissions.
[ "Creates", "new", "permissions", "." ]
python
train
openvax/varcode
varcode/effects/mutate.py
https://github.com/openvax/varcode/blob/981633db45ca2b31f76c06894a7360ea5d70a9b8/varcode/effects/mutate.py#L62-L87
def substitute(sequence, offset, ref, alt): """Mutate a sequence by substituting given `alt` at instead of `ref` at the given `position`. Parameters ---------- sequence : sequence String of amino acids or DNA bases offset : int Base 0 offset from start of `sequence` ref : sequence or str What do we expect to find at the position? alt : sequence or str Alternate sequence to insert """ n_ref = len(ref) sequence_ref = sequence[offset:offset + n_ref] assert str(sequence_ref) == str(ref), \ "Reference %s at offset %d != expected reference %s" % \ (sequence_ref, offset, ref) prefix = sequence[:offset] suffix = sequence[offset + n_ref:] return prefix + alt + suffix
[ "def", "substitute", "(", "sequence", ",", "offset", ",", "ref", ",", "alt", ")", ":", "n_ref", "=", "len", "(", "ref", ")", "sequence_ref", "=", "sequence", "[", "offset", ":", "offset", "+", "n_ref", "]", "assert", "str", "(", "sequence_ref", ")", "==", "str", "(", "ref", ")", ",", "\"Reference %s at offset %d != expected reference %s\"", "%", "(", "sequence_ref", ",", "offset", ",", "ref", ")", "prefix", "=", "sequence", "[", ":", "offset", "]", "suffix", "=", "sequence", "[", "offset", "+", "n_ref", ":", "]", "return", "prefix", "+", "alt", "+", "suffix" ]
Mutate a sequence by substituting given `alt` at instead of `ref` at the given `position`. Parameters ---------- sequence : sequence String of amino acids or DNA bases offset : int Base 0 offset from start of `sequence` ref : sequence or str What do we expect to find at the position? alt : sequence or str Alternate sequence to insert
[ "Mutate", "a", "sequence", "by", "substituting", "given", "alt", "at", "instead", "of", "ref", "at", "the", "given", "position", "." ]
python
train
sveetch/boussole
boussole/watcher.py
https://github.com/sveetch/boussole/blob/22cc644e9d633f41ebfc167d427a71c1726cee21/boussole/watcher.py#L143-L161
def compile_dependencies(self, sourcepath, include_self=False): """ Apply compile on all dependencies Args: sourcepath (string): Sass source path to compile to its destination using project settings. Keyword Arguments: include_self (bool): If ``True`` the given sourcepath is add to items to compile, else only its dependencies are compiled. """ items = self.inspector.parents(sourcepath) # Also add the current event related path if include_self: items.add(sourcepath) return filter(None, [self.compile_source(item) for item in items])
[ "def", "compile_dependencies", "(", "self", ",", "sourcepath", ",", "include_self", "=", "False", ")", ":", "items", "=", "self", ".", "inspector", ".", "parents", "(", "sourcepath", ")", "# Also add the current event related path", "if", "include_self", ":", "items", ".", "add", "(", "sourcepath", ")", "return", "filter", "(", "None", ",", "[", "self", ".", "compile_source", "(", "item", ")", "for", "item", "in", "items", "]", ")" ]
Apply compile on all dependencies Args: sourcepath (string): Sass source path to compile to its destination using project settings. Keyword Arguments: include_self (bool): If ``True`` the given sourcepath is add to items to compile, else only its dependencies are compiled.
[ "Apply", "compile", "on", "all", "dependencies" ]
python
train
pybel/pybel
src/pybel/canonicalize.py
https://github.com/pybel/pybel/blob/c8a7a1bdae4c475fa2a8c77f3a9a5f6d79556ca0/src/pybel/canonicalize.py#L178-L183
def _unset_annotation_to_str(keys: List[str]) -> str: """Return an unset annotation string.""" if len(keys) == 1: return 'UNSET {}'.format(list(keys)[0]) return 'UNSET {{{}}}'.format(', '.join('{}'.format(key) for key in keys))
[ "def", "_unset_annotation_to_str", "(", "keys", ":", "List", "[", "str", "]", ")", "->", "str", ":", "if", "len", "(", "keys", ")", "==", "1", ":", "return", "'UNSET {}'", ".", "format", "(", "list", "(", "keys", ")", "[", "0", "]", ")", "return", "'UNSET {{{}}}'", ".", "format", "(", "', '", ".", "join", "(", "'{}'", ".", "format", "(", "key", ")", "for", "key", "in", "keys", ")", ")" ]
Return an unset annotation string.
[ "Return", "an", "unset", "annotation", "string", "." ]
python
train
pri22296/beautifultable
beautifultable/rows.py
https://github.com/pri22296/beautifultable/blob/c9638f73dff4bb1f341c9ee783e4e47f26efba0b/beautifultable/rows.py#L65-L99
def _clamp_string(self, row_item, column_index, delimiter=''): """Clamp `row_item` to fit in column referred by column_index. This method considers padding and appends the delimiter if `row_item` needs to be truncated. Parameters ---------- row_item: str String which should be clamped. column_index: int Index of the column `row_item` belongs to. delimiter: str String which is to be appended to the clamped string. Returns ------- str The modified string which fits in it's column. """ width = (self._table.column_widths[column_index] - self._table.left_padding_widths[column_index] - self._table.right_padding_widths[column_index]) if termwidth(row_item) <= width: return row_item else: if width - len(delimiter) >= 0: clamped_string = (textwrap(row_item, width-len(delimiter))[0] + delimiter) else: clamped_string = delimiter[:width] return clamped_string
[ "def", "_clamp_string", "(", "self", ",", "row_item", ",", "column_index", ",", "delimiter", "=", "''", ")", ":", "width", "=", "(", "self", ".", "_table", ".", "column_widths", "[", "column_index", "]", "-", "self", ".", "_table", ".", "left_padding_widths", "[", "column_index", "]", "-", "self", ".", "_table", ".", "right_padding_widths", "[", "column_index", "]", ")", "if", "termwidth", "(", "row_item", ")", "<=", "width", ":", "return", "row_item", "else", ":", "if", "width", "-", "len", "(", "delimiter", ")", ">=", "0", ":", "clamped_string", "=", "(", "textwrap", "(", "row_item", ",", "width", "-", "len", "(", "delimiter", ")", ")", "[", "0", "]", "+", "delimiter", ")", "else", ":", "clamped_string", "=", "delimiter", "[", ":", "width", "]", "return", "clamped_string" ]
Clamp `row_item` to fit in column referred by column_index. This method considers padding and appends the delimiter if `row_item` needs to be truncated. Parameters ---------- row_item: str String which should be clamped. column_index: int Index of the column `row_item` belongs to. delimiter: str String which is to be appended to the clamped string. Returns ------- str The modified string which fits in it's column.
[ "Clamp", "row_item", "to", "fit", "in", "column", "referred", "by", "column_index", "." ]
python
train
StackStorm/pybind
pybind/slxos/v17r_2_00/keychain/key/accept_lifetime/__init__.py
https://github.com/StackStorm/pybind/blob/44c467e71b2b425be63867aba6e6fa28b2cfe7fb/pybind/slxos/v17r_2_00/keychain/key/accept_lifetime/__init__.py#L127-L148
def _set_start_time(self, v, load=False): """ Setter method for start_time, mapped from YANG variable /keychain/key/accept_lifetime/start_time (time-format-start) If this variable is read-only (config: false) in the source YANG file, then _set_start_time is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_start_time() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-1][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9]\\|(0[1-9]|1[012])/(0[1-9]|[12][0-9]|3[01])/\\d{4})', 'length': [u'0..32']}), is_leaf=True, yang_name="start-time", rest_name="start-time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'enter start time in the format HH:MM:SS|MM/DD/YYYY', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-keychain', defining_module='brocade-keychain', yang_type='time-format-start', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """start_time must be of a type compatible with time-format-start""", 'defined-type': "brocade-keychain:time-format-start", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-1][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9]\\|(0[1-9]|1[012])/(0[1-9]|[12][0-9]|3[01])/\\d{4})', 'length': [u'0..32']}), is_leaf=True, yang_name="start-time", rest_name="start-time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'enter start time in the format HH:MM:SS|MM/DD/YYYY', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-keychain', defining_module='brocade-keychain', yang_type='time-format-start', is_config=True)""", }) self.__start_time = t if hasattr(self, '_set'): self._set()
[ "def", "_set_start_time", "(", "self", ",", "v", ",", "load", "=", "False", ")", ":", "if", "hasattr", "(", "v", ",", "\"_utype\"", ")", ":", "v", "=", "v", ".", "_utype", "(", "v", ")", "try", ":", "t", "=", "YANGDynClass", "(", "v", ",", "base", "=", "RestrictedClassType", "(", "base_type", "=", "unicode", ",", "restriction_dict", "=", "{", "'pattern'", ":", "u'(([0-1][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9]\\\\|(0[1-9]|1[012])/(0[1-9]|[12][0-9]|3[01])/\\\\d{4})'", ",", "'length'", ":", "[", "u'0..32'", "]", "}", ")", ",", "is_leaf", "=", "True", ",", "yang_name", "=", "\"start-time\"", ",", "rest_name", "=", "\"start-time\"", ",", "parent", "=", "self", ",", "path_helper", "=", "self", ".", "_path_helper", ",", "extmethods", "=", "self", ".", "_extmethods", ",", "register_paths", "=", "True", ",", "extensions", "=", "{", "u'tailf-common'", ":", "{", "u'info'", ":", "u'enter start time in the format HH:MM:SS|MM/DD/YYYY'", ",", "u'cli-drop-node-name'", ":", "None", "}", "}", ",", "namespace", "=", "'urn:brocade.com:mgmt:brocade-keychain'", ",", "defining_module", "=", "'brocade-keychain'", ",", "yang_type", "=", "'time-format-start'", ",", "is_config", "=", "True", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "raise", "ValueError", "(", "{", "'error-string'", ":", "\"\"\"start_time must be of a type compatible with time-format-start\"\"\"", ",", "'defined-type'", ":", "\"brocade-keychain:time-format-start\"", ",", "'generated-type'", ":", "\"\"\"YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-1][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9]\\\\|(0[1-9]|1[012])/(0[1-9]|[12][0-9]|3[01])/\\\\d{4})', 'length': [u'0..32']}), is_leaf=True, yang_name=\"start-time\", rest_name=\"start-time\", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'enter start time in the format HH:MM:SS|MM/DD/YYYY', u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-keychain', defining_module='brocade-keychain', yang_type='time-format-start', is_config=True)\"\"\"", ",", "}", ")", "self", ".", "__start_time", "=", "t", "if", "hasattr", "(", "self", ",", "'_set'", ")", ":", "self", ".", "_set", "(", ")" ]
Setter method for start_time, mapped from YANG variable /keychain/key/accept_lifetime/start_time (time-format-start) If this variable is read-only (config: false) in the source YANG file, then _set_start_time is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_start_time() directly.
[ "Setter", "method", "for", "start_time", "mapped", "from", "YANG", "variable", "/", "keychain", "/", "key", "/", "accept_lifetime", "/", "start_time", "(", "time", "-", "format", "-", "start", ")", "If", "this", "variable", "is", "read", "-", "only", "(", "config", ":", "false", ")", "in", "the", "source", "YANG", "file", "then", "_set_start_time", "is", "considered", "as", "a", "private", "method", ".", "Backends", "looking", "to", "populate", "this", "variable", "should", "do", "so", "via", "calling", "thisObj", ".", "_set_start_time", "()", "directly", "." ]
python
train
Calysto/calysto
calysto/ai/conx.py
https://github.com/Calysto/calysto/blob/20813c0f48096317aa775d03a5c6b20f12fafc93/calysto/ai/conx.py#L4686-L4697
def addContext(self, layer, hiddenLayerName = 'hidden', verbosity = 0): """ Adds a context layer. Necessary to keep self.contextLayers dictionary up to date. """ # better not add context layer first if using sweep() without mapInput SRN.add(self, layer, verbosity) if hiddenLayerName in self.contextLayers: raise KeyError('There is already a context layer associated with this hidden layer.', \ hiddenLayerName) else: self.contextLayers[hiddenLayerName] = layer layer.kind = 'Context'
[ "def", "addContext", "(", "self", ",", "layer", ",", "hiddenLayerName", "=", "'hidden'", ",", "verbosity", "=", "0", ")", ":", "# better not add context layer first if using sweep() without mapInput", "SRN", ".", "add", "(", "self", ",", "layer", ",", "verbosity", ")", "if", "hiddenLayerName", "in", "self", ".", "contextLayers", ":", "raise", "KeyError", "(", "'There is already a context layer associated with this hidden layer.'", ",", "hiddenLayerName", ")", "else", ":", "self", ".", "contextLayers", "[", "hiddenLayerName", "]", "=", "layer", "layer", ".", "kind", "=", "'Context'" ]
Adds a context layer. Necessary to keep self.contextLayers dictionary up to date.
[ "Adds", "a", "context", "layer", ".", "Necessary", "to", "keep", "self", ".", "contextLayers", "dictionary", "up", "to", "date", "." ]
python
train
intelligenia/modeltranslation
modeltranslation/models.py
https://github.com/intelligenia/modeltranslation/blob/64d6adeb537747321d5020efedf5d7e0d135862d/modeltranslation/models.py#L206-L216
def _load_source_object(self): """ Loads related object in a dynamic attribute and returns it. """ if hasattr(self, "source_obj"): self.source_text = getattr(self.source_obj, self.field) return self.source_obj self._load_source_model() self.source_obj = self.source_model.objects.get(id=self.object_id) return self.source_obj
[ "def", "_load_source_object", "(", "self", ")", ":", "if", "hasattr", "(", "self", ",", "\"source_obj\"", ")", ":", "self", ".", "source_text", "=", "getattr", "(", "self", ".", "source_obj", ",", "self", ".", "field", ")", "return", "self", ".", "source_obj", "self", ".", "_load_source_model", "(", ")", "self", ".", "source_obj", "=", "self", ".", "source_model", ".", "objects", ".", "get", "(", "id", "=", "self", ".", "object_id", ")", "return", "self", ".", "source_obj" ]
Loads related object in a dynamic attribute and returns it.
[ "Loads", "related", "object", "in", "a", "dynamic", "attribute", "and", "returns", "it", "." ]
python
train
Rapptz/discord.py
discord/message.py
https://github.com/Rapptz/discord.py/blob/05d4f7f9620ef33635d6ac965b26528e09cdaf5b/discord/message.py#L566-L601
async def delete(self, *, delay=None): """|coro| Deletes the message. Your own messages could be deleted without any proper permissions. However to delete other people's messages, you need the :attr:`~Permissions.manage_messages` permission. .. versionchanged:: 1.1.0 Added the new ``delay`` keyword-only parameter. Parameters ----------- delay: Optional[:class:`float`] If provided, the number of seconds to wait in the background before deleting the message. Raises ------ Forbidden You do not have proper permissions to delete the message. HTTPException Deleting the message failed. """ if delay is not None: async def delete(): await asyncio.sleep(delay, loop=self._state.loop) try: await self._state.http.delete_message(self.channel.id, self.id) except HTTPException: pass asyncio.ensure_future(delete(), loop=self._state.loop) else: await self._state.http.delete_message(self.channel.id, self.id)
[ "async", "def", "delete", "(", "self", ",", "*", ",", "delay", "=", "None", ")", ":", "if", "delay", "is", "not", "None", ":", "async", "def", "delete", "(", ")", ":", "await", "asyncio", ".", "sleep", "(", "delay", ",", "loop", "=", "self", ".", "_state", ".", "loop", ")", "try", ":", "await", "self", ".", "_state", ".", "http", ".", "delete_message", "(", "self", ".", "channel", ".", "id", ",", "self", ".", "id", ")", "except", "HTTPException", ":", "pass", "asyncio", ".", "ensure_future", "(", "delete", "(", ")", ",", "loop", "=", "self", ".", "_state", ".", "loop", ")", "else", ":", "await", "self", ".", "_state", ".", "http", ".", "delete_message", "(", "self", ".", "channel", ".", "id", ",", "self", ".", "id", ")" ]
|coro| Deletes the message. Your own messages could be deleted without any proper permissions. However to delete other people's messages, you need the :attr:`~Permissions.manage_messages` permission. .. versionchanged:: 1.1.0 Added the new ``delay`` keyword-only parameter. Parameters ----------- delay: Optional[:class:`float`] If provided, the number of seconds to wait in the background before deleting the message. Raises ------ Forbidden You do not have proper permissions to delete the message. HTTPException Deleting the message failed.
[ "|coro|" ]
python
train
yahoo/TensorFlowOnSpark
tensorflowonspark/dfutil.py
https://github.com/yahoo/TensorFlowOnSpark/blob/5e4b6c185ab722fd0104ede0377e1149ea8d6f7c/tensorflowonspark/dfutil.py#L134-L168
def infer_schema(example, binary_features=[]): """Given a tf.train.Example, infer the Spark DataFrame schema (StructFields). Note: TensorFlow represents both strings and binary types as tf.train.BytesList, and we need to disambiguate these types for Spark DataFrames DTypes (StringType and BinaryType), so we require a "hint" from the caller in the ``binary_features`` argument. Args: :example: a tf.train.Example :binary_features: a list of tf.train.Example features which are expected to be binary/bytearrays. Returns: A DataFrame StructType schema """ def _infer_sql_type(k, v): # special handling for binary features if k in binary_features: return BinaryType() if v.int64_list.value: result = v.int64_list.value sql_type = LongType() elif v.float_list.value: result = v.float_list.value sql_type = DoubleType() else: result = v.bytes_list.value sql_type = StringType() if len(result) > 1: # represent multi-item tensors as Spark SQL ArrayType() of base types return ArrayType(sql_type) else: # represent everything else as base types (and empty tensors as StringType()) return sql_type return StructType([StructField(k, _infer_sql_type(k, v), True) for k, v in sorted(example.features.feature.items())])
[ "def", "infer_schema", "(", "example", ",", "binary_features", "=", "[", "]", ")", ":", "def", "_infer_sql_type", "(", "k", ",", "v", ")", ":", "# special handling for binary features", "if", "k", "in", "binary_features", ":", "return", "BinaryType", "(", ")", "if", "v", ".", "int64_list", ".", "value", ":", "result", "=", "v", ".", "int64_list", ".", "value", "sql_type", "=", "LongType", "(", ")", "elif", "v", ".", "float_list", ".", "value", ":", "result", "=", "v", ".", "float_list", ".", "value", "sql_type", "=", "DoubleType", "(", ")", "else", ":", "result", "=", "v", ".", "bytes_list", ".", "value", "sql_type", "=", "StringType", "(", ")", "if", "len", "(", "result", ")", ">", "1", ":", "# represent multi-item tensors as Spark SQL ArrayType() of base types", "return", "ArrayType", "(", "sql_type", ")", "else", ":", "# represent everything else as base types (and empty tensors as StringType())", "return", "sql_type", "return", "StructType", "(", "[", "StructField", "(", "k", ",", "_infer_sql_type", "(", "k", ",", "v", ")", ",", "True", ")", "for", "k", ",", "v", "in", "sorted", "(", "example", ".", "features", ".", "feature", ".", "items", "(", ")", ")", "]", ")" ]
Given a tf.train.Example, infer the Spark DataFrame schema (StructFields). Note: TensorFlow represents both strings and binary types as tf.train.BytesList, and we need to disambiguate these types for Spark DataFrames DTypes (StringType and BinaryType), so we require a "hint" from the caller in the ``binary_features`` argument. Args: :example: a tf.train.Example :binary_features: a list of tf.train.Example features which are expected to be binary/bytearrays. Returns: A DataFrame StructType schema
[ "Given", "a", "tf", ".", "train", ".", "Example", "infer", "the", "Spark", "DataFrame", "schema", "(", "StructFields", ")", "." ]
python
train
openego/ding0
ding0/grid/mv_grid/util/data_input.py
https://github.com/openego/ding0/blob/e2d6528f96255e4bb22ba15514a4f1883564ed5d/ding0/grid/mv_grid/util/data_input.py#L312-L376
def _parse_tsplib(f): """Parses a TSPLIB file descriptor and returns a dict containing the problem definition""" line = '' specs = {} used_specs = ['NAME', 'COMMENT', 'DIMENSION', 'CAPACITY', 'TYPE', 'EDGE_WEIGHT_TYPE'] used_data = ['DEMAND_SECTION', 'DEPOT_SECTION'] # Parse specs part for line in f: line = strip(line) # Arbitrary sort, so we test everything out s = None for s in used_specs: if line.startswith(s): specs[s] = line.split('{} :'.format(s))[-1].strip() # get value data part break if s == 'EDGE_WEIGHT_TYPE' and s in specs and specs[s] == 'EXPLICIT': used_specs.append('EDGE_WEIGHT_FORMAT') # All specs read if len(specs) == len(used_specs): break if len(specs) != len(used_specs): missing_specs = set(used_specs).symmetric_difference(set(specs)) raise ParseException('Error parsing TSPLIB data: specs {} missing'.format(missing_specs)) print(specs) if specs['EDGE_WEIGHT_TYPE'] == 'EUC_2D': used_data.append('NODE_COORD_SECTION') elif specs['EDGE_WEIGHT_FORMAT'] == 'FULL_MATRIX': used_data.append('EDGE_WEIGHT_SECTION') else: raise ParseException('EDGE_WEIGHT_TYPE or EDGE_WEIGHT_FORMAT not supported') _post_process_specs(specs) # Parse data part for line in f: line = strip(line) for d in used_data: if line.startswith(d): if d == 'DEPOT_SECTION': specs[d] = _parse_depot_section(f) elif d in ['NODE_COORD_SECTION', 'DEMAND_SECTION']: specs[d] = _parse_nodes_section(f, d, specs['DIMENSION']) elif d == 'EDGE_WEIGHT_SECTION': specs[d] = _parse_edge_weight(f, specs['DIMENSION']) if len(specs) == len(used_specs) + len(used_data): break if len(specs) != len(used_specs) + len(used_data): missing_specs = set(specs).symmetric_difference(set(used_specs).union(set(used_data))) raise ParseException('Error parsing TSPLIB data: specs {} missing'.format(missing_specs)) _post_process_data(specs) return specs
[ "def", "_parse_tsplib", "(", "f", ")", ":", "line", "=", "''", "specs", "=", "{", "}", "used_specs", "=", "[", "'NAME'", ",", "'COMMENT'", ",", "'DIMENSION'", ",", "'CAPACITY'", ",", "'TYPE'", ",", "'EDGE_WEIGHT_TYPE'", "]", "used_data", "=", "[", "'DEMAND_SECTION'", ",", "'DEPOT_SECTION'", "]", "# Parse specs part", "for", "line", "in", "f", ":", "line", "=", "strip", "(", "line", ")", "# Arbitrary sort, so we test everything out", "s", "=", "None", "for", "s", "in", "used_specs", ":", "if", "line", ".", "startswith", "(", "s", ")", ":", "specs", "[", "s", "]", "=", "line", ".", "split", "(", "'{} :'", ".", "format", "(", "s", ")", ")", "[", "-", "1", "]", ".", "strip", "(", ")", "# get value data part", "break", "if", "s", "==", "'EDGE_WEIGHT_TYPE'", "and", "s", "in", "specs", "and", "specs", "[", "s", "]", "==", "'EXPLICIT'", ":", "used_specs", ".", "append", "(", "'EDGE_WEIGHT_FORMAT'", ")", "# All specs read", "if", "len", "(", "specs", ")", "==", "len", "(", "used_specs", ")", ":", "break", "if", "len", "(", "specs", ")", "!=", "len", "(", "used_specs", ")", ":", "missing_specs", "=", "set", "(", "used_specs", ")", ".", "symmetric_difference", "(", "set", "(", "specs", ")", ")", "raise", "ParseException", "(", "'Error parsing TSPLIB data: specs {} missing'", ".", "format", "(", "missing_specs", ")", ")", "print", "(", "specs", ")", "if", "specs", "[", "'EDGE_WEIGHT_TYPE'", "]", "==", "'EUC_2D'", ":", "used_data", ".", "append", "(", "'NODE_COORD_SECTION'", ")", "elif", "specs", "[", "'EDGE_WEIGHT_FORMAT'", "]", "==", "'FULL_MATRIX'", ":", "used_data", ".", "append", "(", "'EDGE_WEIGHT_SECTION'", ")", "else", ":", "raise", "ParseException", "(", "'EDGE_WEIGHT_TYPE or EDGE_WEIGHT_FORMAT not supported'", ")", "_post_process_specs", "(", "specs", ")", "# Parse data part", "for", "line", "in", "f", ":", "line", "=", "strip", "(", "line", ")", "for", "d", "in", "used_data", ":", "if", "line", ".", "startswith", "(", "d", ")", ":", "if", "d", "==", "'DEPOT_SECTION'", ":", "specs", "[", "d", "]", "=", "_parse_depot_section", "(", "f", ")", "elif", "d", "in", "[", "'NODE_COORD_SECTION'", ",", "'DEMAND_SECTION'", "]", ":", "specs", "[", "d", "]", "=", "_parse_nodes_section", "(", "f", ",", "d", ",", "specs", "[", "'DIMENSION'", "]", ")", "elif", "d", "==", "'EDGE_WEIGHT_SECTION'", ":", "specs", "[", "d", "]", "=", "_parse_edge_weight", "(", "f", ",", "specs", "[", "'DIMENSION'", "]", ")", "if", "len", "(", "specs", ")", "==", "len", "(", "used_specs", ")", "+", "len", "(", "used_data", ")", ":", "break", "if", "len", "(", "specs", ")", "!=", "len", "(", "used_specs", ")", "+", "len", "(", "used_data", ")", ":", "missing_specs", "=", "set", "(", "specs", ")", ".", "symmetric_difference", "(", "set", "(", "used_specs", ")", ".", "union", "(", "set", "(", "used_data", ")", ")", ")", "raise", "ParseException", "(", "'Error parsing TSPLIB data: specs {} missing'", ".", "format", "(", "missing_specs", ")", ")", "_post_process_data", "(", "specs", ")", "return", "specs" ]
Parses a TSPLIB file descriptor and returns a dict containing the problem definition
[ "Parses", "a", "TSPLIB", "file", "descriptor", "and", "returns", "a", "dict", "containing", "the", "problem", "definition" ]
python
train
ray-project/ray
python/ray/experimental/array/distributed/core.py
https://github.com/ray-project/ray/blob/4eade036a0505e244c976f36aaa2d64386b5129b/python/ray/experimental/array/distributed/core.py#L58-L68
def assemble(self): """Assemble an array from a distributed array of object IDs.""" first_block = ray.get(self.objectids[(0, ) * self.ndim]) dtype = first_block.dtype result = np.zeros(self.shape, dtype=dtype) for index in np.ndindex(*self.num_blocks): lower = DistArray.compute_block_lower(index, self.shape) upper = DistArray.compute_block_upper(index, self.shape) result[[slice(l, u) for (l, u) in zip(lower, upper)]] = ray.get( self.objectids[index]) return result
[ "def", "assemble", "(", "self", ")", ":", "first_block", "=", "ray", ".", "get", "(", "self", ".", "objectids", "[", "(", "0", ",", ")", "*", "self", ".", "ndim", "]", ")", "dtype", "=", "first_block", ".", "dtype", "result", "=", "np", ".", "zeros", "(", "self", ".", "shape", ",", "dtype", "=", "dtype", ")", "for", "index", "in", "np", ".", "ndindex", "(", "*", "self", ".", "num_blocks", ")", ":", "lower", "=", "DistArray", ".", "compute_block_lower", "(", "index", ",", "self", ".", "shape", ")", "upper", "=", "DistArray", ".", "compute_block_upper", "(", "index", ",", "self", ".", "shape", ")", "result", "[", "[", "slice", "(", "l", ",", "u", ")", "for", "(", "l", ",", "u", ")", "in", "zip", "(", "lower", ",", "upper", ")", "]", "]", "=", "ray", ".", "get", "(", "self", ".", "objectids", "[", "index", "]", ")", "return", "result" ]
Assemble an array from a distributed array of object IDs.
[ "Assemble", "an", "array", "from", "a", "distributed", "array", "of", "object", "IDs", "." ]
python
train
zarr-developers/zarr
zarr/hierarchy.py
https://github.com/zarr-developers/zarr/blob/fb8e6d5ea6bc26e451e5cf0eaaee36977556d5b5/zarr/hierarchy.py#L458-L496
def visitvalues(self, func): """Run ``func`` on each object. Note: If ``func`` returns ``None`` (or doesn't return), iteration continues. However, if ``func`` returns anything else, it ceases and returns that value. Examples -------- >>> import zarr >>> g1 = zarr.group() >>> g2 = g1.create_group('foo') >>> g3 = g1.create_group('bar') >>> g4 = g3.create_group('baz') >>> g5 = g3.create_group('quux') >>> def print_visitor(obj): ... print(obj) >>> g1.visitvalues(print_visitor) <zarr.hierarchy.Group '/bar'> <zarr.hierarchy.Group '/bar/baz'> <zarr.hierarchy.Group '/bar/quux'> <zarr.hierarchy.Group '/foo'> >>> g3.visitvalues(print_visitor) <zarr.hierarchy.Group '/bar/baz'> <zarr.hierarchy.Group '/bar/quux'> """ def _visit(obj): yield obj keys = sorted(getattr(obj, "keys", lambda: [])()) for k in keys: for v in _visit(obj[k]): yield v for each_obj in islice(_visit(self), 1, None): value = func(each_obj) if value is not None: return value
[ "def", "visitvalues", "(", "self", ",", "func", ")", ":", "def", "_visit", "(", "obj", ")", ":", "yield", "obj", "keys", "=", "sorted", "(", "getattr", "(", "obj", ",", "\"keys\"", ",", "lambda", ":", "[", "]", ")", "(", ")", ")", "for", "k", "in", "keys", ":", "for", "v", "in", "_visit", "(", "obj", "[", "k", "]", ")", ":", "yield", "v", "for", "each_obj", "in", "islice", "(", "_visit", "(", "self", ")", ",", "1", ",", "None", ")", ":", "value", "=", "func", "(", "each_obj", ")", "if", "value", "is", "not", "None", ":", "return", "value" ]
Run ``func`` on each object. Note: If ``func`` returns ``None`` (or doesn't return), iteration continues. However, if ``func`` returns anything else, it ceases and returns that value. Examples -------- >>> import zarr >>> g1 = zarr.group() >>> g2 = g1.create_group('foo') >>> g3 = g1.create_group('bar') >>> g4 = g3.create_group('baz') >>> g5 = g3.create_group('quux') >>> def print_visitor(obj): ... print(obj) >>> g1.visitvalues(print_visitor) <zarr.hierarchy.Group '/bar'> <zarr.hierarchy.Group '/bar/baz'> <zarr.hierarchy.Group '/bar/quux'> <zarr.hierarchy.Group '/foo'> >>> g3.visitvalues(print_visitor) <zarr.hierarchy.Group '/bar/baz'> <zarr.hierarchy.Group '/bar/quux'>
[ "Run", "func", "on", "each", "object", "." ]
python
train
senseobservationsystems/commonsense-python-lib
senseapi.py
https://github.com/senseobservationsystems/commonsense-python-lib/blob/aac59a1751ef79eb830b3ca1fab6ef2c83931f87/senseapi.py#L392-L410
def AuthenticateOauth (self, oauth_token_key, oauth_token_secret, oauth_consumer_key, oauth_consumer_secret): """ Authenticate using Oauth @param oauth_token_key (string) - A valid oauth token key obtained from CommonSense @param oauth_token_secret (string) - A valid oauth token secret obtained from CommonSense @param oauth_consumer_key (string) - A valid oauth consumer key obtained from CommonSense @param oauth_consumer_secret (string) - A valid oauth consumer secret obtained from CommonSense @return (boolean) - Boolean indicating whether the provided credentials were successfully authenticated """ self.__oauth_consumer__ = oauth.OAuthConsumer(str(oauth_consumer_key), str(oauth_consumer_secret)) self.__oauth_token__ = oauth.OAuthToken(str(oauth_token_key), str(oauth_token_secret)) self.__authentication__ = 'oauth' if self.__SenseApiCall__('/users/current.json', 'GET'): return True else: self.__error__ = "api call unsuccessful" return False
[ "def", "AuthenticateOauth", "(", "self", ",", "oauth_token_key", ",", "oauth_token_secret", ",", "oauth_consumer_key", ",", "oauth_consumer_secret", ")", ":", "self", ".", "__oauth_consumer__", "=", "oauth", ".", "OAuthConsumer", "(", "str", "(", "oauth_consumer_key", ")", ",", "str", "(", "oauth_consumer_secret", ")", ")", "self", ".", "__oauth_token__", "=", "oauth", ".", "OAuthToken", "(", "str", "(", "oauth_token_key", ")", ",", "str", "(", "oauth_token_secret", ")", ")", "self", ".", "__authentication__", "=", "'oauth'", "if", "self", ".", "__SenseApiCall__", "(", "'/users/current.json'", ",", "'GET'", ")", ":", "return", "True", "else", ":", "self", ".", "__error__", "=", "\"api call unsuccessful\"", "return", "False" ]
Authenticate using Oauth @param oauth_token_key (string) - A valid oauth token key obtained from CommonSense @param oauth_token_secret (string) - A valid oauth token secret obtained from CommonSense @param oauth_consumer_key (string) - A valid oauth consumer key obtained from CommonSense @param oauth_consumer_secret (string) - A valid oauth consumer secret obtained from CommonSense @return (boolean) - Boolean indicating whether the provided credentials were successfully authenticated
[ "Authenticate", "using", "Oauth" ]
python
train
linkhub-sdk/popbill.py
popbill/htTaxinvoiceService.py
https://github.com/linkhub-sdk/popbill.py/blob/68a0dd7f7a937603318e93be321fde73c50b96cc/popbill/htTaxinvoiceService.py#L71-L85
def getJobState(self, CorpNum, JobID, UserID=None): """ 수집 상태 확인 args CorpNum : 팝빌회원 사업자번호 JobID : 작업아이디 UserID : 팝빌회원 아이디 return 수집 상태 정보 raise PopbillException """ if JobID == None or len(JobID) != 18: raise PopbillException(-99999999, "작업아이디(jobID)가 올바르지 않습니다.") return self._httpget('/HomeTax/Taxinvoice/' + JobID + '/State', CorpNum, UserID)
[ "def", "getJobState", "(", "self", ",", "CorpNum", ",", "JobID", ",", "UserID", "=", "None", ")", ":", "if", "JobID", "==", "None", "or", "len", "(", "JobID", ")", "!=", "18", ":", "raise", "PopbillException", "(", "-", "99999999", ",", "\"작업아이디(jobID)가 올바르지 않습니다.\")", "", "return", "self", ".", "_httpget", "(", "'/HomeTax/Taxinvoice/'", "+", "JobID", "+", "'/State'", ",", "CorpNum", ",", "UserID", ")" ]
수집 상태 확인 args CorpNum : 팝빌회원 사업자번호 JobID : 작업아이디 UserID : 팝빌회원 아이디 return 수집 상태 정보 raise PopbillException
[ "수집", "상태", "확인", "args", "CorpNum", ":", "팝빌회원", "사업자번호", "JobID", ":", "작업아이디", "UserID", ":", "팝빌회원", "아이디", "return", "수집", "상태", "정보", "raise", "PopbillException" ]
python
train
bitesofcode/projexui
projexui/widgets/xcalendarwidget/xcalendaritem.py
https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xcalendarwidget/xcalendaritem.py#L261-L334
def rebuildDay( self ): """ Rebuilds the current item in day mode. """ scene = self.scene() if ( not scene ): return # calculate the base information start_date = self.dateStart() end_date = self.dateEnd() min_date = scene.minimumDate() max_date = scene.maximumDate() # make sure our item is visible if ( not (min_date <= end_date and start_date <= max_date)): self.hide() self.setPath(QPainterPath()) return # make sure we have valid range information if ( start_date < min_date ): start_date = min_date start_inrange = False else: start_inrange = True if ( max_date < end_date ): end_date = max_date end_inrange = False else: end_inrange = True # rebuild the path path = QPainterPath() self.setPos(0, 0) pad = 2 offset = 18 height = 16 # rebuild a timed item if ( not self.isAllDay() ): start_dtime = QDateTime(self.dateStart(), self.timeStart()) end_dtime = QDateTime(self.dateStart(), self.timeEnd().addSecs(-30*60)) start_rect = scene.dateTimeRect(start_dtime) end_rect = scene.dateTimeRect(end_dtime) left = start_rect.left() + pad top = start_rect.top() + pad right = start_rect.right() - pad bottom = end_rect.bottom() - pad path.moveTo(left, top) path.lineTo(right, top) path.lineTo(right, bottom) path.lineTo(left, bottom) path.lineTo(left, top) data = (left + 6, top + 6, right - left - 12, bottom - top - 12, Qt.AlignTop | Qt.AlignLeft, '%s - %s\n(%s)' % (self.timeStart().toString('h:mmap')[:-1], self.timeEnd().toString('h:mmap'), self.title())) self._textData.append(data) self.setPath(path) self.show()
[ "def", "rebuildDay", "(", "self", ")", ":", "scene", "=", "self", ".", "scene", "(", ")", "if", "(", "not", "scene", ")", ":", "return", "# calculate the base information\r", "start_date", "=", "self", ".", "dateStart", "(", ")", "end_date", "=", "self", ".", "dateEnd", "(", ")", "min_date", "=", "scene", ".", "minimumDate", "(", ")", "max_date", "=", "scene", ".", "maximumDate", "(", ")", "# make sure our item is visible\r", "if", "(", "not", "(", "min_date", "<=", "end_date", "and", "start_date", "<=", "max_date", ")", ")", ":", "self", ".", "hide", "(", ")", "self", ".", "setPath", "(", "QPainterPath", "(", ")", ")", "return", "# make sure we have valid range information\r", "if", "(", "start_date", "<", "min_date", ")", ":", "start_date", "=", "min_date", "start_inrange", "=", "False", "else", ":", "start_inrange", "=", "True", "if", "(", "max_date", "<", "end_date", ")", ":", "end_date", "=", "max_date", "end_inrange", "=", "False", "else", ":", "end_inrange", "=", "True", "# rebuild the path\r", "path", "=", "QPainterPath", "(", ")", "self", ".", "setPos", "(", "0", ",", "0", ")", "pad", "=", "2", "offset", "=", "18", "height", "=", "16", "# rebuild a timed item\r", "if", "(", "not", "self", ".", "isAllDay", "(", ")", ")", ":", "start_dtime", "=", "QDateTime", "(", "self", ".", "dateStart", "(", ")", ",", "self", ".", "timeStart", "(", ")", ")", "end_dtime", "=", "QDateTime", "(", "self", ".", "dateStart", "(", ")", ",", "self", ".", "timeEnd", "(", ")", ".", "addSecs", "(", "-", "30", "*", "60", ")", ")", "start_rect", "=", "scene", ".", "dateTimeRect", "(", "start_dtime", ")", "end_rect", "=", "scene", ".", "dateTimeRect", "(", "end_dtime", ")", "left", "=", "start_rect", ".", "left", "(", ")", "+", "pad", "top", "=", "start_rect", ".", "top", "(", ")", "+", "pad", "right", "=", "start_rect", ".", "right", "(", ")", "-", "pad", "bottom", "=", "end_rect", ".", "bottom", "(", ")", "-", "pad", "path", ".", "moveTo", "(", "left", ",", "top", ")", "path", ".", "lineTo", "(", "right", ",", "top", ")", "path", ".", "lineTo", "(", "right", ",", "bottom", ")", "path", ".", "lineTo", "(", "left", ",", "bottom", ")", "path", ".", "lineTo", "(", "left", ",", "top", ")", "data", "=", "(", "left", "+", "6", ",", "top", "+", "6", ",", "right", "-", "left", "-", "12", ",", "bottom", "-", "top", "-", "12", ",", "Qt", ".", "AlignTop", "|", "Qt", ".", "AlignLeft", ",", "'%s - %s\\n(%s)'", "%", "(", "self", ".", "timeStart", "(", ")", ".", "toString", "(", "'h:mmap'", ")", "[", ":", "-", "1", "]", ",", "self", ".", "timeEnd", "(", ")", ".", "toString", "(", "'h:mmap'", ")", ",", "self", ".", "title", "(", ")", ")", ")", "self", ".", "_textData", ".", "append", "(", "data", ")", "self", ".", "setPath", "(", "path", ")", "self", ".", "show", "(", ")" ]
Rebuilds the current item in day mode.
[ "Rebuilds", "the", "current", "item", "in", "day", "mode", "." ]
python
train
ishepard/pydriller
pydriller/git_repository.py
https://github.com/ishepard/pydriller/blob/71facb32afa085d5ddf0081beba34d00d57b8080/pydriller/git_repository.py#L302-L318
def get_commits_modified_file(self, filepath: str) -> List[str]: """ Given a filepath, returns all the commits that modified this file (following renames). :param str filepath: path to the file :return: the list of commits' hash """ path = str(Path(filepath)) commits = [] try: commits = self.git.log("--follow", "--format=%H", path).split('\n') except GitCommandError: logger.debug("Could not find information of file %s", path) return commits
[ "def", "get_commits_modified_file", "(", "self", ",", "filepath", ":", "str", ")", "->", "List", "[", "str", "]", ":", "path", "=", "str", "(", "Path", "(", "filepath", ")", ")", "commits", "=", "[", "]", "try", ":", "commits", "=", "self", ".", "git", ".", "log", "(", "\"--follow\"", ",", "\"--format=%H\"", ",", "path", ")", ".", "split", "(", "'\\n'", ")", "except", "GitCommandError", ":", "logger", ".", "debug", "(", "\"Could not find information of file %s\"", ",", "path", ")", "return", "commits" ]
Given a filepath, returns all the commits that modified this file (following renames). :param str filepath: path to the file :return: the list of commits' hash
[ "Given", "a", "filepath", "returns", "all", "the", "commits", "that", "modified", "this", "file", "(", "following", "renames", ")", "." ]
python
train
MoseleyBioinformaticsLab/ctfile
ctfile/ctfile.py
https://github.com/MoseleyBioinformaticsLab/ctfile/blob/eae864126cd9102207df5d363a3222256a0f1396/ctfile/ctfile.py#L1144-L1155
def default(self, o): """Default encoder. :param o: Atom or Bond instance. :type o: :class:`~ctfile.ctfile.Atom` or :class:`~ctfile.ctfile.Bond`. :return: Dictionary that contains information required for atom and bond block of ``Ctab``. :rtype: :py:class:`collections.OrderedDict` """ if isinstance(o, Atom) or isinstance(o, Bond): return o._ctab_data else: return o.__dict__
[ "def", "default", "(", "self", ",", "o", ")", ":", "if", "isinstance", "(", "o", ",", "Atom", ")", "or", "isinstance", "(", "o", ",", "Bond", ")", ":", "return", "o", ".", "_ctab_data", "else", ":", "return", "o", ".", "__dict__" ]
Default encoder. :param o: Atom or Bond instance. :type o: :class:`~ctfile.ctfile.Atom` or :class:`~ctfile.ctfile.Bond`. :return: Dictionary that contains information required for atom and bond block of ``Ctab``. :rtype: :py:class:`collections.OrderedDict`
[ "Default", "encoder", "." ]
python
train
iotile/coretools
iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Node/__init__.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Node/__init__.py#L635-L654
def get_executor(self, create=1): """Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.""" try: executor = self.executor except AttributeError: if not create: raise try: act = self.builder.action except AttributeError: executor = SCons.Executor.Null(targets=[self]) else: executor = SCons.Executor.Executor(act, self.env or self.builder.env, [self.builder.overrides], [self], self.sources) self.executor = executor return executor
[ "def", "get_executor", "(", "self", ",", "create", "=", "1", ")", ":", "try", ":", "executor", "=", "self", ".", "executor", "except", "AttributeError", ":", "if", "not", "create", ":", "raise", "try", ":", "act", "=", "self", ".", "builder", ".", "action", "except", "AttributeError", ":", "executor", "=", "SCons", ".", "Executor", ".", "Null", "(", "targets", "=", "[", "self", "]", ")", "else", ":", "executor", "=", "SCons", ".", "Executor", ".", "Executor", "(", "act", ",", "self", ".", "env", "or", "self", ".", "builder", ".", "env", ",", "[", "self", ".", "builder", ".", "overrides", "]", ",", "[", "self", "]", ",", "self", ".", "sources", ")", "self", ".", "executor", "=", "executor", "return", "executor" ]
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.
[ "Fetch", "the", "action", "executor", "for", "this", "node", ".", "Create", "one", "if", "there", "isn", "t", "already", "one", "and", "requested", "to", "do", "so", "." ]
python
train
Qiskit/qiskit-terra
qiskit/tools/qi/qi.py
https://github.com/Qiskit/qiskit-terra/blob/d4f58d903bc96341b816f7c35df936d6421267d1/qiskit/tools/qi/qi.py#L249-L287
def choi_to_rauli(choi, order=1): """ Convert a Choi-matrix to a Pauli-basis superoperator. Note that this function assumes that the Choi-matrix is defined in the standard column-stacking convention and is normalized to have trace 1. For a channel E this is defined as: choi = (I \\otimes E)(bell_state). The resulting 'rauli' R acts on input states as |rho_out>_p = R.|rho_in>_p where |rho> = vectorize(rho, method='pauli') for order=1 and |rho> = vectorize(rho, method='pauli_weights') for order=0. Args: choi (matrix): the input Choi-matrix. order (int): ordering of the Pauli group vector. order=1 (default) is standard lexicographic ordering. Eg: [II, IX, IY, IZ, XI, XX, XY,...] order=0 is ordered by weights. Eg. [II, IX, IY, IZ, XI, XY, XZ, XX, XY,...] Returns: np.array: A superoperator in the Pauli basis. """ if order == 0: order = 'weight' elif order == 1: order = 'tensor' # get number of qubits' num_qubits = int(np.log2(np.sqrt(len(choi)))) pgp = pauli_group(num_qubits, case=order) rauli = [] for i in pgp: for j in pgp: pauliop = np.kron(j.to_matrix().T, i.to_matrix()) rauli += [np.trace(np.dot(choi, pauliop))] return np.array(rauli).reshape(4 ** num_qubits, 4 ** num_qubits)
[ "def", "choi_to_rauli", "(", "choi", ",", "order", "=", "1", ")", ":", "if", "order", "==", "0", ":", "order", "=", "'weight'", "elif", "order", "==", "1", ":", "order", "=", "'tensor'", "# get number of qubits'", "num_qubits", "=", "int", "(", "np", ".", "log2", "(", "np", ".", "sqrt", "(", "len", "(", "choi", ")", ")", ")", ")", "pgp", "=", "pauli_group", "(", "num_qubits", ",", "case", "=", "order", ")", "rauli", "=", "[", "]", "for", "i", "in", "pgp", ":", "for", "j", "in", "pgp", ":", "pauliop", "=", "np", ".", "kron", "(", "j", ".", "to_matrix", "(", ")", ".", "T", ",", "i", ".", "to_matrix", "(", ")", ")", "rauli", "+=", "[", "np", ".", "trace", "(", "np", ".", "dot", "(", "choi", ",", "pauliop", ")", ")", "]", "return", "np", ".", "array", "(", "rauli", ")", ".", "reshape", "(", "4", "**", "num_qubits", ",", "4", "**", "num_qubits", ")" ]
Convert a Choi-matrix to a Pauli-basis superoperator. Note that this function assumes that the Choi-matrix is defined in the standard column-stacking convention and is normalized to have trace 1. For a channel E this is defined as: choi = (I \\otimes E)(bell_state). The resulting 'rauli' R acts on input states as |rho_out>_p = R.|rho_in>_p where |rho> = vectorize(rho, method='pauli') for order=1 and |rho> = vectorize(rho, method='pauli_weights') for order=0. Args: choi (matrix): the input Choi-matrix. order (int): ordering of the Pauli group vector. order=1 (default) is standard lexicographic ordering. Eg: [II, IX, IY, IZ, XI, XX, XY,...] order=0 is ordered by weights. Eg. [II, IX, IY, IZ, XI, XY, XZ, XX, XY,...] Returns: np.array: A superoperator in the Pauli basis.
[ "Convert", "a", "Choi", "-", "matrix", "to", "a", "Pauli", "-", "basis", "superoperator", "." ]
python
test
spotify/pyschema
pyschema/core.py
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L512-L522
def from_json_compatible(schema, dct): "Load from json-encodable" kwargs = {} for key in dct: field_type = schema._fields.get(key) if field_type is None: raise ParseError("Unexpected field encountered in line for record %s: %s" % (schema.__name__, key)) kwargs[key] = field_type.load(dct[key]) return schema(**kwargs)
[ "def", "from_json_compatible", "(", "schema", ",", "dct", ")", ":", "kwargs", "=", "{", "}", "for", "key", "in", "dct", ":", "field_type", "=", "schema", ".", "_fields", ".", "get", "(", "key", ")", "if", "field_type", "is", "None", ":", "raise", "ParseError", "(", "\"Unexpected field encountered in line for record %s: %s\"", "%", "(", "schema", ".", "__name__", ",", "key", ")", ")", "kwargs", "[", "key", "]", "=", "field_type", ".", "load", "(", "dct", "[", "key", "]", ")", "return", "schema", "(", "*", "*", "kwargs", ")" ]
Load from json-encodable
[ "Load", "from", "json", "-", "encodable" ]
python
test
Jaymon/endpoints
endpoints/utils.py
https://github.com/Jaymon/endpoints/blob/2f1c4ae2c69a168e69447d3d8395ada7becaa5fb/endpoints/utils.py#L211-L244
def _sort(self, a, b): ''' sort the headers according to rfc 2616 so when __iter__ is called, the accept media types are in order from most preferred to least preferred ''' ret = 0 # first we check q, higher values win: if a[1] != b[1]: ret = cmp(a[1], b[1]) else: found = False for i in range(2): ai = a[0][i] bi = b[0][i] if ai == '*': if bi != '*': ret = -1 found = True break else: # both *, more verbose params win ret = cmp(len(a[2]), len(b[2])) found = True break elif bi == '*': ret = 1 found = True break if not found: ret = cmp(len(a[2]), len(b[2])) return ret
[ "def", "_sort", "(", "self", ",", "a", ",", "b", ")", ":", "ret", "=", "0", "# first we check q, higher values win:", "if", "a", "[", "1", "]", "!=", "b", "[", "1", "]", ":", "ret", "=", "cmp", "(", "a", "[", "1", "]", ",", "b", "[", "1", "]", ")", "else", ":", "found", "=", "False", "for", "i", "in", "range", "(", "2", ")", ":", "ai", "=", "a", "[", "0", "]", "[", "i", "]", "bi", "=", "b", "[", "0", "]", "[", "i", "]", "if", "ai", "==", "'*'", ":", "if", "bi", "!=", "'*'", ":", "ret", "=", "-", "1", "found", "=", "True", "break", "else", ":", "# both *, more verbose params win", "ret", "=", "cmp", "(", "len", "(", "a", "[", "2", "]", ")", ",", "len", "(", "b", "[", "2", "]", ")", ")", "found", "=", "True", "break", "elif", "bi", "==", "'*'", ":", "ret", "=", "1", "found", "=", "True", "break", "if", "not", "found", ":", "ret", "=", "cmp", "(", "len", "(", "a", "[", "2", "]", ")", ",", "len", "(", "b", "[", "2", "]", ")", ")", "return", "ret" ]
sort the headers according to rfc 2616 so when __iter__ is called, the accept media types are in order from most preferred to least preferred
[ "sort", "the", "headers", "according", "to", "rfc", "2616", "so", "when", "__iter__", "is", "called", "the", "accept", "media", "types", "are", "in", "order", "from", "most", "preferred", "to", "least", "preferred" ]
python
train
Microsoft/nni
tools/nni_cmd/launcher.py
https://github.com/Microsoft/nni/blob/c7cc8db32da8d2ec77a382a55089f4e17247ce41/tools/nni_cmd/launcher.py#L142-L155
def set_trial_config(experiment_config, port, config_file_name): '''set trial configuration''' request_data = dict() request_data['trial_config'] = experiment_config['trial'] response = rest_put(cluster_metadata_url(port), json.dumps(request_data), REST_TIME_OUT) if check_response(response): return True else: print('Error message is {}'.format(response.text)) _, stderr_full_path = get_log_path(config_file_name) if response: with open(stderr_full_path, 'a+') as fout: fout.write(json.dumps(json.loads(response.text), indent=4, sort_keys=True, separators=(',', ':'))) return False
[ "def", "set_trial_config", "(", "experiment_config", ",", "port", ",", "config_file_name", ")", ":", "request_data", "=", "dict", "(", ")", "request_data", "[", "'trial_config'", "]", "=", "experiment_config", "[", "'trial'", "]", "response", "=", "rest_put", "(", "cluster_metadata_url", "(", "port", ")", ",", "json", ".", "dumps", "(", "request_data", ")", ",", "REST_TIME_OUT", ")", "if", "check_response", "(", "response", ")", ":", "return", "True", "else", ":", "print", "(", "'Error message is {}'", ".", "format", "(", "response", ".", "text", ")", ")", "_", ",", "stderr_full_path", "=", "get_log_path", "(", "config_file_name", ")", "if", "response", ":", "with", "open", "(", "stderr_full_path", ",", "'a+'", ")", "as", "fout", ":", "fout", ".", "write", "(", "json", ".", "dumps", "(", "json", ".", "loads", "(", "response", ".", "text", ")", ",", "indent", "=", "4", ",", "sort_keys", "=", "True", ",", "separators", "=", "(", "','", ",", "':'", ")", ")", ")", "return", "False" ]
set trial configuration
[ "set", "trial", "configuration" ]
python
train
inveniosoftware/invenio-records-rest
invenio_records_rest/serializers/datacite.py
https://github.com/inveniosoftware/invenio-records-rest/blob/e7b63c5f72cef03d06d3f1b4c12c0d37e3a628b9/invenio_records_rest/serializers/datacite.py#L120-L142
def serialize_oaipmh(self, pid, record): """Serialize a single record for OAI-PMH.""" root = etree.Element( 'oai_datacite', nsmap={ None: 'http://schema.datacite.org/oai/oai-1.0/', 'xsi': 'http://www.w3.org/2001/XMLSchema-instance', 'xml': 'xml', }, attrib={ '{http://www.w3.org/2001/XMLSchema-instance}schemaLocation': 'http://schema.datacite.org/oai/oai-1.0/ oai_datacite.xsd', } ) root.append(E.isReferenceQuality(self.is_reference_quality)) root.append(E.schemaVersion(self.serializer.version)) root.append(E.datacentreSymbol(self.datacentre)) root.append(E.payload( self.serializer.serialize_oaipmh(pid, record) )) return root
[ "def", "serialize_oaipmh", "(", "self", ",", "pid", ",", "record", ")", ":", "root", "=", "etree", ".", "Element", "(", "'oai_datacite'", ",", "nsmap", "=", "{", "None", ":", "'http://schema.datacite.org/oai/oai-1.0/'", ",", "'xsi'", ":", "'http://www.w3.org/2001/XMLSchema-instance'", ",", "'xml'", ":", "'xml'", ",", "}", ",", "attrib", "=", "{", "'{http://www.w3.org/2001/XMLSchema-instance}schemaLocation'", ":", "'http://schema.datacite.org/oai/oai-1.0/ oai_datacite.xsd'", ",", "}", ")", "root", ".", "append", "(", "E", ".", "isReferenceQuality", "(", "self", ".", "is_reference_quality", ")", ")", "root", ".", "append", "(", "E", ".", "schemaVersion", "(", "self", ".", "serializer", ".", "version", ")", ")", "root", ".", "append", "(", "E", ".", "datacentreSymbol", "(", "self", ".", "datacentre", ")", ")", "root", ".", "append", "(", "E", ".", "payload", "(", "self", ".", "serializer", ".", "serialize_oaipmh", "(", "pid", ",", "record", ")", ")", ")", "return", "root" ]
Serialize a single record for OAI-PMH.
[ "Serialize", "a", "single", "record", "for", "OAI", "-", "PMH", "." ]
python
train
ecell/ecell4
ecell4/util/viz.py
https://github.com/ecell/ecell4/blob/a4a1229661c39b2059adbbacae9090e5ba664e01/ecell4/util/viz.py#L802-L825
def generate_html(keywords, tmpl_path, package_name='ecell4.util'): """ Generate static html file from JSON model and its own id. Parameters ---------- model : dict JSON model from which ecell4.viz generates a plot. model_id : string Unique id for the plot. Returns ------- html : A HTML object """ from jinja2 import Template import pkgutil template = Template(pkgutil.get_data(package_name, tmpl_path).decode()) # path = os.path.abspath(os.path.dirname(__file__)) + tmpl_path # template = Template(open(path).read()) html = template.render(**keywords) return html
[ "def", "generate_html", "(", "keywords", ",", "tmpl_path", ",", "package_name", "=", "'ecell4.util'", ")", ":", "from", "jinja2", "import", "Template", "import", "pkgutil", "template", "=", "Template", "(", "pkgutil", ".", "get_data", "(", "package_name", ",", "tmpl_path", ")", ".", "decode", "(", ")", ")", "# path = os.path.abspath(os.path.dirname(__file__)) + tmpl_path", "# template = Template(open(path).read())", "html", "=", "template", ".", "render", "(", "*", "*", "keywords", ")", "return", "html" ]
Generate static html file from JSON model and its own id. Parameters ---------- model : dict JSON model from which ecell4.viz generates a plot. model_id : string Unique id for the plot. Returns ------- html : A HTML object
[ "Generate", "static", "html", "file", "from", "JSON", "model", "and", "its", "own", "id", "." ]
python
train
heronotears/lazyxml
lazyxml/parser.py
https://github.com/heronotears/lazyxml/blob/e3f1ebd3f34cfa03d022ddec90e17d60c1c81953/lazyxml/parser.py#L160-L169
def get_node(self, element): r"""Get node info. Parse element and get the element tag info. Include tag name, value, attribute, namespace. :param element: an :class:`~xml.etree.ElementTree.Element` instance :rtype: dict """ ns, tag = self.split_namespace(element.tag) return {'tag': tag, 'value': (element.text or '').strip(), 'attr': element.attrib, 'namespace': ns}
[ "def", "get_node", "(", "self", ",", "element", ")", ":", "ns", ",", "tag", "=", "self", ".", "split_namespace", "(", "element", ".", "tag", ")", "return", "{", "'tag'", ":", "tag", ",", "'value'", ":", "(", "element", ".", "text", "or", "''", ")", ".", "strip", "(", ")", ",", "'attr'", ":", "element", ".", "attrib", ",", "'namespace'", ":", "ns", "}" ]
r"""Get node info. Parse element and get the element tag info. Include tag name, value, attribute, namespace. :param element: an :class:`~xml.etree.ElementTree.Element` instance :rtype: dict
[ "r", "Get", "node", "info", "." ]
python
train
pypa/setuptools
setuptools/msvc.py
https://github.com/pypa/setuptools/blob/83c667e0b2a98193851c07115d1af65011ed0fb6/setuptools/msvc.py#L494-L522
def find_available_vc_vers(self): """ Find all available Microsoft Visual C++ versions. """ ms = self.ri.microsoft vckeys = (self.ri.vc, self.ri.vc_for_python, self.ri.vs) vc_vers = [] for hkey in self.ri.HKEYS: for key in vckeys: try: bkey = winreg.OpenKey(hkey, ms(key), 0, winreg.KEY_READ) except (OSError, IOError): continue subkeys, values, _ = winreg.QueryInfoKey(bkey) for i in range(values): try: ver = float(winreg.EnumValue(bkey, i)[0]) if ver not in vc_vers: vc_vers.append(ver) except ValueError: pass for i in range(subkeys): try: ver = float(winreg.EnumKey(bkey, i)) if ver not in vc_vers: vc_vers.append(ver) except ValueError: pass return sorted(vc_vers)
[ "def", "find_available_vc_vers", "(", "self", ")", ":", "ms", "=", "self", ".", "ri", ".", "microsoft", "vckeys", "=", "(", "self", ".", "ri", ".", "vc", ",", "self", ".", "ri", ".", "vc_for_python", ",", "self", ".", "ri", ".", "vs", ")", "vc_vers", "=", "[", "]", "for", "hkey", "in", "self", ".", "ri", ".", "HKEYS", ":", "for", "key", "in", "vckeys", ":", "try", ":", "bkey", "=", "winreg", ".", "OpenKey", "(", "hkey", ",", "ms", "(", "key", ")", ",", "0", ",", "winreg", ".", "KEY_READ", ")", "except", "(", "OSError", ",", "IOError", ")", ":", "continue", "subkeys", ",", "values", ",", "_", "=", "winreg", ".", "QueryInfoKey", "(", "bkey", ")", "for", "i", "in", "range", "(", "values", ")", ":", "try", ":", "ver", "=", "float", "(", "winreg", ".", "EnumValue", "(", "bkey", ",", "i", ")", "[", "0", "]", ")", "if", "ver", "not", "in", "vc_vers", ":", "vc_vers", ".", "append", "(", "ver", ")", "except", "ValueError", ":", "pass", "for", "i", "in", "range", "(", "subkeys", ")", ":", "try", ":", "ver", "=", "float", "(", "winreg", ".", "EnumKey", "(", "bkey", ",", "i", ")", ")", "if", "ver", "not", "in", "vc_vers", ":", "vc_vers", ".", "append", "(", "ver", ")", "except", "ValueError", ":", "pass", "return", "sorted", "(", "vc_vers", ")" ]
Find all available Microsoft Visual C++ versions.
[ "Find", "all", "available", "Microsoft", "Visual", "C", "++", "versions", "." ]
python
train
wdecoster/nanoget
nanoget/nanoget.py
https://github.com/wdecoster/nanoget/blob/fb7306220e261849b96785fab02dd2f35a0e3b60/nanoget/nanoget.py#L85-L97
def combine_dfs(dfs, names, method): """Combine dataframes. Combination is either done simple by just concatenating the DataFrames or performs tracking by adding the name of the dataset as a column.""" if method == "track": res = list() for df, identifier in zip(dfs, names): df["dataset"] = identifier res.append(df) return pd.concat(res, ignore_index=True) elif method == "simple": return pd.concat(dfs, ignore_index=True)
[ "def", "combine_dfs", "(", "dfs", ",", "names", ",", "method", ")", ":", "if", "method", "==", "\"track\"", ":", "res", "=", "list", "(", ")", "for", "df", ",", "identifier", "in", "zip", "(", "dfs", ",", "names", ")", ":", "df", "[", "\"dataset\"", "]", "=", "identifier", "res", ".", "append", "(", "df", ")", "return", "pd", ".", "concat", "(", "res", ",", "ignore_index", "=", "True", ")", "elif", "method", "==", "\"simple\"", ":", "return", "pd", ".", "concat", "(", "dfs", ",", "ignore_index", "=", "True", ")" ]
Combine dataframes. Combination is either done simple by just concatenating the DataFrames or performs tracking by adding the name of the dataset as a column.
[ "Combine", "dataframes", "." ]
python
train
tensorflow/tensor2tensor
tensor2tensor/models/research/glow_ops.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/glow_ops.py#L1222-L1245
def scale_gaussian_prior(name, z, logscale_factor=3.0, trainable=True): """Returns N(s^i * z^i, std^i) where s^i and std^i are pre-component. s^i is a learnable parameter with identity initialization. std^i is optionally learnable with identity initialization. Args: name: variable scope. z: input_tensor logscale_factor: equivalent to scaling up the learning_rate by a factor of logscale_factor. trainable: Whether or not std^i is learnt. """ with tf.variable_scope(name, reuse=tf.AUTO_REUSE): z_shape = common_layers.shape_list(z) latent_multiplier = tf.get_variable( "latent_multiplier", shape=z_shape, dtype=tf.float32, initializer=tf.ones_initializer()) log_scale = tf.get_variable( "log_scale_latent", shape=z_shape, dtype=tf.float32, initializer=tf.zeros_initializer(), trainable=trainable) log_scale = log_scale * logscale_factor return tfp.distributions.Normal( loc=latent_multiplier * z, scale=tf.exp(log_scale))
[ "def", "scale_gaussian_prior", "(", "name", ",", "z", ",", "logscale_factor", "=", "3.0", ",", "trainable", "=", "True", ")", ":", "with", "tf", ".", "variable_scope", "(", "name", ",", "reuse", "=", "tf", ".", "AUTO_REUSE", ")", ":", "z_shape", "=", "common_layers", ".", "shape_list", "(", "z", ")", "latent_multiplier", "=", "tf", ".", "get_variable", "(", "\"latent_multiplier\"", ",", "shape", "=", "z_shape", ",", "dtype", "=", "tf", ".", "float32", ",", "initializer", "=", "tf", ".", "ones_initializer", "(", ")", ")", "log_scale", "=", "tf", ".", "get_variable", "(", "\"log_scale_latent\"", ",", "shape", "=", "z_shape", ",", "dtype", "=", "tf", ".", "float32", ",", "initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ",", "trainable", "=", "trainable", ")", "log_scale", "=", "log_scale", "*", "logscale_factor", "return", "tfp", ".", "distributions", ".", "Normal", "(", "loc", "=", "latent_multiplier", "*", "z", ",", "scale", "=", "tf", ".", "exp", "(", "log_scale", ")", ")" ]
Returns N(s^i * z^i, std^i) where s^i and std^i are pre-component. s^i is a learnable parameter with identity initialization. std^i is optionally learnable with identity initialization. Args: name: variable scope. z: input_tensor logscale_factor: equivalent to scaling up the learning_rate by a factor of logscale_factor. trainable: Whether or not std^i is learnt.
[ "Returns", "N", "(", "s^i", "*", "z^i", "std^i", ")", "where", "s^i", "and", "std^i", "are", "pre", "-", "component", "." ]
python
train
mommermi/callhorizons
callhorizons/callhorizons.py
https://github.com/mommermi/callhorizons/blob/fdd7ad9e87cac107c1b7f88e594d118210da3b1a/callhorizons/callhorizons.py#L372-L386
def set_discreteepochs(self, discreteepochs): """Set a list of discrete epochs, epochs have to be given as Julian Dates :param discreteepochs: array_like list or 1D array of floats or strings :return: None :example: >>> import callhorizons >>> ceres = callhorizons.query('Ceres') >>> ceres.set_discreteepochs([2457446.177083, 2457446.182343]) """ if not isinstance(discreteepochs, (list, np.ndarray)): discreteepochs = [discreteepochs] self.discreteepochs = list(discreteepochs)
[ "def", "set_discreteepochs", "(", "self", ",", "discreteepochs", ")", ":", "if", "not", "isinstance", "(", "discreteepochs", ",", "(", "list", ",", "np", ".", "ndarray", ")", ")", ":", "discreteepochs", "=", "[", "discreteepochs", "]", "self", ".", "discreteepochs", "=", "list", "(", "discreteepochs", ")" ]
Set a list of discrete epochs, epochs have to be given as Julian Dates :param discreteepochs: array_like list or 1D array of floats or strings :return: None :example: >>> import callhorizons >>> ceres = callhorizons.query('Ceres') >>> ceres.set_discreteepochs([2457446.177083, 2457446.182343])
[ "Set", "a", "list", "of", "discrete", "epochs", "epochs", "have", "to", "be", "given", "as", "Julian", "Dates" ]
python
train
apache/airflow
airflow/bin/cli.py
https://github.com/apache/airflow/blob/b69c686ad8a0c89b9136bb4b31767257eb7b2597/airflow/bin/cli.py#L763-L868
def restart_workers(gunicorn_master_proc, num_workers_expected, master_timeout): """ Runs forever, monitoring the child processes of @gunicorn_master_proc and restarting workers occasionally. Each iteration of the loop traverses one edge of this state transition diagram, where each state (node) represents [ num_ready_workers_running / num_workers_running ]. We expect most time to be spent in [n / n]. `bs` is the setting webserver.worker_refresh_batch_size. The horizontal transition at ? happens after the new worker parses all the dags (so it could take a while!) V ────────────────────────────────────────────────────────────────────────┐ [n / n] ──TTIN──> [ [n, n+bs) / n + bs ] ────?───> [n + bs / n + bs] ──TTOU─┘ ^ ^───────────────┘ │ │ ┌────────────────v └──────┴────── [ [0, n) / n ] <─── start We change the number of workers by sending TTIN and TTOU to the gunicorn master process, which increases and decreases the number of child workers respectively. Gunicorn guarantees that on TTOU workers are terminated gracefully and that the oldest worker is terminated. """ def wait_until_true(fn, timeout=0): """ Sleeps until fn is true """ t = time.time() while not fn(): if 0 < timeout <= time.time() - t: raise AirflowWebServerTimeout( "No response from gunicorn master within {0} seconds" .format(timeout)) time.sleep(0.1) def start_refresh(gunicorn_master_proc): batch_size = conf.getint('webserver', 'worker_refresh_batch_size') log.debug('%s doing a refresh of %s workers', state, batch_size) sys.stdout.flush() sys.stderr.flush() excess = 0 for _ in range(batch_size): gunicorn_master_proc.send_signal(signal.SIGTTIN) excess += 1 wait_until_true(lambda: num_workers_expected + excess == get_num_workers_running(gunicorn_master_proc), master_timeout) try: wait_until_true(lambda: num_workers_expected == get_num_workers_running(gunicorn_master_proc), master_timeout) while True: num_workers_running = get_num_workers_running(gunicorn_master_proc) num_ready_workers_running = \ get_num_ready_workers_running(gunicorn_master_proc) state = '[{0} / {1}]'.format(num_ready_workers_running, num_workers_running) # Whenever some workers are not ready, wait until all workers are ready if num_ready_workers_running < num_workers_running: log.debug('%s some workers are starting up, waiting...', state) sys.stdout.flush() time.sleep(1) # Kill a worker gracefully by asking gunicorn to reduce number of workers elif num_workers_running > num_workers_expected: excess = num_workers_running - num_workers_expected log.debug('%s killing %s workers', state, excess) for _ in range(excess): gunicorn_master_proc.send_signal(signal.SIGTTOU) excess -= 1 wait_until_true(lambda: num_workers_expected + excess == get_num_workers_running(gunicorn_master_proc), master_timeout) # Start a new worker by asking gunicorn to increase number of workers elif num_workers_running == num_workers_expected: refresh_interval = conf.getint('webserver', 'worker_refresh_interval') log.debug( '%s sleeping for %ss starting doing a refresh...', state, refresh_interval ) time.sleep(refresh_interval) start_refresh(gunicorn_master_proc) else: # num_ready_workers_running == num_workers_running < num_workers_expected log.error(( "%s some workers seem to have died and gunicorn" "did not restart them as expected" ), state) time.sleep(10) if len( psutil.Process(gunicorn_master_proc.pid).children() ) < num_workers_expected: start_refresh(gunicorn_master_proc) except (AirflowWebServerTimeout, OSError) as err: log.error(err) log.error("Shutting down webserver") try: gunicorn_master_proc.terminate() gunicorn_master_proc.wait() finally: sys.exit(1)
[ "def", "restart_workers", "(", "gunicorn_master_proc", ",", "num_workers_expected", ",", "master_timeout", ")", ":", "def", "wait_until_true", "(", "fn", ",", "timeout", "=", "0", ")", ":", "\"\"\"\n Sleeps until fn is true\n \"\"\"", "t", "=", "time", ".", "time", "(", ")", "while", "not", "fn", "(", ")", ":", "if", "0", "<", "timeout", "<=", "time", ".", "time", "(", ")", "-", "t", ":", "raise", "AirflowWebServerTimeout", "(", "\"No response from gunicorn master within {0} seconds\"", ".", "format", "(", "timeout", ")", ")", "time", ".", "sleep", "(", "0.1", ")", "def", "start_refresh", "(", "gunicorn_master_proc", ")", ":", "batch_size", "=", "conf", ".", "getint", "(", "'webserver'", ",", "'worker_refresh_batch_size'", ")", "log", ".", "debug", "(", "'%s doing a refresh of %s workers'", ",", "state", ",", "batch_size", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "sys", ".", "stderr", ".", "flush", "(", ")", "excess", "=", "0", "for", "_", "in", "range", "(", "batch_size", ")", ":", "gunicorn_master_proc", ".", "send_signal", "(", "signal", ".", "SIGTTIN", ")", "excess", "+=", "1", "wait_until_true", "(", "lambda", ":", "num_workers_expected", "+", "excess", "==", "get_num_workers_running", "(", "gunicorn_master_proc", ")", ",", "master_timeout", ")", "try", ":", "wait_until_true", "(", "lambda", ":", "num_workers_expected", "==", "get_num_workers_running", "(", "gunicorn_master_proc", ")", ",", "master_timeout", ")", "while", "True", ":", "num_workers_running", "=", "get_num_workers_running", "(", "gunicorn_master_proc", ")", "num_ready_workers_running", "=", "get_num_ready_workers_running", "(", "gunicorn_master_proc", ")", "state", "=", "'[{0} / {1}]'", ".", "format", "(", "num_ready_workers_running", ",", "num_workers_running", ")", "# Whenever some workers are not ready, wait until all workers are ready", "if", "num_ready_workers_running", "<", "num_workers_running", ":", "log", ".", "debug", "(", "'%s some workers are starting up, waiting...'", ",", "state", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "time", ".", "sleep", "(", "1", ")", "# Kill a worker gracefully by asking gunicorn to reduce number of workers", "elif", "num_workers_running", ">", "num_workers_expected", ":", "excess", "=", "num_workers_running", "-", "num_workers_expected", "log", ".", "debug", "(", "'%s killing %s workers'", ",", "state", ",", "excess", ")", "for", "_", "in", "range", "(", "excess", ")", ":", "gunicorn_master_proc", ".", "send_signal", "(", "signal", ".", "SIGTTOU", ")", "excess", "-=", "1", "wait_until_true", "(", "lambda", ":", "num_workers_expected", "+", "excess", "==", "get_num_workers_running", "(", "gunicorn_master_proc", ")", ",", "master_timeout", ")", "# Start a new worker by asking gunicorn to increase number of workers", "elif", "num_workers_running", "==", "num_workers_expected", ":", "refresh_interval", "=", "conf", ".", "getint", "(", "'webserver'", ",", "'worker_refresh_interval'", ")", "log", ".", "debug", "(", "'%s sleeping for %ss starting doing a refresh...'", ",", "state", ",", "refresh_interval", ")", "time", ".", "sleep", "(", "refresh_interval", ")", "start_refresh", "(", "gunicorn_master_proc", ")", "else", ":", "# num_ready_workers_running == num_workers_running < num_workers_expected", "log", ".", "error", "(", "(", "\"%s some workers seem to have died and gunicorn\"", "\"did not restart them as expected\"", ")", ",", "state", ")", "time", ".", "sleep", "(", "10", ")", "if", "len", "(", "psutil", ".", "Process", "(", "gunicorn_master_proc", ".", "pid", ")", ".", "children", "(", ")", ")", "<", "num_workers_expected", ":", "start_refresh", "(", "gunicorn_master_proc", ")", "except", "(", "AirflowWebServerTimeout", ",", "OSError", ")", "as", "err", ":", "log", ".", "error", "(", "err", ")", "log", ".", "error", "(", "\"Shutting down webserver\"", ")", "try", ":", "gunicorn_master_proc", ".", "terminate", "(", ")", "gunicorn_master_proc", ".", "wait", "(", ")", "finally", ":", "sys", ".", "exit", "(", "1", ")" ]
Runs forever, monitoring the child processes of @gunicorn_master_proc and restarting workers occasionally. Each iteration of the loop traverses one edge of this state transition diagram, where each state (node) represents [ num_ready_workers_running / num_workers_running ]. We expect most time to be spent in [n / n]. `bs` is the setting webserver.worker_refresh_batch_size. The horizontal transition at ? happens after the new worker parses all the dags (so it could take a while!) V ────────────────────────────────────────────────────────────────────────┐ [n / n] ──TTIN──> [ [n, n+bs) / n + bs ] ────?───> [n + bs / n + bs] ──TTOU─┘ ^ ^───────────────┘ │ │ ┌────────────────v └──────┴────── [ [0, n) / n ] <─── start We change the number of workers by sending TTIN and TTOU to the gunicorn master process, which increases and decreases the number of child workers respectively. Gunicorn guarantees that on TTOU workers are terminated gracefully and that the oldest worker is terminated.
[ "Runs", "forever", "monitoring", "the", "child", "processes", "of" ]
python
test
ciena/afkak
afkak/kafkacodec.py
https://github.com/ciena/afkak/blob/6f5e05ba6f135ea3c29cdb80efda009f7845569a/afkak/kafkacodec.py#L610-L621
def create_snappy_message(message_set): """ Construct a Snappy-compressed message containing multiple messages The given messages will be encoded, compressed, and sent as a single atomic message to Kafka. :param list message_set: a list of :class:`Message` instances """ encoded_message_set = KafkaCodec._encode_message_set(message_set) snapped = snappy_encode(encoded_message_set) return Message(0, CODEC_SNAPPY, None, snapped)
[ "def", "create_snappy_message", "(", "message_set", ")", ":", "encoded_message_set", "=", "KafkaCodec", ".", "_encode_message_set", "(", "message_set", ")", "snapped", "=", "snappy_encode", "(", "encoded_message_set", ")", "return", "Message", "(", "0", ",", "CODEC_SNAPPY", ",", "None", ",", "snapped", ")" ]
Construct a Snappy-compressed message containing multiple messages The given messages will be encoded, compressed, and sent as a single atomic message to Kafka. :param list message_set: a list of :class:`Message` instances
[ "Construct", "a", "Snappy", "-", "compressed", "message", "containing", "multiple", "messages" ]
python
train
pazz/alot
alot/buffers/thread.py
https://github.com/pazz/alot/blob/d0297605c0ec1c6b65f541d0fd5b69ac5a0f4ded/alot/buffers/thread.py#L267-L278
def focus_property(self, prop, direction): """does a walk in the given direction and focuses the first message tree that matches the given property""" newpos = self.get_selected_mid() newpos = direction(newpos) while newpos is not None: MT = self._tree[newpos] if prop(MT): newpos = self._sanitize_position((newpos,)) self.body.set_focus(newpos) break newpos = direction(newpos)
[ "def", "focus_property", "(", "self", ",", "prop", ",", "direction", ")", ":", "newpos", "=", "self", ".", "get_selected_mid", "(", ")", "newpos", "=", "direction", "(", "newpos", ")", "while", "newpos", "is", "not", "None", ":", "MT", "=", "self", ".", "_tree", "[", "newpos", "]", "if", "prop", "(", "MT", ")", ":", "newpos", "=", "self", ".", "_sanitize_position", "(", "(", "newpos", ",", ")", ")", "self", ".", "body", ".", "set_focus", "(", "newpos", ")", "break", "newpos", "=", "direction", "(", "newpos", ")" ]
does a walk in the given direction and focuses the first message tree that matches the given property
[ "does", "a", "walk", "in", "the", "given", "direction", "and", "focuses", "the", "first", "message", "tree", "that", "matches", "the", "given", "property" ]
python
train
westonplatter/fast_arrow
fast_arrow/resources/option.py
https://github.com/westonplatter/fast_arrow/blob/514cbca4994f52a97222058167830a302e313d04/fast_arrow/resources/option.py#L44-L62
def fetch_list(cls, client, ids): """ fetch instruments by ids """ results = [] request_url = "https://api.robinhood.com/options/instruments/" for _ids in chunked_list(ids, 50): params = {"ids": ",".join(_ids)} data = client.get(request_url, params=params) partial_results = data["results"] while data["next"]: data = client.get(data["next"]) partial_results.extend(data["results"]) results.extend(partial_results) return results
[ "def", "fetch_list", "(", "cls", ",", "client", ",", "ids", ")", ":", "results", "=", "[", "]", "request_url", "=", "\"https://api.robinhood.com/options/instruments/\"", "for", "_ids", "in", "chunked_list", "(", "ids", ",", "50", ")", ":", "params", "=", "{", "\"ids\"", ":", "\",\"", ".", "join", "(", "_ids", ")", "}", "data", "=", "client", ".", "get", "(", "request_url", ",", "params", "=", "params", ")", "partial_results", "=", "data", "[", "\"results\"", "]", "while", "data", "[", "\"next\"", "]", ":", "data", "=", "client", ".", "get", "(", "data", "[", "\"next\"", "]", ")", "partial_results", ".", "extend", "(", "data", "[", "\"results\"", "]", ")", "results", ".", "extend", "(", "partial_results", ")", "return", "results" ]
fetch instruments by ids
[ "fetch", "instruments", "by", "ids" ]
python
train
saltstack/salt
salt/modules/lxc.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/lxc.py#L2706-L2733
def set_parameter(name, parameter, value, path=None): ''' Set the value of a cgroup parameter for a container. path path to the container parent directory default: /var/lib/lxc (system) .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' lxc.set_parameter name parameter value ''' if not exists(name, path=path): return None cmd = 'lxc-cgroup' if path: cmd += ' -P {0}'.format(pipes.quote(path)) cmd += ' -n {0} {1} {2}'.format(name, parameter, value) ret = __salt__['cmd.run_all'](cmd, python_shell=False) if ret['retcode'] != 0: return False else: return True
[ "def", "set_parameter", "(", "name", ",", "parameter", ",", "value", ",", "path", "=", "None", ")", ":", "if", "not", "exists", "(", "name", ",", "path", "=", "path", ")", ":", "return", "None", "cmd", "=", "'lxc-cgroup'", "if", "path", ":", "cmd", "+=", "' -P {0}'", ".", "format", "(", "pipes", ".", "quote", "(", "path", ")", ")", "cmd", "+=", "' -n {0} {1} {2}'", ".", "format", "(", "name", ",", "parameter", ",", "value", ")", "ret", "=", "__salt__", "[", "'cmd.run_all'", "]", "(", "cmd", ",", "python_shell", "=", "False", ")", "if", "ret", "[", "'retcode'", "]", "!=", "0", ":", "return", "False", "else", ":", "return", "True" ]
Set the value of a cgroup parameter for a container. path path to the container parent directory default: /var/lib/lxc (system) .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' lxc.set_parameter name parameter value
[ "Set", "the", "value", "of", "a", "cgroup", "parameter", "for", "a", "container", "." ]
python
train
dcos/shakedown
shakedown/dcos/__init__.py
https://github.com/dcos/shakedown/blob/e2f9e2382788dbcd29bd18aa058b76e7c3b83b3e/shakedown/dcos/__init__.py#L114-L130
def authenticate(username, password): """Authenticate with a DC/OS cluster and return an ACS token. return: ACS token """ url = _gen_url('acs/api/v1/auth/login') creds = { 'uid': username, 'password': password } response = dcos.http.request('post', url, json=creds) if response.status_code == 200: return response.json()['token'] else: return None
[ "def", "authenticate", "(", "username", ",", "password", ")", ":", "url", "=", "_gen_url", "(", "'acs/api/v1/auth/login'", ")", "creds", "=", "{", "'uid'", ":", "username", ",", "'password'", ":", "password", "}", "response", "=", "dcos", ".", "http", ".", "request", "(", "'post'", ",", "url", ",", "json", "=", "creds", ")", "if", "response", ".", "status_code", "==", "200", ":", "return", "response", ".", "json", "(", ")", "[", "'token'", "]", "else", ":", "return", "None" ]
Authenticate with a DC/OS cluster and return an ACS token. return: ACS token
[ "Authenticate", "with", "a", "DC", "/", "OS", "cluster", "and", "return", "an", "ACS", "token", ".", "return", ":", "ACS", "token" ]
python
train
opendatateam/udata
udata/frontend/markdown.py
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/frontend/markdown.py#L40-L59
def nofollow_callback(attrs, new=False): """ Turn relative links into external ones and avoid `nofollow` for us, otherwise add `nofollow`. That callback is not splitted in order to parse the URL only once. """ parsed_url = urlparse(attrs[(None, 'href')]) if parsed_url.netloc in ('', current_app.config['SERVER_NAME']): attrs[(None, 'href')] = '{scheme}://{netloc}{path}'.format( scheme='https' if request.is_secure else 'http', netloc=current_app.config['SERVER_NAME'], path=parsed_url.path) return attrs else: rel = [x for x in attrs.get((None, 'rel'), '').split(' ') if x] if 'nofollow' not in [x.lower() for x in rel]: rel.append('nofollow') attrs[(None, 'rel')] = ' '.join(rel) return attrs
[ "def", "nofollow_callback", "(", "attrs", ",", "new", "=", "False", ")", ":", "parsed_url", "=", "urlparse", "(", "attrs", "[", "(", "None", ",", "'href'", ")", "]", ")", "if", "parsed_url", ".", "netloc", "in", "(", "''", ",", "current_app", ".", "config", "[", "'SERVER_NAME'", "]", ")", ":", "attrs", "[", "(", "None", ",", "'href'", ")", "]", "=", "'{scheme}://{netloc}{path}'", ".", "format", "(", "scheme", "=", "'https'", "if", "request", ".", "is_secure", "else", "'http'", ",", "netloc", "=", "current_app", ".", "config", "[", "'SERVER_NAME'", "]", ",", "path", "=", "parsed_url", ".", "path", ")", "return", "attrs", "else", ":", "rel", "=", "[", "x", "for", "x", "in", "attrs", ".", "get", "(", "(", "None", ",", "'rel'", ")", ",", "''", ")", ".", "split", "(", "' '", ")", "if", "x", "]", "if", "'nofollow'", "not", "in", "[", "x", ".", "lower", "(", ")", "for", "x", "in", "rel", "]", ":", "rel", ".", "append", "(", "'nofollow'", ")", "attrs", "[", "(", "None", ",", "'rel'", ")", "]", "=", "' '", ".", "join", "(", "rel", ")", "return", "attrs" ]
Turn relative links into external ones and avoid `nofollow` for us, otherwise add `nofollow`. That callback is not splitted in order to parse the URL only once.
[ "Turn", "relative", "links", "into", "external", "ones", "and", "avoid", "nofollow", "for", "us" ]
python
train
pmorissette/ffn
ffn/core.py
https://github.com/pmorissette/ffn/blob/ef09f28b858b7ffcd2627ce6a4dc618183a6bc8a/ffn/core.py#L1223-L1235
def calc_cagr(prices): """ Calculates the `CAGR (compound annual growth rate) <https://www.investopedia.com/terms/c/cagr.asp>`_ for a given price series. Args: * prices (pandas.Series): A Series of prices. Returns: * float -- cagr. """ start = prices.index[0] end = prices.index[-1] return (prices.iloc[-1] / prices.iloc[0]) ** (1 / year_frac(start, end)) - 1
[ "def", "calc_cagr", "(", "prices", ")", ":", "start", "=", "prices", ".", "index", "[", "0", "]", "end", "=", "prices", ".", "index", "[", "-", "1", "]", "return", "(", "prices", ".", "iloc", "[", "-", "1", "]", "/", "prices", ".", "iloc", "[", "0", "]", ")", "**", "(", "1", "/", "year_frac", "(", "start", ",", "end", ")", ")", "-", "1" ]
Calculates the `CAGR (compound annual growth rate) <https://www.investopedia.com/terms/c/cagr.asp>`_ for a given price series. Args: * prices (pandas.Series): A Series of prices. Returns: * float -- cagr.
[ "Calculates", "the", "CAGR", "(", "compound", "annual", "growth", "rate", ")", "<https", ":", "//", "www", ".", "investopedia", ".", "com", "/", "terms", "/", "c", "/", "cagr", ".", "asp", ">", "_", "for", "a", "given", "price", "series", "." ]
python
train
PGower/PyCanvas
pycanvas/apis/discussion_topics.py
https://github.com/PGower/PyCanvas/blob/68520005382b440a1e462f9df369f54d364e21e8/pycanvas/apis/discussion_topics.py#L19-L72
def list_discussion_topics_courses(self, course_id, exclude_context_module_locked_topics=None, include=None, only_announcements=None, order_by=None, scope=None, search_term=None): """ List discussion topics. Returns the paginated list of discussion topics for this course or group. """ path = {} data = {} params = {} # REQUIRED - PATH - course_id """ID""" path["course_id"] = course_id # OPTIONAL - include """If "all_dates" is passed, all dates associated with graded discussions' assignments will be included.""" if include is not None: self._validate_enum(include, ["all_dates"]) params["include"] = include # OPTIONAL - order_by """Determines the order of the discussion topic list. Defaults to "position".""" if order_by is not None: self._validate_enum(order_by, ["position", "recent_activity"]) params["order_by"] = order_by # OPTIONAL - scope """Only return discussion topics in the given state(s). Defaults to including all topics. Filtering is done after pagination, so pages may be smaller than requested if topics are filtered. Can pass multiple states as comma separated string.""" if scope is not None: self._validate_enum(scope, ["locked", "unlocked", "pinned", "unpinned"]) params["scope"] = scope # OPTIONAL - only_announcements """Return announcements instead of discussion topics. Defaults to false""" if only_announcements is not None: params["only_announcements"] = only_announcements # OPTIONAL - search_term """The partial title of the discussion topics to match and return.""" if search_term is not None: params["search_term"] = search_term # OPTIONAL - exclude_context_module_locked_topics """For students, exclude topics that are locked by module progression. Defaults to false.""" if exclude_context_module_locked_topics is not None: params["exclude_context_module_locked_topics"] = exclude_context_module_locked_topics self.logger.debug("GET /api/v1/courses/{course_id}/discussion_topics with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("GET", "/api/v1/courses/{course_id}/discussion_topics".format(**path), data=data, params=params, all_pages=True)
[ "def", "list_discussion_topics_courses", "(", "self", ",", "course_id", ",", "exclude_context_module_locked_topics", "=", "None", ",", "include", "=", "None", ",", "only_announcements", "=", "None", ",", "order_by", "=", "None", ",", "scope", "=", "None", ",", "search_term", "=", "None", ")", ":", "path", "=", "{", "}", "data", "=", "{", "}", "params", "=", "{", "}", "# REQUIRED - PATH - course_id\r", "\"\"\"ID\"\"\"", "path", "[", "\"course_id\"", "]", "=", "course_id", "# OPTIONAL - include\r", "\"\"\"If \"all_dates\" is passed, all dates associated with graded discussions'\r\n assignments will be included.\"\"\"", "if", "include", "is", "not", "None", ":", "self", ".", "_validate_enum", "(", "include", ",", "[", "\"all_dates\"", "]", ")", "params", "[", "\"include\"", "]", "=", "include", "# OPTIONAL - order_by\r", "\"\"\"Determines the order of the discussion topic list. Defaults to \"position\".\"\"\"", "if", "order_by", "is", "not", "None", ":", "self", ".", "_validate_enum", "(", "order_by", ",", "[", "\"position\"", ",", "\"recent_activity\"", "]", ")", "params", "[", "\"order_by\"", "]", "=", "order_by", "# OPTIONAL - scope\r", "\"\"\"Only return discussion topics in the given state(s). Defaults to including\r\n all topics. Filtering is done after pagination, so pages\r\n may be smaller than requested if topics are filtered.\r\n Can pass multiple states as comma separated string.\"\"\"", "if", "scope", "is", "not", "None", ":", "self", ".", "_validate_enum", "(", "scope", ",", "[", "\"locked\"", ",", "\"unlocked\"", ",", "\"pinned\"", ",", "\"unpinned\"", "]", ")", "params", "[", "\"scope\"", "]", "=", "scope", "# OPTIONAL - only_announcements\r", "\"\"\"Return announcements instead of discussion topics. Defaults to false\"\"\"", "if", "only_announcements", "is", "not", "None", ":", "params", "[", "\"only_announcements\"", "]", "=", "only_announcements", "# OPTIONAL - search_term\r", "\"\"\"The partial title of the discussion topics to match and return.\"\"\"", "if", "search_term", "is", "not", "None", ":", "params", "[", "\"search_term\"", "]", "=", "search_term", "# OPTIONAL - exclude_context_module_locked_topics\r", "\"\"\"For students, exclude topics that are locked by module progression.\r\n Defaults to false.\"\"\"", "if", "exclude_context_module_locked_topics", "is", "not", "None", ":", "params", "[", "\"exclude_context_module_locked_topics\"", "]", "=", "exclude_context_module_locked_topics", "self", ".", "logger", ".", "debug", "(", "\"GET /api/v1/courses/{course_id}/discussion_topics with query params: {params} and form data: {data}\"", ".", "format", "(", "params", "=", "params", ",", "data", "=", "data", ",", "*", "*", "path", ")", ")", "return", "self", ".", "generic_request", "(", "\"GET\"", ",", "\"/api/v1/courses/{course_id}/discussion_topics\"", ".", "format", "(", "*", "*", "path", ")", ",", "data", "=", "data", ",", "params", "=", "params", ",", "all_pages", "=", "True", ")" ]
List discussion topics. Returns the paginated list of discussion topics for this course or group.
[ "List", "discussion", "topics", ".", "Returns", "the", "paginated", "list", "of", "discussion", "topics", "for", "this", "course", "or", "group", "." ]
python
train
NASA-AMMOS/AIT-Core
ait/core/dtype.py
https://github.com/NASA-AMMOS/AIT-Core/blob/9d85bd9c738e7a6a6fbdff672bea708238b02a3a/ait/core/dtype.py#L535-L541
def evrs(self): """Getter EVRs dictionary""" if self._evrs is None: import ait.core.evr as evr self._evrs = evr.getDefaultDict() return self._evrs
[ "def", "evrs", "(", "self", ")", ":", "if", "self", ".", "_evrs", "is", "None", ":", "import", "ait", ".", "core", ".", "evr", "as", "evr", "self", ".", "_evrs", "=", "evr", ".", "getDefaultDict", "(", ")", "return", "self", ".", "_evrs" ]
Getter EVRs dictionary
[ "Getter", "EVRs", "dictionary" ]
python
train
boto/s3transfer
s3transfer/download.py
https://github.com/boto/s3transfer/blob/2aead638c8385d8ae0b1756b2de17e8fad45fffa/s3transfer/download.py#L488-L547
def _main(self, client, bucket, key, fileobj, extra_args, callbacks, max_attempts, download_output_manager, io_chunksize, start_index=0, bandwidth_limiter=None): """Downloads an object and places content into io queue :param client: The client to use when calling GetObject :param bucket: The bucket to download from :param key: The key to download from :param fileobj: The file handle to write content to :param exta_args: Any extra arguements to include in GetObject request :param callbacks: List of progress callbacks to invoke on download :param max_attempts: The number of retries to do when downloading :param download_output_manager: The download output manager associated with the current download. :param io_chunksize: The size of each io chunk to read from the download stream and queue in the io queue. :param start_index: The location in the file to start writing the content of the key to. :param bandwidth_limiter: The bandwidth limiter to use when throttling the downloading of data in streams. """ last_exception = None for i in range(max_attempts): try: response = client.get_object( Bucket=bucket, Key=key, **extra_args) streaming_body = StreamReaderProgress( response['Body'], callbacks) if bandwidth_limiter: streaming_body = \ bandwidth_limiter.get_bandwith_limited_stream( streaming_body, self._transfer_coordinator) current_index = start_index chunks = DownloadChunkIterator(streaming_body, io_chunksize) for chunk in chunks: # If the transfer is done because of a cancellation # or error somewhere else, stop trying to submit more # data to be written and break out of the download. if not self._transfer_coordinator.done(): self._handle_io( download_output_manager, fileobj, chunk, current_index ) current_index += len(chunk) else: return return except S3_RETRYABLE_DOWNLOAD_ERRORS as e: logger.debug("Retrying exception caught (%s), " "retrying request, (attempt %s / %s)", e, i, max_attempts, exc_info=True) last_exception = e # Also invoke the progress callbacks to indicate that we # are trying to download the stream again and all progress # for this GetObject has been lost. invoke_progress_callbacks( callbacks, start_index - current_index) continue raise RetriesExceededError(last_exception)
[ "def", "_main", "(", "self", ",", "client", ",", "bucket", ",", "key", ",", "fileobj", ",", "extra_args", ",", "callbacks", ",", "max_attempts", ",", "download_output_manager", ",", "io_chunksize", ",", "start_index", "=", "0", ",", "bandwidth_limiter", "=", "None", ")", ":", "last_exception", "=", "None", "for", "i", "in", "range", "(", "max_attempts", ")", ":", "try", ":", "response", "=", "client", ".", "get_object", "(", "Bucket", "=", "bucket", ",", "Key", "=", "key", ",", "*", "*", "extra_args", ")", "streaming_body", "=", "StreamReaderProgress", "(", "response", "[", "'Body'", "]", ",", "callbacks", ")", "if", "bandwidth_limiter", ":", "streaming_body", "=", "bandwidth_limiter", ".", "get_bandwith_limited_stream", "(", "streaming_body", ",", "self", ".", "_transfer_coordinator", ")", "current_index", "=", "start_index", "chunks", "=", "DownloadChunkIterator", "(", "streaming_body", ",", "io_chunksize", ")", "for", "chunk", "in", "chunks", ":", "# If the transfer is done because of a cancellation", "# or error somewhere else, stop trying to submit more", "# data to be written and break out of the download.", "if", "not", "self", ".", "_transfer_coordinator", ".", "done", "(", ")", ":", "self", ".", "_handle_io", "(", "download_output_manager", ",", "fileobj", ",", "chunk", ",", "current_index", ")", "current_index", "+=", "len", "(", "chunk", ")", "else", ":", "return", "return", "except", "S3_RETRYABLE_DOWNLOAD_ERRORS", "as", "e", ":", "logger", ".", "debug", "(", "\"Retrying exception caught (%s), \"", "\"retrying request, (attempt %s / %s)\"", ",", "e", ",", "i", ",", "max_attempts", ",", "exc_info", "=", "True", ")", "last_exception", "=", "e", "# Also invoke the progress callbacks to indicate that we", "# are trying to download the stream again and all progress", "# for this GetObject has been lost.", "invoke_progress_callbacks", "(", "callbacks", ",", "start_index", "-", "current_index", ")", "continue", "raise", "RetriesExceededError", "(", "last_exception", ")" ]
Downloads an object and places content into io queue :param client: The client to use when calling GetObject :param bucket: The bucket to download from :param key: The key to download from :param fileobj: The file handle to write content to :param exta_args: Any extra arguements to include in GetObject request :param callbacks: List of progress callbacks to invoke on download :param max_attempts: The number of retries to do when downloading :param download_output_manager: The download output manager associated with the current download. :param io_chunksize: The size of each io chunk to read from the download stream and queue in the io queue. :param start_index: The location in the file to start writing the content of the key to. :param bandwidth_limiter: The bandwidth limiter to use when throttling the downloading of data in streams.
[ "Downloads", "an", "object", "and", "places", "content", "into", "io", "queue" ]
python
test
econ-ark/HARK
HARK/core.py
https://github.com/econ-ark/HARK/blob/3d184153a189e618a87c9540df1cd12044039cc5/HARK/core.py#L973-L1008
def solve(self): ''' "Solves" the market by finding a "dynamic rule" that governs the aggregate market state such that when agents believe in these dynamics, their actions collectively generate the same dynamic rule. Parameters ---------- None Returns ------- None ''' go = True max_loops = self.max_loops # Failsafe against infinite solution loop completed_loops = 0 old_dynamics = None while go: # Loop until the dynamic process converges or we hit the loop cap self.solveAgents() # Solve each AgentType's micro problem self.makeHistory() # "Run" the model while tracking aggregate variables new_dynamics = self.updateDynamics() # Find a new aggregate dynamic rule # Check to see if the dynamic rule has converged (if this is not the first loop) if completed_loops > 0: distance = new_dynamics.distance(old_dynamics) else: distance = 1000000.0 # Move to the next loop if the terminal conditions are not met old_dynamics = new_dynamics completed_loops += 1 go = distance >= self.tolerance and completed_loops < max_loops self.dynamics = new_dynamics
[ "def", "solve", "(", "self", ")", ":", "go", "=", "True", "max_loops", "=", "self", ".", "max_loops", "# Failsafe against infinite solution loop", "completed_loops", "=", "0", "old_dynamics", "=", "None", "while", "go", ":", "# Loop until the dynamic process converges or we hit the loop cap", "self", ".", "solveAgents", "(", ")", "# Solve each AgentType's micro problem", "self", ".", "makeHistory", "(", ")", "# \"Run\" the model while tracking aggregate variables", "new_dynamics", "=", "self", ".", "updateDynamics", "(", ")", "# Find a new aggregate dynamic rule", "# Check to see if the dynamic rule has converged (if this is not the first loop)", "if", "completed_loops", ">", "0", ":", "distance", "=", "new_dynamics", ".", "distance", "(", "old_dynamics", ")", "else", ":", "distance", "=", "1000000.0", "# Move to the next loop if the terminal conditions are not met", "old_dynamics", "=", "new_dynamics", "completed_loops", "+=", "1", "go", "=", "distance", ">=", "self", ".", "tolerance", "and", "completed_loops", "<", "max_loops", "self", ".", "dynamics", "=", "new_dynamics" ]
"Solves" the market by finding a "dynamic rule" that governs the aggregate market state such that when agents believe in these dynamics, their actions collectively generate the same dynamic rule. Parameters ---------- None Returns ------- None
[ "Solves", "the", "market", "by", "finding", "a", "dynamic", "rule", "that", "governs", "the", "aggregate", "market", "state", "such", "that", "when", "agents", "believe", "in", "these", "dynamics", "their", "actions", "collectively", "generate", "the", "same", "dynamic", "rule", "." ]
python
train
amadev/doan
doan/dataset.py
https://github.com/amadev/doan/blob/5adfa983ac547007a688fe7517291a432919aa3e/doan/dataset.py#L150-L157
def r_num(obj): """Read list of numbers.""" if isinstance(obj, (list, tuple)): it = iter else: it = LinesIterator dataset = Dataset([Dataset.FLOAT]) return dataset.load(it(obj))
[ "def", "r_num", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "(", "list", ",", "tuple", ")", ")", ":", "it", "=", "iter", "else", ":", "it", "=", "LinesIterator", "dataset", "=", "Dataset", "(", "[", "Dataset", ".", "FLOAT", "]", ")", "return", "dataset", ".", "load", "(", "it", "(", "obj", ")", ")" ]
Read list of numbers.
[ "Read", "list", "of", "numbers", "." ]
python
train
openthread/openthread
tools/harness-thci/OpenThread_WpanCtl.py
https://github.com/openthread/openthread/blob/0208d10563aa21c518092985c78ecf9cd223ab74/tools/harness-thci/OpenThread_WpanCtl.py#L933-L956
def getMAC(self, bType=MacType.RandomMac): """get one specific type of MAC address currently OpenThreadWpan only supports Random MAC address Args: bType: indicate which kind of MAC address is required Returns: specific type of MAC address """ print '%s call getMAC' % self.port # if power down happens, return extended address assigned previously if self.isPowerDown: macAddr64 = self.mac else: if bType == MacType.FactoryMac: macAddr64 = self.__stripValue(self.__sendCommand(WPANCTL_CMD + 'getprop -v NCP:HardwareAddress')[0]) elif bType == MacType.HashMac: macAddr64 = self.__stripValue(self.__sendCommand(WPANCTL_CMD + 'getprop -v NCP:MACAddress')[0]) else: macAddr64 = self.__stripValue(self.__sendCommand(WPANCTL_CMD + 'getprop -v NCP:ExtendedAddress')[0]) return int(macAddr64, 16)
[ "def", "getMAC", "(", "self", ",", "bType", "=", "MacType", ".", "RandomMac", ")", ":", "print", "'%s call getMAC'", "%", "self", ".", "port", "# if power down happens, return extended address assigned previously", "if", "self", ".", "isPowerDown", ":", "macAddr64", "=", "self", ".", "mac", "else", ":", "if", "bType", "==", "MacType", ".", "FactoryMac", ":", "macAddr64", "=", "self", ".", "__stripValue", "(", "self", ".", "__sendCommand", "(", "WPANCTL_CMD", "+", "'getprop -v NCP:HardwareAddress'", ")", "[", "0", "]", ")", "elif", "bType", "==", "MacType", ".", "HashMac", ":", "macAddr64", "=", "self", ".", "__stripValue", "(", "self", ".", "__sendCommand", "(", "WPANCTL_CMD", "+", "'getprop -v NCP:MACAddress'", ")", "[", "0", "]", ")", "else", ":", "macAddr64", "=", "self", ".", "__stripValue", "(", "self", ".", "__sendCommand", "(", "WPANCTL_CMD", "+", "'getprop -v NCP:ExtendedAddress'", ")", "[", "0", "]", ")", "return", "int", "(", "macAddr64", ",", "16", ")" ]
get one specific type of MAC address currently OpenThreadWpan only supports Random MAC address Args: bType: indicate which kind of MAC address is required Returns: specific type of MAC address
[ "get", "one", "specific", "type", "of", "MAC", "address", "currently", "OpenThreadWpan", "only", "supports", "Random", "MAC", "address" ]
python
train
dask/dask-ml
dask_ml/model_selection/_search.py
https://github.com/dask/dask-ml/blob/cc4837c2c2101f9302cac38354b55754263cd1f3/dask_ml/model_selection/_search.py#L921-L956
def compute_n_splits(cv, X, y=None, groups=None): """Return the number of splits. Parameters ---------- cv : BaseCrossValidator X, y, groups : array_like, dask object, or None Returns ------- n_splits : int """ if not any(is_dask_collection(i) for i in (X, y, groups)): return cv.get_n_splits(X, y, groups) if isinstance(cv, (_BaseKFold, BaseShuffleSplit)): return cv.n_splits elif isinstance(cv, PredefinedSplit): return len(cv.unique_folds) elif isinstance(cv, _CVIterableWrapper): return len(cv.cv) elif isinstance(cv, (LeaveOneOut, LeavePOut)) and not is_dask_collection(X): # Only `X` is referenced for these classes return cv.get_n_splits(X, None, None) elif isinstance(cv, (LeaveOneGroupOut, LeavePGroupsOut)) and not is_dask_collection( groups ): # Only `groups` is referenced for these classes return cv.get_n_splits(None, None, groups) else: return delayed(cv).get_n_splits(X, y, groups).compute()
[ "def", "compute_n_splits", "(", "cv", ",", "X", ",", "y", "=", "None", ",", "groups", "=", "None", ")", ":", "if", "not", "any", "(", "is_dask_collection", "(", "i", ")", "for", "i", "in", "(", "X", ",", "y", ",", "groups", ")", ")", ":", "return", "cv", ".", "get_n_splits", "(", "X", ",", "y", ",", "groups", ")", "if", "isinstance", "(", "cv", ",", "(", "_BaseKFold", ",", "BaseShuffleSplit", ")", ")", ":", "return", "cv", ".", "n_splits", "elif", "isinstance", "(", "cv", ",", "PredefinedSplit", ")", ":", "return", "len", "(", "cv", ".", "unique_folds", ")", "elif", "isinstance", "(", "cv", ",", "_CVIterableWrapper", ")", ":", "return", "len", "(", "cv", ".", "cv", ")", "elif", "isinstance", "(", "cv", ",", "(", "LeaveOneOut", ",", "LeavePOut", ")", ")", "and", "not", "is_dask_collection", "(", "X", ")", ":", "# Only `X` is referenced for these classes", "return", "cv", ".", "get_n_splits", "(", "X", ",", "None", ",", "None", ")", "elif", "isinstance", "(", "cv", ",", "(", "LeaveOneGroupOut", ",", "LeavePGroupsOut", ")", ")", "and", "not", "is_dask_collection", "(", "groups", ")", ":", "# Only `groups` is referenced for these classes", "return", "cv", ".", "get_n_splits", "(", "None", ",", "None", ",", "groups", ")", "else", ":", "return", "delayed", "(", "cv", ")", ".", "get_n_splits", "(", "X", ",", "y", ",", "groups", ")", ".", "compute", "(", ")" ]
Return the number of splits. Parameters ---------- cv : BaseCrossValidator X, y, groups : array_like, dask object, or None Returns ------- n_splits : int
[ "Return", "the", "number", "of", "splits", "." ]
python
train
chrisjrn/registrasion
registrasion/controllers/invoice.py
https://github.com/chrisjrn/registrasion/blob/461d5846c6f9f3b7099322a94f5d9911564448e4/registrasion/controllers/invoice.py#L361-L378
def update_validity(self): ''' Voids this invoice if the attached cart is no longer valid because the cart revision has changed, or the reservations have expired. ''' is_valid = self._invoice_matches_cart() cart = self.invoice.cart if self.invoice.is_unpaid and is_valid and cart: try: CartController(cart).validate_cart() except ValidationError: is_valid = False if not is_valid: if self.invoice.total_payments() > 0: # Free up the payments made to this invoice self.refund() else: self.void()
[ "def", "update_validity", "(", "self", ")", ":", "is_valid", "=", "self", ".", "_invoice_matches_cart", "(", ")", "cart", "=", "self", ".", "invoice", ".", "cart", "if", "self", ".", "invoice", ".", "is_unpaid", "and", "is_valid", "and", "cart", ":", "try", ":", "CartController", "(", "cart", ")", ".", "validate_cart", "(", ")", "except", "ValidationError", ":", "is_valid", "=", "False", "if", "not", "is_valid", ":", "if", "self", ".", "invoice", ".", "total_payments", "(", ")", ">", "0", ":", "# Free up the payments made to this invoice", "self", ".", "refund", "(", ")", "else", ":", "self", ".", "void", "(", ")" ]
Voids this invoice if the attached cart is no longer valid because the cart revision has changed, or the reservations have expired.
[ "Voids", "this", "invoice", "if", "the", "attached", "cart", "is", "no", "longer", "valid", "because", "the", "cart", "revision", "has", "changed", "or", "the", "reservations", "have", "expired", "." ]
python
test
eandersson/amqpstorm
amqpstorm/message.py
https://github.com/eandersson/amqpstorm/blob/38330906c0af19eea482f43c5ce79bab98a1e064/amqpstorm/message.py#L373-L390
def _try_decode_dict(self, content): """Decode content of a dictionary. :param dict content: :return: """ result = dict() for key, value in content.items(): key = try_utf8_decode(key) if isinstance(value, dict): result[key] = self._try_decode_dict(value) elif isinstance(value, list): result[key] = self._try_decode_list(value) elif isinstance(value, tuple): result[key] = self._try_decode_tuple(value) else: result[key] = try_utf8_decode(value) return result
[ "def", "_try_decode_dict", "(", "self", ",", "content", ")", ":", "result", "=", "dict", "(", ")", "for", "key", ",", "value", "in", "content", ".", "items", "(", ")", ":", "key", "=", "try_utf8_decode", "(", "key", ")", "if", "isinstance", "(", "value", ",", "dict", ")", ":", "result", "[", "key", "]", "=", "self", ".", "_try_decode_dict", "(", "value", ")", "elif", "isinstance", "(", "value", ",", "list", ")", ":", "result", "[", "key", "]", "=", "self", ".", "_try_decode_list", "(", "value", ")", "elif", "isinstance", "(", "value", ",", "tuple", ")", ":", "result", "[", "key", "]", "=", "self", ".", "_try_decode_tuple", "(", "value", ")", "else", ":", "result", "[", "key", "]", "=", "try_utf8_decode", "(", "value", ")", "return", "result" ]
Decode content of a dictionary. :param dict content: :return:
[ "Decode", "content", "of", "a", "dictionary", "." ]
python
train
openvax/mhctools
mhctools/common.py
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/common.py#L24-L35
def seq_to_str(obj, sep=","): """ Given a sequence convert it to a comma separated string. If, however, the argument is a single object, return its string representation. """ if isinstance(obj, string_classes): return obj elif isinstance(obj, (list, tuple)): return sep.join([str(x) for x in obj]) else: return str(obj)
[ "def", "seq_to_str", "(", "obj", ",", "sep", "=", "\",\"", ")", ":", "if", "isinstance", "(", "obj", ",", "string_classes", ")", ":", "return", "obj", "elif", "isinstance", "(", "obj", ",", "(", "list", ",", "tuple", ")", ")", ":", "return", "sep", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "obj", "]", ")", "else", ":", "return", "str", "(", "obj", ")" ]
Given a sequence convert it to a comma separated string. If, however, the argument is a single object, return its string representation.
[ "Given", "a", "sequence", "convert", "it", "to", "a", "comma", "separated", "string", ".", "If", "however", "the", "argument", "is", "a", "single", "object", "return", "its", "string", "representation", "." ]
python
valid
LonamiWebs/Telethon
telethon/tl/custom/dialog.py
https://github.com/LonamiWebs/Telethon/blob/1ead9757d366b58c1e0567cddb0196e20f1a445f/telethon/tl/custom/dialog.py#L99-L112
async def delete(self): """ Deletes the dialog from your dialog list. If you own the channel this won't destroy it, only delete it from the list. """ if self.is_channel: await self._client(functions.channels.LeaveChannelRequest( self.input_entity)) else: if self.is_group: await self._client(functions.messages.DeleteChatUserRequest( self.entity.id, types.InputPeerSelf())) await self._client(functions.messages.DeleteHistoryRequest( self.input_entity, 0))
[ "async", "def", "delete", "(", "self", ")", ":", "if", "self", ".", "is_channel", ":", "await", "self", ".", "_client", "(", "functions", ".", "channels", ".", "LeaveChannelRequest", "(", "self", ".", "input_entity", ")", ")", "else", ":", "if", "self", ".", "is_group", ":", "await", "self", ".", "_client", "(", "functions", ".", "messages", ".", "DeleteChatUserRequest", "(", "self", ".", "entity", ".", "id", ",", "types", ".", "InputPeerSelf", "(", ")", ")", ")", "await", "self", ".", "_client", "(", "functions", ".", "messages", ".", "DeleteHistoryRequest", "(", "self", ".", "input_entity", ",", "0", ")", ")" ]
Deletes the dialog from your dialog list. If you own the channel this won't destroy it, only delete it from the list.
[ "Deletes", "the", "dialog", "from", "your", "dialog", "list", ".", "If", "you", "own", "the", "channel", "this", "won", "t", "destroy", "it", "only", "delete", "it", "from", "the", "list", "." ]
python
train
EpistasisLab/scikit-rebate
skrebate/scoring_utils.py
https://github.com/EpistasisLab/scikit-rebate/blob/67dab51a7525fa5d076b059f1e6f8cff7481c1ef/skrebate/scoring_utils.py#L86-L108
def ramp_function(data_type, attr, fname, xinstfeature, xNNifeature): """ Our own user simplified variation of the ramp function suggested by Hong 1994, 1997. Hong's method requires the user to specifiy two thresholds that indicate the max difference before a score of 1 is given, as well a min difference before a score of 0 is given, and any in the middle get a score that is the normalized difference between the two continuous feature values. This was done because when discrete and continuous features were mixed, continuous feature scores were underestimated. Towards simplicity, automation, and a dataset adaptable approach, here we simply check whether the difference is greater than the standard deviation for the given feature; if so we assign a score of 1, otherwise we assign the normalized feature score difference. This should help compensate for the underestimation. """ diff = 0 mmdiff = attr[fname][3] # Max/Min range of values for target feature rawfd = abs(xinstfeature - xNNifeature) # prenormalized feature value difference if data_type == 'mixed': # Ramp function utilized # Check whether feature value difference is greater than the standard deviation standDev = attr[fname][4] if rawfd > standDev: # feature value difference is is wider than a standard deviation diff = 1 else: diff = abs(xinstfeature - xNNifeature) / mmdiff else: # Normal continuous feature scoring diff = abs(xinstfeature - xNNifeature) / mmdiff return diff
[ "def", "ramp_function", "(", "data_type", ",", "attr", ",", "fname", ",", "xinstfeature", ",", "xNNifeature", ")", ":", "diff", "=", "0", "mmdiff", "=", "attr", "[", "fname", "]", "[", "3", "]", "# Max/Min range of values for target feature\r", "rawfd", "=", "abs", "(", "xinstfeature", "-", "xNNifeature", ")", "# prenormalized feature value difference\r", "if", "data_type", "==", "'mixed'", ":", "# Ramp function utilized\r", "# Check whether feature value difference is greater than the standard deviation\r", "standDev", "=", "attr", "[", "fname", "]", "[", "4", "]", "if", "rawfd", ">", "standDev", ":", "# feature value difference is is wider than a standard deviation\r", "diff", "=", "1", "else", ":", "diff", "=", "abs", "(", "xinstfeature", "-", "xNNifeature", ")", "/", "mmdiff", "else", ":", "# Normal continuous feature scoring\r", "diff", "=", "abs", "(", "xinstfeature", "-", "xNNifeature", ")", "/", "mmdiff", "return", "diff" ]
Our own user simplified variation of the ramp function suggested by Hong 1994, 1997. Hong's method requires the user to specifiy two thresholds that indicate the max difference before a score of 1 is given, as well a min difference before a score of 0 is given, and any in the middle get a score that is the normalized difference between the two continuous feature values. This was done because when discrete and continuous features were mixed, continuous feature scores were underestimated. Towards simplicity, automation, and a dataset adaptable approach, here we simply check whether the difference is greater than the standard deviation for the given feature; if so we assign a score of 1, otherwise we assign the normalized feature score difference. This should help compensate for the underestimation.
[ "Our", "own", "user", "simplified", "variation", "of", "the", "ramp", "function", "suggested", "by", "Hong", "1994", "1997", ".", "Hong", "s", "method", "requires", "the", "user", "to", "specifiy", "two", "thresholds", "that", "indicate", "the", "max", "difference", "before", "a", "score", "of", "1", "is", "given", "as", "well", "a", "min", "difference", "before", "a", "score", "of", "0", "is", "given", "and", "any", "in", "the", "middle", "get", "a", "score", "that", "is", "the", "normalized", "difference", "between", "the", "two", "continuous", "feature", "values", ".", "This", "was", "done", "because", "when", "discrete", "and", "continuous", "features", "were", "mixed", "continuous", "feature", "scores", "were", "underestimated", ".", "Towards", "simplicity", "automation", "and", "a", "dataset", "adaptable", "approach", "here", "we", "simply", "check", "whether", "the", "difference", "is", "greater", "than", "the", "standard", "deviation", "for", "the", "given", "feature", ";", "if", "so", "we", "assign", "a", "score", "of", "1", "otherwise", "we", "assign", "the", "normalized", "feature", "score", "difference", ".", "This", "should", "help", "compensate", "for", "the", "underestimation", "." ]
python
train
googlecolab/jupyter_http_over_ws
jupyter_http_over_ws/handlers.py
https://github.com/googlecolab/jupyter_http_over_ws/blob/21fe278cae6fca4e6c92f92d6d786fae8fdea9b1/jupyter_http_over_ws/handlers.py#L76-L101
def _validate_min_version(min_version): """Validates the extension version matches the requested version. Args: min_version: Minimum version passed as a query param when establishing the connection. Returns: An ExtensionVersionResult indicating validation status. If there is a problem, the error_reason field will be non-empty. """ if min_version is not None: try: parsed_min_version = version.StrictVersion(min_version) except ValueError: return ExtensionVersionResult( error_reason=ExtensionValidationError.UNPARSEABLE_REQUESTED_VERSION, requested_extension_version=min_version) if parsed_min_version > HANDLER_VERSION: return ExtensionVersionResult( error_reason=ExtensionValidationError.OUTDATED_VERSION, requested_extension_version=str(parsed_min_version)) return ExtensionVersionResult( error_reason=None, requested_extension_version=min_version)
[ "def", "_validate_min_version", "(", "min_version", ")", ":", "if", "min_version", "is", "not", "None", ":", "try", ":", "parsed_min_version", "=", "version", ".", "StrictVersion", "(", "min_version", ")", "except", "ValueError", ":", "return", "ExtensionVersionResult", "(", "error_reason", "=", "ExtensionValidationError", ".", "UNPARSEABLE_REQUESTED_VERSION", ",", "requested_extension_version", "=", "min_version", ")", "if", "parsed_min_version", ">", "HANDLER_VERSION", ":", "return", "ExtensionVersionResult", "(", "error_reason", "=", "ExtensionValidationError", ".", "OUTDATED_VERSION", ",", "requested_extension_version", "=", "str", "(", "parsed_min_version", ")", ")", "return", "ExtensionVersionResult", "(", "error_reason", "=", "None", ",", "requested_extension_version", "=", "min_version", ")" ]
Validates the extension version matches the requested version. Args: min_version: Minimum version passed as a query param when establishing the connection. Returns: An ExtensionVersionResult indicating validation status. If there is a problem, the error_reason field will be non-empty.
[ "Validates", "the", "extension", "version", "matches", "the", "requested", "version", "." ]
python
train
kalbhor/MusicTools
musictools/musictools.py
https://github.com/kalbhor/MusicTools/blob/324159448553033173bb050458c6a56e3cfa2738/musictools/musictools.py#L166-L173
def revert_metadata(files): """ Removes all tags from a mp3 file """ for file_path in files: tags = EasyMP3(file_path) tags.delete() tags.save()
[ "def", "revert_metadata", "(", "files", ")", ":", "for", "file_path", "in", "files", ":", "tags", "=", "EasyMP3", "(", "file_path", ")", "tags", ".", "delete", "(", ")", "tags", ".", "save", "(", ")" ]
Removes all tags from a mp3 file
[ "Removes", "all", "tags", "from", "a", "mp3", "file" ]
python
train
google/prettytensor
prettytensor/pretty_tensor_methods.py
https://github.com/google/prettytensor/blob/75daa0b11252590f548da5647addc0ea610c4c45/prettytensor/pretty_tensor_methods.py#L37-L111
def _infer_unknown_dims(old_shape, shape_spec): """Attempts to replace DIM_REST (if present) with a value. Because of `pt.DIM_SAME`, this has more information to compute a shape value than the default reshape's shape function. Args: old_shape: The current shape of the Tensor as a list. shape_spec: A shape spec, see `pt.reshape`. Returns: A list derived from `shape_spec` with `pt.DIM_SAME` replaced by the value from old_shape (if possible) and `pt.DIM_REST` computed (if possible). Raises: ValueError: If there are two many unknown dimensions or the shape_spec requires out of range DIM_SAME. TypeError: If shape_spec if not iterable. """ # To compute the dimension of an unknown, we need to track which of the values # from old_shape are not copied for the numerator and any values specified as # integers for the denominator. # # After the loop, if any input dimension is unknown and not DIM_SAME, the # numerator will be 0. Otherwise it is the product of all non-DIM_SAME # dimensions. This means that the dimension of DIM_REST is # numerator / denominator numerator_elements = [x if x else 0 for x in old_shape] denominator = 1 unknowns = 0 normalized_shape_spec = [] for s in shape_spec: # Equality of tf.Dimension is broken and upstream fix hasn't been accepted. if isinstance(s, tf.Dimension): normalized_shape_spec.append(s.value) elif isinstance(s, tf.TensorShape): for dim in s: normalized_shape_spec.append(dim.value) else: normalized_shape_spec.append(s) result = [] for i, s in enumerate(normalized_shape_spec): if s == DIM_SAME: if i >= len(old_shape): raise ValueError('%d exceeds the input shape' % i) if old_shape[i] is None: result.append(DIM_SAME) else: result.append(old_shape[i]) numerator_elements[i] = 1 elif s in (DIM_REST, -1, None): result.append(-1) unknowns += 1 else: x = int(s) result.append(x) denominator *= x numerator = 1 for x in numerator_elements: numerator *= x if unknowns > 1: raise ValueError('Only one unknown value (-1 or *) is allowed: %s' % shape_spec) elif numerator % denominator != 0: raise ValueError('Input (%s) cannot be reshaped to %s.' % (old_shape, shape_spec)) elif unknowns == 0 and numerator > 0 and numerator != denominator: raise ValueError('Input (%s) cannot be reshaped to %s.' % (old_shape, shape_spec)) if numerator and unknowns: unknown_elements = int(numerator / denominator) return [unknown_elements if x == -1 else x for x in result] else: return result
[ "def", "_infer_unknown_dims", "(", "old_shape", ",", "shape_spec", ")", ":", "# To compute the dimension of an unknown, we need to track which of the values", "# from old_shape are not copied for the numerator and any values specified as", "# integers for the denominator.", "#", "# After the loop, if any input dimension is unknown and not DIM_SAME, the", "# numerator will be 0. Otherwise it is the product of all non-DIM_SAME", "# dimensions. This means that the dimension of DIM_REST is", "# numerator / denominator", "numerator_elements", "=", "[", "x", "if", "x", "else", "0", "for", "x", "in", "old_shape", "]", "denominator", "=", "1", "unknowns", "=", "0", "normalized_shape_spec", "=", "[", "]", "for", "s", "in", "shape_spec", ":", "# Equality of tf.Dimension is broken and upstream fix hasn't been accepted.", "if", "isinstance", "(", "s", ",", "tf", ".", "Dimension", ")", ":", "normalized_shape_spec", ".", "append", "(", "s", ".", "value", ")", "elif", "isinstance", "(", "s", ",", "tf", ".", "TensorShape", ")", ":", "for", "dim", "in", "s", ":", "normalized_shape_spec", ".", "append", "(", "dim", ".", "value", ")", "else", ":", "normalized_shape_spec", ".", "append", "(", "s", ")", "result", "=", "[", "]", "for", "i", ",", "s", "in", "enumerate", "(", "normalized_shape_spec", ")", ":", "if", "s", "==", "DIM_SAME", ":", "if", "i", ">=", "len", "(", "old_shape", ")", ":", "raise", "ValueError", "(", "'%d exceeds the input shape'", "%", "i", ")", "if", "old_shape", "[", "i", "]", "is", "None", ":", "result", ".", "append", "(", "DIM_SAME", ")", "else", ":", "result", ".", "append", "(", "old_shape", "[", "i", "]", ")", "numerator_elements", "[", "i", "]", "=", "1", "elif", "s", "in", "(", "DIM_REST", ",", "-", "1", ",", "None", ")", ":", "result", ".", "append", "(", "-", "1", ")", "unknowns", "+=", "1", "else", ":", "x", "=", "int", "(", "s", ")", "result", ".", "append", "(", "x", ")", "denominator", "*=", "x", "numerator", "=", "1", "for", "x", "in", "numerator_elements", ":", "numerator", "*=", "x", "if", "unknowns", ">", "1", ":", "raise", "ValueError", "(", "'Only one unknown value (-1 or *) is allowed: %s'", "%", "shape_spec", ")", "elif", "numerator", "%", "denominator", "!=", "0", ":", "raise", "ValueError", "(", "'Input (%s) cannot be reshaped to %s.'", "%", "(", "old_shape", ",", "shape_spec", ")", ")", "elif", "unknowns", "==", "0", "and", "numerator", ">", "0", "and", "numerator", "!=", "denominator", ":", "raise", "ValueError", "(", "'Input (%s) cannot be reshaped to %s.'", "%", "(", "old_shape", ",", "shape_spec", ")", ")", "if", "numerator", "and", "unknowns", ":", "unknown_elements", "=", "int", "(", "numerator", "/", "denominator", ")", "return", "[", "unknown_elements", "if", "x", "==", "-", "1", "else", "x", "for", "x", "in", "result", "]", "else", ":", "return", "result" ]
Attempts to replace DIM_REST (if present) with a value. Because of `pt.DIM_SAME`, this has more information to compute a shape value than the default reshape's shape function. Args: old_shape: The current shape of the Tensor as a list. shape_spec: A shape spec, see `pt.reshape`. Returns: A list derived from `shape_spec` with `pt.DIM_SAME` replaced by the value from old_shape (if possible) and `pt.DIM_REST` computed (if possible). Raises: ValueError: If there are two many unknown dimensions or the shape_spec requires out of range DIM_SAME. TypeError: If shape_spec if not iterable.
[ "Attempts", "to", "replace", "DIM_REST", "(", "if", "present", ")", "with", "a", "value", "." ]
python
train
royi1000/py-libhdate
hdate/date.py
https://github.com/royi1000/py-libhdate/blob/12af759fb69f1d6403abed3762beaf5ace16a34b/hdate/date.py#L137-L142
def hebrew_date(self): """Return the hebrew date string.""" return u"{} {} {}".format( hebrew_number(self.hdate.day, hebrew=self.hebrew), # Day htables.MONTHS[self.hdate.month - 1][self.hebrew], # Month hebrew_number(self.hdate.year, hebrew=self.hebrew))
[ "def", "hebrew_date", "(", "self", ")", ":", "return", "u\"{} {} {}\"", ".", "format", "(", "hebrew_number", "(", "self", ".", "hdate", ".", "day", ",", "hebrew", "=", "self", ".", "hebrew", ")", ",", "# Day", "htables", ".", "MONTHS", "[", "self", ".", "hdate", ".", "month", "-", "1", "]", "[", "self", ".", "hebrew", "]", ",", "# Month", "hebrew_number", "(", "self", ".", "hdate", ".", "year", ",", "hebrew", "=", "self", ".", "hebrew", ")", ")" ]
Return the hebrew date string.
[ "Return", "the", "hebrew", "date", "string", "." ]
python
train
spyder-ide/spyder
spyder/plugins/editor/panels/linenumber.py
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/editor/panels/linenumber.py#L114-L134
def mouseMoveEvent(self, event): """Override Qt method. Show code analisis, if left button pressed select lines. """ line_number = self.editor.get_linenumber_from_mouse_event(event) block = self.editor.document().findBlockByNumber(line_number-1) data = block.userData() # this disables pyflakes messages if there is an active drag/selection # operation check = self._released == -1 if data and data.code_analysis and check: self.editor.show_code_analysis_results(line_number, data) else: self.editor.hide_tooltip() if event.buttons() == Qt.LeftButton: self._released = line_number self.editor.select_lines(self._pressed, self._released)
[ "def", "mouseMoveEvent", "(", "self", ",", "event", ")", ":", "line_number", "=", "self", ".", "editor", ".", "get_linenumber_from_mouse_event", "(", "event", ")", "block", "=", "self", ".", "editor", ".", "document", "(", ")", ".", "findBlockByNumber", "(", "line_number", "-", "1", ")", "data", "=", "block", ".", "userData", "(", ")", "# this disables pyflakes messages if there is an active drag/selection", "# operation", "check", "=", "self", ".", "_released", "==", "-", "1", "if", "data", "and", "data", ".", "code_analysis", "and", "check", ":", "self", ".", "editor", ".", "show_code_analysis_results", "(", "line_number", ",", "data", ")", "else", ":", "self", ".", "editor", ".", "hide_tooltip", "(", ")", "if", "event", ".", "buttons", "(", ")", "==", "Qt", ".", "LeftButton", ":", "self", ".", "_released", "=", "line_number", "self", ".", "editor", ".", "select_lines", "(", "self", ".", "_pressed", ",", "self", ".", "_released", ")" ]
Override Qt method. Show code analisis, if left button pressed select lines.
[ "Override", "Qt", "method", "." ]
python
train
PrefPy/prefpy
prefpy/gmmra.py
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/gmmra.py#L66-L78
def _adj(self, k): """ Description: Adjacent breaking Paramters: k: not used """ G = np.zeros((self.m, self.m)) for i in range(self.m): for j in range(self.m): if i == j+1 or j == i+1: G[i][j] = 1 return G
[ "def", "_adj", "(", "self", ",", "k", ")", ":", "G", "=", "np", ".", "zeros", "(", "(", "self", ".", "m", ",", "self", ".", "m", ")", ")", "for", "i", "in", "range", "(", "self", ".", "m", ")", ":", "for", "j", "in", "range", "(", "self", ".", "m", ")", ":", "if", "i", "==", "j", "+", "1", "or", "j", "==", "i", "+", "1", ":", "G", "[", "i", "]", "[", "j", "]", "=", "1", "return", "G" ]
Description: Adjacent breaking Paramters: k: not used
[ "Description", ":", "Adjacent", "breaking", "Paramters", ":", "k", ":", "not", "used" ]
python
train
ajdavis/mongo-mockup-db
mockupdb/__init__.py
https://github.com/ajdavis/mongo-mockup-db/blob/ff8a3f793def59e9037397ef60607fbda6949dac/mockupdb/__init__.py#L1401-L1497
def autoresponds(self, matcher, *args, **kwargs): """Send a canned reply to all matching client requests. ``matcher`` is a `Matcher` or a command name, or an instance of `OpInsert`, `OpQuery`, etc. >>> s = MockupDB() >>> port = s.run() >>> >>> from pymongo import MongoClient >>> client = MongoClient(s.uri) >>> responder = s.autoresponds('ismaster', maxWireVersion=6) >>> client.admin.command('ismaster') == {'ok': 1, 'maxWireVersion': 6} True The remaining arguments are a :ref:`message spec <message spec>`: >>> # ok >>> responder = s.autoresponds('bar', ok=0, errmsg='err') >>> client.db.command('bar') Traceback (most recent call last): ... OperationFailure: command SON([('bar', 1)]) on namespace db.$cmd failed: err >>> responder = s.autoresponds(OpMsg('find', 'collection'), ... {'cursor': {'id': 0, 'firstBatch': [{'_id': 1}, {'_id': 2}]}}) >>> # ok >>> list(client.db.collection.find()) == [{'_id': 1}, {'_id': 2}] True >>> responder = s.autoresponds(OpMsg('find', 'collection'), ... {'cursor': {'id': 0, 'firstBatch': [{'a': 1}, {'a': 2}]}}) >>> # bad >>> list(client.db.collection.find()) == [{'a': 1}, {'a': 2}] True Remove an autoresponder like: >>> responder.cancel() If the request currently at the head of the queue matches, it is popped and replied to. Future matching requests skip the queue. >>> future = go(client.db.command, 'baz') >>> # bad >>> responder = s.autoresponds('baz', {'key': 'value'}) >>> future() == {'ok': 1, 'key': 'value'} True Responders are applied in order, most recently added first, until one matches: >>> responder = s.autoresponds('baz') >>> client.db.command('baz') == {'ok': 1} True >>> responder.cancel() >>> # The previous responder takes over again. >>> client.db.command('baz') == {'ok': 1, 'key': 'value'} True You can pass a request handler in place of the message spec. Return True if you handled the request: >>> responder = s.autoresponds('baz', lambda r: r.ok(a=2)) The standard `Request.ok`, `~Request.replies`, `~Request.fail`, `~Request.hangup` and so on all return True to make them suitable as handler functions. >>> client.db.command('baz') == {'ok': 1, 'a': 2} True If the request is not handled, it is checked against the remaining responders, or enqueued if none match. You can pass the handler as the only argument so it receives *all* requests. For example you could log them, then return None to allow other handlers to run: >>> def logger(request): ... if not request.matches('ismaster'): ... print('logging: %r' % request) >>> responder = s.autoresponds(logger) >>> client.db.command('baz') == {'ok': 1, 'a': 2} logging: OpMsg({"baz": 1, "$db": "db", "$readPreference": {"mode": "primaryPreferred"}}, namespace="db") True The synonym `subscribe` better expresses your intent if your handler never returns True: >>> subscriber = s.subscribe(logger) .. doctest: :hide: >>> client.close() >>> s.stop() """ return self._insert_responder("top", matcher, *args, **kwargs)
[ "def", "autoresponds", "(", "self", ",", "matcher", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "_insert_responder", "(", "\"top\"", ",", "matcher", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Send a canned reply to all matching client requests. ``matcher`` is a `Matcher` or a command name, or an instance of `OpInsert`, `OpQuery`, etc. >>> s = MockupDB() >>> port = s.run() >>> >>> from pymongo import MongoClient >>> client = MongoClient(s.uri) >>> responder = s.autoresponds('ismaster', maxWireVersion=6) >>> client.admin.command('ismaster') == {'ok': 1, 'maxWireVersion': 6} True The remaining arguments are a :ref:`message spec <message spec>`: >>> # ok >>> responder = s.autoresponds('bar', ok=0, errmsg='err') >>> client.db.command('bar') Traceback (most recent call last): ... OperationFailure: command SON([('bar', 1)]) on namespace db.$cmd failed: err >>> responder = s.autoresponds(OpMsg('find', 'collection'), ... {'cursor': {'id': 0, 'firstBatch': [{'_id': 1}, {'_id': 2}]}}) >>> # ok >>> list(client.db.collection.find()) == [{'_id': 1}, {'_id': 2}] True >>> responder = s.autoresponds(OpMsg('find', 'collection'), ... {'cursor': {'id': 0, 'firstBatch': [{'a': 1}, {'a': 2}]}}) >>> # bad >>> list(client.db.collection.find()) == [{'a': 1}, {'a': 2}] True Remove an autoresponder like: >>> responder.cancel() If the request currently at the head of the queue matches, it is popped and replied to. Future matching requests skip the queue. >>> future = go(client.db.command, 'baz') >>> # bad >>> responder = s.autoresponds('baz', {'key': 'value'}) >>> future() == {'ok': 1, 'key': 'value'} True Responders are applied in order, most recently added first, until one matches: >>> responder = s.autoresponds('baz') >>> client.db.command('baz') == {'ok': 1} True >>> responder.cancel() >>> # The previous responder takes over again. >>> client.db.command('baz') == {'ok': 1, 'key': 'value'} True You can pass a request handler in place of the message spec. Return True if you handled the request: >>> responder = s.autoresponds('baz', lambda r: r.ok(a=2)) The standard `Request.ok`, `~Request.replies`, `~Request.fail`, `~Request.hangup` and so on all return True to make them suitable as handler functions. >>> client.db.command('baz') == {'ok': 1, 'a': 2} True If the request is not handled, it is checked against the remaining responders, or enqueued if none match. You can pass the handler as the only argument so it receives *all* requests. For example you could log them, then return None to allow other handlers to run: >>> def logger(request): ... if not request.matches('ismaster'): ... print('logging: %r' % request) >>> responder = s.autoresponds(logger) >>> client.db.command('baz') == {'ok': 1, 'a': 2} logging: OpMsg({"baz": 1, "$db": "db", "$readPreference": {"mode": "primaryPreferred"}}, namespace="db") True The synonym `subscribe` better expresses your intent if your handler never returns True: >>> subscriber = s.subscribe(logger) .. doctest: :hide: >>> client.close() >>> s.stop()
[ "Send", "a", "canned", "reply", "to", "all", "matching", "client", "requests", ".", "matcher", "is", "a", "Matcher", "or", "a", "command", "name", "or", "an", "instance", "of", "OpInsert", "OpQuery", "etc", "." ]
python
train
Microsoft/botbuilder-python
libraries/botbuilder-dialogs/botbuilder/dialogs/waterfall_dialog.py
https://github.com/Microsoft/botbuilder-python/blob/274663dd91c811bae6ac4488915ba5880771b0a7/libraries/botbuilder-dialogs/botbuilder/dialogs/waterfall_dialog.py#L36-L47
def add_step(self, step): """ Adds a new step to the waterfall. :param step: Step to add :return: Waterfall dialog for fluent calls to `add_step()`. """ if not step: raise TypeError('WaterfallDialog.add_step(): step cannot be None.') self._steps.append(step) return self
[ "def", "add_step", "(", "self", ",", "step", ")", ":", "if", "not", "step", ":", "raise", "TypeError", "(", "'WaterfallDialog.add_step(): step cannot be None.'", ")", "self", ".", "_steps", ".", "append", "(", "step", ")", "return", "self" ]
Adds a new step to the waterfall. :param step: Step to add :return: Waterfall dialog for fluent calls to `add_step()`.
[ "Adds", "a", "new", "step", "to", "the", "waterfall", ".", ":", "param", "step", ":", "Step", "to", "add", ":", "return", ":", "Waterfall", "dialog", "for", "fluent", "calls", "to", "add_step", "()", "." ]
python
test
oscarbranson/latools
latools/latools.py
https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L3822-L3918
def export_traces(self, outdir=None, focus_stage=None, analytes=None, samples=None, subset='All_Analyses', filt=False, zip_archive=False): """ Function to export raw data. Parameters ---------- outdir : str directory to save toe traces. Defaults to 'main-dir-name_export'. focus_stage : str The name of the analysis stage to export. * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Defaults to the most recent stage of analysis. analytes : str or array - like Either a single analyte, or list of analytes to export. Defaults to all analytes. samples : str or array - like Either a single sample name, or list of samples to export. Defaults to all samples. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`. """ if analytes is None: analytes = self.analytes elif isinstance(analytes, str): analytes = [analytes] if samples is not None: subset = self.make_subset(samples) samples = self._get_samples(subset) if focus_stage is None: focus_stage = self.focus_stage if focus_stage in ['ratios', 'calibrated']: analytes = [a for a in analytes if a != self.internal_standard] if outdir is None: outdir = os.path.join(self.export_dir, 'trace_export') ud = {'rawdata': 'counts', 'despiked': 'counts', 'bkgsub': 'background corrected counts', 'ratios': 'counts/count {:s}', 'calibrated': 'mol/mol {:s}'} if focus_stage in ['ratios', 'calibrated']: ud[focus_stage] = ud[focus_stage].format(self.internal_standard) if not os.path.isdir(outdir): os.mkdir(outdir) for s in samples: d = self.data[s].data[focus_stage] ind = self.data[s].filt.grab_filt(filt) out = Bunch() for a in analytes: out[a] = nominal_values(d[a][ind]) if focus_stage not in ['rawdata', 'despiked']: out[a + '_std'] = std_devs(d[a][ind]) out[a + '_std'][out[a + '_std'] == 0] = np.nan out = pd.DataFrame(out, index=self.data[s].Time[ind]) out.index.name = 'Time' header = ['# Sample: %s' % (s), '# Data Exported from LATOOLS on %s' % (time.strftime('%Y:%m:%d %H:%M:%S')), '# Processed using %s configuration' % (self.config['config']), '# Analysis Stage: %s' % (focus_stage), '# Unit: %s' % ud[focus_stage]] header = '\n'.join(header) + '\n' csv = out.to_csv() with open('%s/%s_%s.csv' % (outdir, s, focus_stage), 'w') as f: f.write(header) f.write(csv) if zip_archive: utils.zipdir(outdir, delete=True) return
[ "def", "export_traces", "(", "self", ",", "outdir", "=", "None", ",", "focus_stage", "=", "None", ",", "analytes", "=", "None", ",", "samples", "=", "None", ",", "subset", "=", "'All_Analyses'", ",", "filt", "=", "False", ",", "zip_archive", "=", "False", ")", ":", "if", "analytes", "is", "None", ":", "analytes", "=", "self", ".", "analytes", "elif", "isinstance", "(", "analytes", ",", "str", ")", ":", "analytes", "=", "[", "analytes", "]", "if", "samples", "is", "not", "None", ":", "subset", "=", "self", ".", "make_subset", "(", "samples", ")", "samples", "=", "self", ".", "_get_samples", "(", "subset", ")", "if", "focus_stage", "is", "None", ":", "focus_stage", "=", "self", ".", "focus_stage", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "analytes", "=", "[", "a", "for", "a", "in", "analytes", "if", "a", "!=", "self", ".", "internal_standard", "]", "if", "outdir", "is", "None", ":", "outdir", "=", "os", ".", "path", ".", "join", "(", "self", ".", "export_dir", ",", "'trace_export'", ")", "ud", "=", "{", "'rawdata'", ":", "'counts'", ",", "'despiked'", ":", "'counts'", ",", "'bkgsub'", ":", "'background corrected counts'", ",", "'ratios'", ":", "'counts/count {:s}'", ",", "'calibrated'", ":", "'mol/mol {:s}'", "}", "if", "focus_stage", "in", "[", "'ratios'", ",", "'calibrated'", "]", ":", "ud", "[", "focus_stage", "]", "=", "ud", "[", "focus_stage", "]", ".", "format", "(", "self", ".", "internal_standard", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "outdir", ")", ":", "os", ".", "mkdir", "(", "outdir", ")", "for", "s", "in", "samples", ":", "d", "=", "self", ".", "data", "[", "s", "]", ".", "data", "[", "focus_stage", "]", "ind", "=", "self", ".", "data", "[", "s", "]", ".", "filt", ".", "grab_filt", "(", "filt", ")", "out", "=", "Bunch", "(", ")", "for", "a", "in", "analytes", ":", "out", "[", "a", "]", "=", "nominal_values", "(", "d", "[", "a", "]", "[", "ind", "]", ")", "if", "focus_stage", "not", "in", "[", "'rawdata'", ",", "'despiked'", "]", ":", "out", "[", "a", "+", "'_std'", "]", "=", "std_devs", "(", "d", "[", "a", "]", "[", "ind", "]", ")", "out", "[", "a", "+", "'_std'", "]", "[", "out", "[", "a", "+", "'_std'", "]", "==", "0", "]", "=", "np", ".", "nan", "out", "=", "pd", ".", "DataFrame", "(", "out", ",", "index", "=", "self", ".", "data", "[", "s", "]", ".", "Time", "[", "ind", "]", ")", "out", ".", "index", ".", "name", "=", "'Time'", "header", "=", "[", "'# Sample: %s'", "%", "(", "s", ")", ",", "'# Data Exported from LATOOLS on %s'", "%", "(", "time", ".", "strftime", "(", "'%Y:%m:%d %H:%M:%S'", ")", ")", ",", "'# Processed using %s configuration'", "%", "(", "self", ".", "config", "[", "'config'", "]", ")", ",", "'# Analysis Stage: %s'", "%", "(", "focus_stage", ")", ",", "'# Unit: %s'", "%", "ud", "[", "focus_stage", "]", "]", "header", "=", "'\\n'", ".", "join", "(", "header", ")", "+", "'\\n'", "csv", "=", "out", ".", "to_csv", "(", ")", "with", "open", "(", "'%s/%s_%s.csv'", "%", "(", "outdir", ",", "s", ",", "focus_stage", ")", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "header", ")", "f", ".", "write", "(", "csv", ")", "if", "zip_archive", ":", "utils", ".", "zipdir", "(", "outdir", ",", "delete", "=", "True", ")", "return" ]
Function to export raw data. Parameters ---------- outdir : str directory to save toe traces. Defaults to 'main-dir-name_export'. focus_stage : str The name of the analysis stage to export. * 'rawdata': raw data, loaded from csv file. * 'despiked': despiked data. * 'signal'/'background': isolated signal and background data. Created by self.separate, after signal and background regions have been identified by self.autorange. * 'bkgsub': background subtracted data, created by self.bkg_correct * 'ratios': element ratio data, created by self.ratio. * 'calibrated': ratio data calibrated to standards, created by self.calibrate. Defaults to the most recent stage of analysis. analytes : str or array - like Either a single analyte, or list of analytes to export. Defaults to all analytes. samples : str or array - like Either a single sample name, or list of samples to export. Defaults to all samples. filt : str, dict or bool Either logical filter expression contained in a str, a dict of expressions specifying the filter string to use for each analyte or a boolean. Passed to `grab_filt`.
[ "Function", "to", "export", "raw", "data", "." ]
python
test
python-diamond/Diamond
src/collectors/openstackswiftrecon/openstackswiftrecon.py
https://github.com/python-diamond/Diamond/blob/0f3eb04327d6d3ed5e53a9967d6c9d2c09714a47/src/collectors/openstackswiftrecon/openstackswiftrecon.py#L37-L49
def get_default_config(self): """ Returns the default collector settings """ config = super(OpenstackSwiftReconCollector, self).get_default_config() config.update({ 'path': 'swiftrecon', 'recon_account_cache': '/var/cache/swift/account.recon', 'recon_container_cache': '/var/cache/swift/container.recon', 'recon_object_cache': '/var/cache/swift/object.recon', 'interval': 300, }) return config
[ "def", "get_default_config", "(", "self", ")", ":", "config", "=", "super", "(", "OpenstackSwiftReconCollector", ",", "self", ")", ".", "get_default_config", "(", ")", "config", ".", "update", "(", "{", "'path'", ":", "'swiftrecon'", ",", "'recon_account_cache'", ":", "'/var/cache/swift/account.recon'", ",", "'recon_container_cache'", ":", "'/var/cache/swift/container.recon'", ",", "'recon_object_cache'", ":", "'/var/cache/swift/object.recon'", ",", "'interval'", ":", "300", ",", "}", ")", "return", "config" ]
Returns the default collector settings
[ "Returns", "the", "default", "collector", "settings" ]
python
train
calvinku96/labreporthelper
labreporthelper/bestfit/bestfit.py
https://github.com/calvinku96/labreporthelper/blob/4d436241f389c02eb188c313190df62ab28c3763/labreporthelper/bestfit/bestfit.py#L42-L55
def set_args(self, **kwargs): """ Set more arguments to self.args args: **kwargs: key and value represents dictionary key and value """ try: kwargs_items = kwargs.iteritems() except AttributeError: kwargs_items = kwargs.items() for key, val in kwargs_items: self.args[key] = val
[ "def", "set_args", "(", "self", ",", "*", "*", "kwargs", ")", ":", "try", ":", "kwargs_items", "=", "kwargs", ".", "iteritems", "(", ")", "except", "AttributeError", ":", "kwargs_items", "=", "kwargs", ".", "items", "(", ")", "for", "key", ",", "val", "in", "kwargs_items", ":", "self", ".", "args", "[", "key", "]", "=", "val" ]
Set more arguments to self.args args: **kwargs: key and value represents dictionary key and value
[ "Set", "more", "arguments", "to", "self", ".", "args" ]
python
train
dddomodossola/remi
editor/editor_widgets.py
https://github.com/dddomodossola/remi/blob/85206f62220662bb7ecd471042268def71ccad28/editor/editor_widgets.py#L263-L266
def show(self, baseAppInstance): """Allows to show the widget as root window""" self.from_dict_to_fields(self.configDict) super(ProjectConfigurationDialog, self).show(baseAppInstance)
[ "def", "show", "(", "self", ",", "baseAppInstance", ")", ":", "self", ".", "from_dict_to_fields", "(", "self", ".", "configDict", ")", "super", "(", "ProjectConfigurationDialog", ",", "self", ")", ".", "show", "(", "baseAppInstance", ")" ]
Allows to show the widget as root window
[ "Allows", "to", "show", "the", "widget", "as", "root", "window" ]
python
train
numenta/nupic
src/nupic/frameworks/opf/helpers.py
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/frameworks/opf/helpers.py#L37-L48
def loadExperiment(path): """Loads the experiment description file from the path. :param path: (string) The path to a directory containing a description.py file or the file itself. :returns: (config, control) """ if not os.path.isdir(path): path = os.path.dirname(path) descriptionPyModule = loadExperimentDescriptionScriptFromDir(path) expIface = getExperimentDescriptionInterfaceFromModule(descriptionPyModule) return expIface.getModelDescription(), expIface.getModelControl()
[ "def", "loadExperiment", "(", "path", ")", ":", "if", "not", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "path", "=", "os", ".", "path", ".", "dirname", "(", "path", ")", "descriptionPyModule", "=", "loadExperimentDescriptionScriptFromDir", "(", "path", ")", "expIface", "=", "getExperimentDescriptionInterfaceFromModule", "(", "descriptionPyModule", ")", "return", "expIface", ".", "getModelDescription", "(", ")", ",", "expIface", ".", "getModelControl", "(", ")" ]
Loads the experiment description file from the path. :param path: (string) The path to a directory containing a description.py file or the file itself. :returns: (config, control)
[ "Loads", "the", "experiment", "description", "file", "from", "the", "path", "." ]
python
valid
chrisrink10/basilisp
src/basilisp/lang/runtime.py
https://github.com/chrisrink10/basilisp/blob/3d82670ee218ec64eb066289c82766d14d18cc92/src/basilisp/lang/runtime.py#L788-L793
def concat(*seqs) -> ISeq: """Concatenate the sequences given by seqs into a single ISeq.""" allseqs = lseq.sequence(itertools.chain(*filter(None, map(to_seq, seqs)))) if allseqs is None: return lseq.EMPTY return allseqs
[ "def", "concat", "(", "*", "seqs", ")", "->", "ISeq", ":", "allseqs", "=", "lseq", ".", "sequence", "(", "itertools", ".", "chain", "(", "*", "filter", "(", "None", ",", "map", "(", "to_seq", ",", "seqs", ")", ")", ")", ")", "if", "allseqs", "is", "None", ":", "return", "lseq", ".", "EMPTY", "return", "allseqs" ]
Concatenate the sequences given by seqs into a single ISeq.
[ "Concatenate", "the", "sequences", "given", "by", "seqs", "into", "a", "single", "ISeq", "." ]
python
test
bdcht/grandalf
grandalf/layouts.py
https://github.com/bdcht/grandalf/blob/b0a604afa79e5201eebe5feb56ae5ec7afc07b95/grandalf/layouts.py#L660-L682
def _coord_vertical_alignment(self): """performs vertical alignment according to current dirvh internal state. """ dirh,dirv = self.dirh,self.dirv g = self.grx for l in self.layers[::-dirv]: if not l.prevlayer(): continue r=None for vk in l[::dirh]: for m in l._medianindex(vk): # take the median node in dirv layer: um = l.prevlayer()[m] # if vk is "free" align it with um's root if g[vk].align is vk: if dirv==1: vpair = (vk,um) else: vpair = (um,vk) # if vk<->um link is used for alignment if (vpair not in self.conflicts) and \ (r==None or dirh*r<dirh*m): g[um].align = vk g[vk].root = g[um].root g[vk].align = g[vk].root r = m
[ "def", "_coord_vertical_alignment", "(", "self", ")", ":", "dirh", ",", "dirv", "=", "self", ".", "dirh", ",", "self", ".", "dirv", "g", "=", "self", ".", "grx", "for", "l", "in", "self", ".", "layers", "[", ":", ":", "-", "dirv", "]", ":", "if", "not", "l", ".", "prevlayer", "(", ")", ":", "continue", "r", "=", "None", "for", "vk", "in", "l", "[", ":", ":", "dirh", "]", ":", "for", "m", "in", "l", ".", "_medianindex", "(", "vk", ")", ":", "# take the median node in dirv layer:", "um", "=", "l", ".", "prevlayer", "(", ")", "[", "m", "]", "# if vk is \"free\" align it with um's root", "if", "g", "[", "vk", "]", ".", "align", "is", "vk", ":", "if", "dirv", "==", "1", ":", "vpair", "=", "(", "vk", ",", "um", ")", "else", ":", "vpair", "=", "(", "um", ",", "vk", ")", "# if vk<->um link is used for alignment", "if", "(", "vpair", "not", "in", "self", ".", "conflicts", ")", "and", "(", "r", "==", "None", "or", "dirh", "*", "r", "<", "dirh", "*", "m", ")", ":", "g", "[", "um", "]", ".", "align", "=", "vk", "g", "[", "vk", "]", ".", "root", "=", "g", "[", "um", "]", ".", "root", "g", "[", "vk", "]", ".", "align", "=", "g", "[", "vk", "]", ".", "root", "r", "=", "m" ]
performs vertical alignment according to current dirvh internal state.
[ "performs", "vertical", "alignment", "according", "to", "current", "dirvh", "internal", "state", "." ]
python
train
tensorflow/probability
tensorflow_probability/python/math/linalg.py
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/math/linalg.py#L837-L871
def _sparse_tensor_dense_matmul(sp_a, b, **kwargs): """Returns (batched) matmul of a SparseTensor with a Tensor. Args: sp_a: `SparseTensor` representing a (batch of) matrices. b: `Tensor` representing a (batch of) matrices, with the same batch shape of `sp_a`. The shape must be compatible with the shape of `sp_a` and kwargs. **kwargs: Keyword arguments to `tf.sparse_tensor_dense_matmul`. Returns: product: A dense (batch of) matrix-shaped Tensor of the same batch shape and dtype as `sp_a` and `b`. If `sp_a` or `b` is adjointed through `kwargs` then the shape is adjusted accordingly. """ batch_shape = _get_shape(sp_a)[:-2] # Reshape the SparseTensor into a rank 3 SparseTensors, with the # batch shape flattened to a single dimension. If the batch rank is 0, then # we add a batch dimension of rank 1. sp_a = tf.sparse.reshape(sp_a, tf.concat([[-1], _get_shape(sp_a)[-2:]], axis=0)) # Reshape b to stack the batch dimension along the rows. b = tf.reshape(b, tf.concat([[-1], _get_shape(b)[-1:]], axis=0)) # Convert the SparseTensor to a matrix in block diagonal form with blocks of # matrices [M, N]. This allow us to use tf.sparse_tensor_dense_matmul which # only accepts rank 2 (Sparse)Tensors. out = tf.sparse.sparse_dense_matmul(_sparse_block_diag(sp_a), b, **kwargs) # Finally retrieve the original batch shape from the resulting rank 2 Tensor. # Note that we avoid inferring the final shape from `sp_a` or `b` because we # might have transposed one or both of them. return tf.reshape( out, tf.concat([batch_shape, [-1], _get_shape(out)[-1:]], axis=0))
[ "def", "_sparse_tensor_dense_matmul", "(", "sp_a", ",", "b", ",", "*", "*", "kwargs", ")", ":", "batch_shape", "=", "_get_shape", "(", "sp_a", ")", "[", ":", "-", "2", "]", "# Reshape the SparseTensor into a rank 3 SparseTensors, with the", "# batch shape flattened to a single dimension. If the batch rank is 0, then", "# we add a batch dimension of rank 1.", "sp_a", "=", "tf", ".", "sparse", ".", "reshape", "(", "sp_a", ",", "tf", ".", "concat", "(", "[", "[", "-", "1", "]", ",", "_get_shape", "(", "sp_a", ")", "[", "-", "2", ":", "]", "]", ",", "axis", "=", "0", ")", ")", "# Reshape b to stack the batch dimension along the rows.", "b", "=", "tf", ".", "reshape", "(", "b", ",", "tf", ".", "concat", "(", "[", "[", "-", "1", "]", ",", "_get_shape", "(", "b", ")", "[", "-", "1", ":", "]", "]", ",", "axis", "=", "0", ")", ")", "# Convert the SparseTensor to a matrix in block diagonal form with blocks of", "# matrices [M, N]. This allow us to use tf.sparse_tensor_dense_matmul which", "# only accepts rank 2 (Sparse)Tensors.", "out", "=", "tf", ".", "sparse", ".", "sparse_dense_matmul", "(", "_sparse_block_diag", "(", "sp_a", ")", ",", "b", ",", "*", "*", "kwargs", ")", "# Finally retrieve the original batch shape from the resulting rank 2 Tensor.", "# Note that we avoid inferring the final shape from `sp_a` or `b` because we", "# might have transposed one or both of them.", "return", "tf", ".", "reshape", "(", "out", ",", "tf", ".", "concat", "(", "[", "batch_shape", ",", "[", "-", "1", "]", ",", "_get_shape", "(", "out", ")", "[", "-", "1", ":", "]", "]", ",", "axis", "=", "0", ")", ")" ]
Returns (batched) matmul of a SparseTensor with a Tensor. Args: sp_a: `SparseTensor` representing a (batch of) matrices. b: `Tensor` representing a (batch of) matrices, with the same batch shape of `sp_a`. The shape must be compatible with the shape of `sp_a` and kwargs. **kwargs: Keyword arguments to `tf.sparse_tensor_dense_matmul`. Returns: product: A dense (batch of) matrix-shaped Tensor of the same batch shape and dtype as `sp_a` and `b`. If `sp_a` or `b` is adjointed through `kwargs` then the shape is adjusted accordingly.
[ "Returns", "(", "batched", ")", "matmul", "of", "a", "SparseTensor", "with", "a", "Tensor", "." ]
python
test
neuropsychology/NeuroKit.py
neurokit/signal/events.py
https://github.com/neuropsychology/NeuroKit.py/blob/c9589348fbbde0fa7e986048c48f38e6b488adfe/neurokit/signal/events.py#L235-L295
def plot_events_in_signal(signal, events_onsets, color="red", marker=None): """ Plot events in signal. Parameters ---------- signal : array or DataFrame Signal array (can be a dataframe with many signals). events_onsets : list or ndarray Events location. color : int or list Marker color. marker : marker or list of markers (for possible marker values, see: https://matplotlib.org/api/markers_api.html) Marker type. Example ---------- >>> import neurokit as nk >>> bio = nk.bio_process(ecg=signal, sampling_rate=1000) >>> events_onsets = bio["ECG"]["R_Peaks"] >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], events_onsets) >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], events_onsets, color="red", marker="o") >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], [bio["ECG"]["P_Waves"], bio["ECG"]["R_Peaks"]], color=["blue", "red"], marker=["d","o"]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ - `Renatosc <https://github.com/renatosc/>`_ *Dependencies* - matplotlib - pandas """ df = pd.DataFrame(signal) ax = df.plot() def plotOnSignal(x, color, marker=None): if (marker is None): plt.axvline(x=event, color=color) else: plt.plot(x, signal[x], marker, color=color) events_onsets = np.array(events_onsets) try: len(events_onsets[0]) for index, dim in enumerate(events_onsets): for event in dim: plotOnSignal(x=event, color=color[index] if isinstance(color, list) else color, marker=marker[index] if isinstance(marker, list) else marker) except TypeError: for event in events_onsets: plotOnSignal(x=event, color=color[0] if isinstance(color, list) else color, marker=marker[0] if isinstance(marker, list) else marker) return ax
[ "def", "plot_events_in_signal", "(", "signal", ",", "events_onsets", ",", "color", "=", "\"red\"", ",", "marker", "=", "None", ")", ":", "df", "=", "pd", ".", "DataFrame", "(", "signal", ")", "ax", "=", "df", ".", "plot", "(", ")", "def", "plotOnSignal", "(", "x", ",", "color", ",", "marker", "=", "None", ")", ":", "if", "(", "marker", "is", "None", ")", ":", "plt", ".", "axvline", "(", "x", "=", "event", ",", "color", "=", "color", ")", "else", ":", "plt", ".", "plot", "(", "x", ",", "signal", "[", "x", "]", ",", "marker", ",", "color", "=", "color", ")", "events_onsets", "=", "np", ".", "array", "(", "events_onsets", ")", "try", ":", "len", "(", "events_onsets", "[", "0", "]", ")", "for", "index", ",", "dim", "in", "enumerate", "(", "events_onsets", ")", ":", "for", "event", "in", "dim", ":", "plotOnSignal", "(", "x", "=", "event", ",", "color", "=", "color", "[", "index", "]", "if", "isinstance", "(", "color", ",", "list", ")", "else", "color", ",", "marker", "=", "marker", "[", "index", "]", "if", "isinstance", "(", "marker", ",", "list", ")", "else", "marker", ")", "except", "TypeError", ":", "for", "event", "in", "events_onsets", ":", "plotOnSignal", "(", "x", "=", "event", ",", "color", "=", "color", "[", "0", "]", "if", "isinstance", "(", "color", ",", "list", ")", "else", "color", ",", "marker", "=", "marker", "[", "0", "]", "if", "isinstance", "(", "marker", ",", "list", ")", "else", "marker", ")", "return", "ax" ]
Plot events in signal. Parameters ---------- signal : array or DataFrame Signal array (can be a dataframe with many signals). events_onsets : list or ndarray Events location. color : int or list Marker color. marker : marker or list of markers (for possible marker values, see: https://matplotlib.org/api/markers_api.html) Marker type. Example ---------- >>> import neurokit as nk >>> bio = nk.bio_process(ecg=signal, sampling_rate=1000) >>> events_onsets = bio["ECG"]["R_Peaks"] >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], events_onsets) >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], events_onsets, color="red", marker="o") >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], [bio["ECG"]["P_Waves"], bio["ECG"]["R_Peaks"]], color=["blue", "red"], marker=["d","o"]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ - `Renatosc <https://github.com/renatosc/>`_ *Dependencies* - matplotlib - pandas
[ "Plot", "events", "in", "signal", "." ]
python
train