repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
ipfs/py-ipfs-api
ipfsapi/client.py
https://github.com/ipfs/py-ipfs-api/blob/7574dad04877b45dbe4ad321dcfa9e880eb2d90c/ipfsapi/client.py#L2194-L2221
def add_pyobj(self, py_obj, **kwargs): """Adds a picklable Python object as a file to IPFS. .. deprecated:: 0.4.2 The ``*_pyobj`` APIs allow for arbitrary code execution if abused. Either switch to :meth:`~ipfsapi.Client.add_json` or use ``client.add_bytes(pickle.dumps(py_obj))`` instead. Please see :meth:`~ipfsapi.Client.get_pyobj` for the **security risks** of using these methods! .. code-block:: python >>> c.add_pyobj([0, 1.0, 2j, '3', 4e5]) 'QmWgXZSUTNNDD8LdkdJ8UXSn55KfFnNvTP1r7SyaQd74Ji' Parameters ---------- py_obj : object A picklable Python object Returns ------- str : Hash of the added IPFS object """ warnings.warn("Using `*_pyobj` on untrusted data is a security risk", DeprecationWarning) return self.add_bytes(encoding.Pickle().encode(py_obj), **kwargs)
[ "def", "add_pyobj", "(", "self", ",", "py_obj", ",", "*", "*", "kwargs", ")", ":", "warnings", ".", "warn", "(", "\"Using `*_pyobj` on untrusted data is a security risk\"", ",", "DeprecationWarning", ")", "return", "self", ".", "add_bytes", "(", "encoding", ".", "Pickle", "(", ")", ".", "encode", "(", "py_obj", ")", ",", "*", "*", "kwargs", ")" ]
Adds a picklable Python object as a file to IPFS. .. deprecated:: 0.4.2 The ``*_pyobj`` APIs allow for arbitrary code execution if abused. Either switch to :meth:`~ipfsapi.Client.add_json` or use ``client.add_bytes(pickle.dumps(py_obj))`` instead. Please see :meth:`~ipfsapi.Client.get_pyobj` for the **security risks** of using these methods! .. code-block:: python >>> c.add_pyobj([0, 1.0, 2j, '3', 4e5]) 'QmWgXZSUTNNDD8LdkdJ8UXSn55KfFnNvTP1r7SyaQd74Ji' Parameters ---------- py_obj : object A picklable Python object Returns ------- str : Hash of the added IPFS object
[ "Adds", "a", "picklable", "Python", "object", "as", "a", "file", "to", "IPFS", "." ]
python
train
geophysics-ubonn/crtomo_tools
lib/crtomo/plotManager.py
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/plotManager.py#L290-L498
def plot_elements_to_ax(self, cid, ax=None, **kwargs): """Plot element data (parameter sets). If the parameter *ax* is not set, then a new figure will be created with a corresponding axes. Parameters ---------- cid : int or :py:class:`numpy.ndarray` if *cid* is an int, then treat it as the id of the parameter set stored in self.parman. Otherwise, expect it to be the data to plot. At the moment no checks are made that the data fits the grid. ax : matplotlib.Axes, optional plot to this axes object, if provided alpha_cid : int, optional if given, use the corresponding dataset in self.parman as the alpha channel. No checks are made if all values of this data set lie between 0 and 1 (0 being fully transparent, and 1 being opaque). xmin : float, optional minimal x limit to plot xmax : float, optional maximal x limit to plot zmin : float, optional minimal z limit to plot zmax : float, optional maximial z limit to plot converter : function, optional if given, then use this function to convert the data into another representation. The given function must work with a numpy array. Default: None norm : norm object, optional the norm object for matplotlib plotting can be provided here cmap_name : string, optional name of the colorbar to use. Default is "viridis". To reverse colors, use the _r version "viridis_r" cbposition : ? ? cblabel : string, optional colorbar label cbsegments : int, optional ? cbnrticks : int, optional ? over : color, optional color to use for values above the current cb-limit. Default: ? under : color to use for values below the current cb-limit. Default: ? bad : color to use for nan-values. Default: ? plot_colorbar : bool, optional if true, plot a colorbar next to the plot title : string, optional plot title string xlabel : string, optional Set xlabel of the resulting plot ylabel : string, optional Set ylabel of the resulting plot no_elecs : bool, optional If True, plot no electrodes rasterize: bool, optional if True, rasterize the plot. Default: False Returns ------- fig: ax: cnorm: cmap: cb: colorbar instance, optional only of plot_colorbar is True scalarMap: use to create custom colorbars """ rasterize = kwargs.get('rasterize', False) xmin = kwargs.get('xmin', self.grid.grid['x'].min()) xmax = kwargs.get('xmax', self.grid.grid['x'].max()) zmin = kwargs.get('zmin', self.grid.grid['z'].min()) zmax = kwargs.get('zmax', self.grid.grid['z'].max()) # try to create a suitable default figure size if ax is None: # 15 cm sizex = 15 / 2.54 sizez = sizex * (np.abs(zmax - zmin) / np.abs(xmax - xmin) * 1.1) # add 1 inch to accommodate colorbar sizez += 1.3 fig, ax = plt.subplots(figsize=(sizex, sizez)) else: fig = ax.get_figure() sizex, sizez = fig.get_size_inches() # get data if isinstance(cid, int): subdata = self.parman.parsets[cid] else: subdata = cid if 'converter' in kwargs: subdata = kwargs['converter'](subdata) # color map cmap_name = kwargs.get('cmap_name', 'viridis') cmap = mpl.cm.get_cmap( cmap_name, kwargs.get('cbsegments', None) ) over = kwargs.get('over', 'orange') under = kwargs.get('under', 'mediumblue') bad = kwargs.get('bad', 'white') cmap.set_over(over) cmap.set_under(under) cmap.set_bad(bad) # normalize data data_min = kwargs.get('cbmin', subdata.min()) data_max = kwargs.get('cbmax', subdata.max()) if(data_min is not None and data_max is not None and data_min == data_max): data_min -= 1 data_max += 1 cnorm = mpl.colors.Normalize(vmin=data_min, vmax=data_max) scalarMap = mpl.cm.ScalarMappable(norm=cnorm, cmap=cmap) fcolors = scalarMap.to_rgba(subdata) scalarMap.set_array(subdata) # if applicable, apply alpha values alpha_cid = kwargs.get('cid_alpha', None) if isinstance(alpha_cid, int): print('applying alpha') alpha = self.parman.parsets[alpha_cid] # make sure this data set is normalized between 0 and 1 if np.nanmin(alpha) < 0 or np.nanmax(alpha) > 1: raise Exception( 'alpha data set must be normalized between 0 and 1' ) fcolors[:, 3] = alpha all_xz = [] for x, z in zip(self.grid.grid['x'], self.grid.grid['z']): tmp = np.vstack((x, z)).T all_xz.append(tmp) norm = kwargs.get('norm', None) collection = mpl.collections.PolyCollection( all_xz, edgecolor=fcolors, facecolor=fcolors, linewidth=0.0, cmap=cmap, norm=norm, rasterized=rasterize, ) collection.set_cmap(cmap) ax.add_collection(collection) no_elecs = kwargs.get('no_elecs', False) if self.grid.electrodes is not None and no_elecs is not True: ax.scatter( self.grid.electrodes[:, 1], self.grid.electrodes[:, 2], color=self.grid.props['electrode_color'], # clip_on=False, ) ax.set_xlim(xmin, xmax) ax.set_ylim(zmin, zmax) ax.set_xlabel(kwargs.get('xlabel', 'x')) ax.set_ylabel(kwargs.get('zlabel', 'z')) ax.set_aspect('equal') ax.set_title( kwargs.get('title', '') ) if kwargs.get('plot_colorbar', False): divider = make_axes_locatable(ax) cbposition = kwargs.get('cbposition', 'vertical') if cbposition == 'horizontal': ax_cb = divider.new_vertical( size=0.1, pad=0.4, pack_start=True ) elif cbposition == 'vertical': ax_cb = divider.new_horizontal( size=0.1, pad=0.4, ) else: raise Exception('cbposition not recognized') ax.get_figure().add_axes(ax_cb) cb = fig.colorbar( scalarMap, cax=ax_cb, orientation=cbposition, label=kwargs.get('cblabel', ''), ticks=mpl.ticker.MaxNLocator(kwargs.get('cbnrticks', 3)), format=kwargs.get('cbformat', None), extend='both', ) return fig, ax, cnorm, cmap, cb, scalarMap return fig, ax, cnorm, cmap, scalarMap
[ "def", "plot_elements_to_ax", "(", "self", ",", "cid", ",", "ax", "=", "None", ",", "*", "*", "kwargs", ")", ":", "rasterize", "=", "kwargs", ".", "get", "(", "'rasterize'", ",", "False", ")", "xmin", "=", "kwargs", ".", "get", "(", "'xmin'", ",", "self", ".", "grid", ".", "grid", "[", "'x'", "]", ".", "min", "(", ")", ")", "xmax", "=", "kwargs", ".", "get", "(", "'xmax'", ",", "self", ".", "grid", ".", "grid", "[", "'x'", "]", ".", "max", "(", ")", ")", "zmin", "=", "kwargs", ".", "get", "(", "'zmin'", ",", "self", ".", "grid", ".", "grid", "[", "'z'", "]", ".", "min", "(", ")", ")", "zmax", "=", "kwargs", ".", "get", "(", "'zmax'", ",", "self", ".", "grid", ".", "grid", "[", "'z'", "]", ".", "max", "(", ")", ")", "# try to create a suitable default figure size", "if", "ax", "is", "None", ":", "# 15 cm", "sizex", "=", "15", "/", "2.54", "sizez", "=", "sizex", "*", "(", "np", ".", "abs", "(", "zmax", "-", "zmin", ")", "/", "np", ".", "abs", "(", "xmax", "-", "xmin", ")", "*", "1.1", ")", "# add 1 inch to accommodate colorbar", "sizez", "+=", "1.3", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "figsize", "=", "(", "sizex", ",", "sizez", ")", ")", "else", ":", "fig", "=", "ax", ".", "get_figure", "(", ")", "sizex", ",", "sizez", "=", "fig", ".", "get_size_inches", "(", ")", "# get data", "if", "isinstance", "(", "cid", ",", "int", ")", ":", "subdata", "=", "self", ".", "parman", ".", "parsets", "[", "cid", "]", "else", ":", "subdata", "=", "cid", "if", "'converter'", "in", "kwargs", ":", "subdata", "=", "kwargs", "[", "'converter'", "]", "(", "subdata", ")", "# color map", "cmap_name", "=", "kwargs", ".", "get", "(", "'cmap_name'", ",", "'viridis'", ")", "cmap", "=", "mpl", ".", "cm", ".", "get_cmap", "(", "cmap_name", ",", "kwargs", ".", "get", "(", "'cbsegments'", ",", "None", ")", ")", "over", "=", "kwargs", ".", "get", "(", "'over'", ",", "'orange'", ")", "under", "=", "kwargs", ".", "get", "(", "'under'", ",", "'mediumblue'", ")", "bad", "=", "kwargs", ".", "get", "(", "'bad'", ",", "'white'", ")", "cmap", ".", "set_over", "(", "over", ")", "cmap", ".", "set_under", "(", "under", ")", "cmap", ".", "set_bad", "(", "bad", ")", "# normalize data", "data_min", "=", "kwargs", ".", "get", "(", "'cbmin'", ",", "subdata", ".", "min", "(", ")", ")", "data_max", "=", "kwargs", ".", "get", "(", "'cbmax'", ",", "subdata", ".", "max", "(", ")", ")", "if", "(", "data_min", "is", "not", "None", "and", "data_max", "is", "not", "None", "and", "data_min", "==", "data_max", ")", ":", "data_min", "-=", "1", "data_max", "+=", "1", "cnorm", "=", "mpl", ".", "colors", ".", "Normalize", "(", "vmin", "=", "data_min", ",", "vmax", "=", "data_max", ")", "scalarMap", "=", "mpl", ".", "cm", ".", "ScalarMappable", "(", "norm", "=", "cnorm", ",", "cmap", "=", "cmap", ")", "fcolors", "=", "scalarMap", ".", "to_rgba", "(", "subdata", ")", "scalarMap", ".", "set_array", "(", "subdata", ")", "# if applicable, apply alpha values", "alpha_cid", "=", "kwargs", ".", "get", "(", "'cid_alpha'", ",", "None", ")", "if", "isinstance", "(", "alpha_cid", ",", "int", ")", ":", "print", "(", "'applying alpha'", ")", "alpha", "=", "self", ".", "parman", ".", "parsets", "[", "alpha_cid", "]", "# make sure this data set is normalized between 0 and 1", "if", "np", ".", "nanmin", "(", "alpha", ")", "<", "0", "or", "np", ".", "nanmax", "(", "alpha", ")", ">", "1", ":", "raise", "Exception", "(", "'alpha data set must be normalized between 0 and 1'", ")", "fcolors", "[", ":", ",", "3", "]", "=", "alpha", "all_xz", "=", "[", "]", "for", "x", ",", "z", "in", "zip", "(", "self", ".", "grid", ".", "grid", "[", "'x'", "]", ",", "self", ".", "grid", ".", "grid", "[", "'z'", "]", ")", ":", "tmp", "=", "np", ".", "vstack", "(", "(", "x", ",", "z", ")", ")", ".", "T", "all_xz", ".", "append", "(", "tmp", ")", "norm", "=", "kwargs", ".", "get", "(", "'norm'", ",", "None", ")", "collection", "=", "mpl", ".", "collections", ".", "PolyCollection", "(", "all_xz", ",", "edgecolor", "=", "fcolors", ",", "facecolor", "=", "fcolors", ",", "linewidth", "=", "0.0", ",", "cmap", "=", "cmap", ",", "norm", "=", "norm", ",", "rasterized", "=", "rasterize", ",", ")", "collection", ".", "set_cmap", "(", "cmap", ")", "ax", ".", "add_collection", "(", "collection", ")", "no_elecs", "=", "kwargs", ".", "get", "(", "'no_elecs'", ",", "False", ")", "if", "self", ".", "grid", ".", "electrodes", "is", "not", "None", "and", "no_elecs", "is", "not", "True", ":", "ax", ".", "scatter", "(", "self", ".", "grid", ".", "electrodes", "[", ":", ",", "1", "]", ",", "self", ".", "grid", ".", "electrodes", "[", ":", ",", "2", "]", ",", "color", "=", "self", ".", "grid", ".", "props", "[", "'electrode_color'", "]", ",", "# clip_on=False,", ")", "ax", ".", "set_xlim", "(", "xmin", ",", "xmax", ")", "ax", ".", "set_ylim", "(", "zmin", ",", "zmax", ")", "ax", ".", "set_xlabel", "(", "kwargs", ".", "get", "(", "'xlabel'", ",", "'x'", ")", ")", "ax", ".", "set_ylabel", "(", "kwargs", ".", "get", "(", "'zlabel'", ",", "'z'", ")", ")", "ax", ".", "set_aspect", "(", "'equal'", ")", "ax", ".", "set_title", "(", "kwargs", ".", "get", "(", "'title'", ",", "''", ")", ")", "if", "kwargs", ".", "get", "(", "'plot_colorbar'", ",", "False", ")", ":", "divider", "=", "make_axes_locatable", "(", "ax", ")", "cbposition", "=", "kwargs", ".", "get", "(", "'cbposition'", ",", "'vertical'", ")", "if", "cbposition", "==", "'horizontal'", ":", "ax_cb", "=", "divider", ".", "new_vertical", "(", "size", "=", "0.1", ",", "pad", "=", "0.4", ",", "pack_start", "=", "True", ")", "elif", "cbposition", "==", "'vertical'", ":", "ax_cb", "=", "divider", ".", "new_horizontal", "(", "size", "=", "0.1", ",", "pad", "=", "0.4", ",", ")", "else", ":", "raise", "Exception", "(", "'cbposition not recognized'", ")", "ax", ".", "get_figure", "(", ")", ".", "add_axes", "(", "ax_cb", ")", "cb", "=", "fig", ".", "colorbar", "(", "scalarMap", ",", "cax", "=", "ax_cb", ",", "orientation", "=", "cbposition", ",", "label", "=", "kwargs", ".", "get", "(", "'cblabel'", ",", "''", ")", ",", "ticks", "=", "mpl", ".", "ticker", ".", "MaxNLocator", "(", "kwargs", ".", "get", "(", "'cbnrticks'", ",", "3", ")", ")", ",", "format", "=", "kwargs", ".", "get", "(", "'cbformat'", ",", "None", ")", ",", "extend", "=", "'both'", ",", ")", "return", "fig", ",", "ax", ",", "cnorm", ",", "cmap", ",", "cb", ",", "scalarMap", "return", "fig", ",", "ax", ",", "cnorm", ",", "cmap", ",", "scalarMap" ]
Plot element data (parameter sets). If the parameter *ax* is not set, then a new figure will be created with a corresponding axes. Parameters ---------- cid : int or :py:class:`numpy.ndarray` if *cid* is an int, then treat it as the id of the parameter set stored in self.parman. Otherwise, expect it to be the data to plot. At the moment no checks are made that the data fits the grid. ax : matplotlib.Axes, optional plot to this axes object, if provided alpha_cid : int, optional if given, use the corresponding dataset in self.parman as the alpha channel. No checks are made if all values of this data set lie between 0 and 1 (0 being fully transparent, and 1 being opaque). xmin : float, optional minimal x limit to plot xmax : float, optional maximal x limit to plot zmin : float, optional minimal z limit to plot zmax : float, optional maximial z limit to plot converter : function, optional if given, then use this function to convert the data into another representation. The given function must work with a numpy array. Default: None norm : norm object, optional the norm object for matplotlib plotting can be provided here cmap_name : string, optional name of the colorbar to use. Default is "viridis". To reverse colors, use the _r version "viridis_r" cbposition : ? ? cblabel : string, optional colorbar label cbsegments : int, optional ? cbnrticks : int, optional ? over : color, optional color to use for values above the current cb-limit. Default: ? under : color to use for values below the current cb-limit. Default: ? bad : color to use for nan-values. Default: ? plot_colorbar : bool, optional if true, plot a colorbar next to the plot title : string, optional plot title string xlabel : string, optional Set xlabel of the resulting plot ylabel : string, optional Set ylabel of the resulting plot no_elecs : bool, optional If True, plot no electrodes rasterize: bool, optional if True, rasterize the plot. Default: False Returns ------- fig: ax: cnorm: cmap: cb: colorbar instance, optional only of plot_colorbar is True scalarMap: use to create custom colorbars
[ "Plot", "element", "data", "(", "parameter", "sets", ")", "." ]
python
train
lpantano/seqcluster
seqcluster/libs/thinkbayes.py
https://github.com/lpantano/seqcluster/blob/774e23add8cd4fdc83d626cea3bd1f458e7d060d/seqcluster/libs/thinkbayes.py#L1283-L1296
def MakeSuiteFromDict(d, name=''): """Makes a suite from a map from values to probabilities. Args: d: dictionary that maps values to probabilities name: string name for this suite Returns: Suite object """ suite = Suite(name=name) suite.SetDict(d) suite.Normalize() return suite
[ "def", "MakeSuiteFromDict", "(", "d", ",", "name", "=", "''", ")", ":", "suite", "=", "Suite", "(", "name", "=", "name", ")", "suite", ".", "SetDict", "(", "d", ")", "suite", ".", "Normalize", "(", ")", "return", "suite" ]
Makes a suite from a map from values to probabilities. Args: d: dictionary that maps values to probabilities name: string name for this suite Returns: Suite object
[ "Makes", "a", "suite", "from", "a", "map", "from", "values", "to", "probabilities", "." ]
python
train
idlesign/uwsgiconf
uwsgiconf/options/caching.py
https://github.com/idlesign/uwsgiconf/blob/475407acb44199edbf7e0a66261bfeb51de1afae/uwsgiconf/options/caching.py#L83-L196
def add_cache( self, name, max_items, expires=None, store=None, store_sync_interval=None, store_delete=None, hash_algo=None, hash_size=None, key_size=None, udp_clients=None, udp_servers=None, block_size=None, block_count=None, sync_from=None, mode_bitmap=None, use_lastmod=None, full_silent=None, full_purge_lru=None): """Creates cache. Default mode: single block. .. note:: This uses new generation ``cache2`` option available since uWSGI 1.9. .. note:: When at least one cache is configured without ``full_purge_lru`` and the master is enabled a thread named "the cache sweeper" is started. Its main purpose is deleting expired keys from the cache. If you want auto-expiring you need to enable the master. :param str|unicode name: Set the name of the cache. Must be unique in an instance. :param int max_items: Set the maximum number of cache items. .. note:: Effective number of items is **max_items - 1** - the first item of the cache is always internally used as "NULL/None/undef". :param int expires: The number of seconds after the object is no more valid (and will be removed by the cache sweeper when ``full_purge_lru`` is not set. :param str|unicode store: Set the filename for the persistent storage. If it doesn't exist, the system assumes an empty cache and the file will be created. :param int store_sync_interval: Set the number of seconds after which msync() is called to flush memory cache on disk when in persistent mode. By default it is disabled leaving the decision-making to the kernel. :param bool store_delete: uWSGI, by default, will not start if a cache file exists and the store file does not match the configured items/blocksize. Setting this option will make uWSGI delete the existing file upon mismatch and create a new one. :param str|unicode hash_algo: Set the hash algorithm used in the hash table. Current options are: * djb33x (default) * murmur2 :param int hash_size: This is the size of the hash table in bytes. Generally 65536 (the default) is a good value. .. note:: Change it only if you know what you are doing or if you have a lot of collisions in your cache. :param int key_size: Set the maximum size of a key, in bytes. Default: 2048. :param str|unicode|list udp_clients: List of UDP servers which will receive UDP cache updates. :param str|unicode |list udp_servers: List of UDP addresses on which to bind the cache to wait for UDP updates. :param int block_size: Set the size (in bytes) of a single block. .. note:: It's a good idea to use a multiple of 4096 (common memory page size). :param int block_count: Set the number of blocks in the cache. Useful only in bitmap mode, otherwise the number of blocks is equal to the maximum number of items. :param str|unicode|list sync_from: List of uWSGI addresses which the cache subsystem will connect to for getting a full dump of the cache. It can be used for initial cache synchronization. The first node sending a valid dump will stop the procedure. :param bool mode_bitmap: Enable (more versatile but relatively slower) bitmap mode. http://uwsgi-docs.readthedocs.io/en/latest/Caching.html#single-block-faster-vs-bitmaps-slower .. warning:: Considered production ready only from uWSGI 2.0.2. :param bool use_lastmod: Enabling will update last_modified_at timestamp of each cache on every cache item modification. Enable it if you want to track this value or if other features depend on it. This value will then be accessible via the stats socket. :param bool full_silent: By default uWSGI will print warning message on every cache set operation if the cache is full. To disable this warning set this option. .. note:: Available since 2.0.4. :param bool full_purge_lru: Allows the caching framework to evict Least Recently Used (LRU) item when you try to add new item to cache storage that is full. .. note:: ``expires`` argument will be ignored. """ value = KeyValue( locals(), keys=[ 'name', 'max_items', 'expires', 'store', 'store_sync_interval', 'store_delete', 'hash_algo', 'hash_size', 'key_size', 'udp_clients', 'udp_servers', 'block_size', 'block_count', 'sync_from', 'mode_bitmap', 'use_lastmod', 'full_silent', 'full_purge_lru', ], aliases={ 'max_items': 'maxitems', 'store_sync_interval': 'storesync', 'hash_algo': 'hash', 'udp_clients': 'nodes', 'block_size': 'blocksize', 'block_count': 'blocks', 'sync_from': 'sync', 'mode_bitmap': 'bitmap', 'use_lastmod': 'lastmod', 'full_silent': 'ignore_full', 'full_purge_lru': 'purge_lru', }, bool_keys=['store_delete', 'mode_bitmap', 'use_lastmod', 'full_silent', 'full_purge_lru'], list_keys=['udp_clients', 'udp_servers', 'sync_from'], ) self._set('cache2', value, multi=True) return self._section
[ "def", "add_cache", "(", "self", ",", "name", ",", "max_items", ",", "expires", "=", "None", ",", "store", "=", "None", ",", "store_sync_interval", "=", "None", ",", "store_delete", "=", "None", ",", "hash_algo", "=", "None", ",", "hash_size", "=", "None", ",", "key_size", "=", "None", ",", "udp_clients", "=", "None", ",", "udp_servers", "=", "None", ",", "block_size", "=", "None", ",", "block_count", "=", "None", ",", "sync_from", "=", "None", ",", "mode_bitmap", "=", "None", ",", "use_lastmod", "=", "None", ",", "full_silent", "=", "None", ",", "full_purge_lru", "=", "None", ")", ":", "value", "=", "KeyValue", "(", "locals", "(", ")", ",", "keys", "=", "[", "'name'", ",", "'max_items'", ",", "'expires'", ",", "'store'", ",", "'store_sync_interval'", ",", "'store_delete'", ",", "'hash_algo'", ",", "'hash_size'", ",", "'key_size'", ",", "'udp_clients'", ",", "'udp_servers'", ",", "'block_size'", ",", "'block_count'", ",", "'sync_from'", ",", "'mode_bitmap'", ",", "'use_lastmod'", ",", "'full_silent'", ",", "'full_purge_lru'", ",", "]", ",", "aliases", "=", "{", "'max_items'", ":", "'maxitems'", ",", "'store_sync_interval'", ":", "'storesync'", ",", "'hash_algo'", ":", "'hash'", ",", "'udp_clients'", ":", "'nodes'", ",", "'block_size'", ":", "'blocksize'", ",", "'block_count'", ":", "'blocks'", ",", "'sync_from'", ":", "'sync'", ",", "'mode_bitmap'", ":", "'bitmap'", ",", "'use_lastmod'", ":", "'lastmod'", ",", "'full_silent'", ":", "'ignore_full'", ",", "'full_purge_lru'", ":", "'purge_lru'", ",", "}", ",", "bool_keys", "=", "[", "'store_delete'", ",", "'mode_bitmap'", ",", "'use_lastmod'", ",", "'full_silent'", ",", "'full_purge_lru'", "]", ",", "list_keys", "=", "[", "'udp_clients'", ",", "'udp_servers'", ",", "'sync_from'", "]", ",", ")", "self", ".", "_set", "(", "'cache2'", ",", "value", ",", "multi", "=", "True", ")", "return", "self", ".", "_section" ]
Creates cache. Default mode: single block. .. note:: This uses new generation ``cache2`` option available since uWSGI 1.9. .. note:: When at least one cache is configured without ``full_purge_lru`` and the master is enabled a thread named "the cache sweeper" is started. Its main purpose is deleting expired keys from the cache. If you want auto-expiring you need to enable the master. :param str|unicode name: Set the name of the cache. Must be unique in an instance. :param int max_items: Set the maximum number of cache items. .. note:: Effective number of items is **max_items - 1** - the first item of the cache is always internally used as "NULL/None/undef". :param int expires: The number of seconds after the object is no more valid (and will be removed by the cache sweeper when ``full_purge_lru`` is not set. :param str|unicode store: Set the filename for the persistent storage. If it doesn't exist, the system assumes an empty cache and the file will be created. :param int store_sync_interval: Set the number of seconds after which msync() is called to flush memory cache on disk when in persistent mode. By default it is disabled leaving the decision-making to the kernel. :param bool store_delete: uWSGI, by default, will not start if a cache file exists and the store file does not match the configured items/blocksize. Setting this option will make uWSGI delete the existing file upon mismatch and create a new one. :param str|unicode hash_algo: Set the hash algorithm used in the hash table. Current options are: * djb33x (default) * murmur2 :param int hash_size: This is the size of the hash table in bytes. Generally 65536 (the default) is a good value. .. note:: Change it only if you know what you are doing or if you have a lot of collisions in your cache. :param int key_size: Set the maximum size of a key, in bytes. Default: 2048. :param str|unicode|list udp_clients: List of UDP servers which will receive UDP cache updates. :param str|unicode |list udp_servers: List of UDP addresses on which to bind the cache to wait for UDP updates. :param int block_size: Set the size (in bytes) of a single block. .. note:: It's a good idea to use a multiple of 4096 (common memory page size). :param int block_count: Set the number of blocks in the cache. Useful only in bitmap mode, otherwise the number of blocks is equal to the maximum number of items. :param str|unicode|list sync_from: List of uWSGI addresses which the cache subsystem will connect to for getting a full dump of the cache. It can be used for initial cache synchronization. The first node sending a valid dump will stop the procedure. :param bool mode_bitmap: Enable (more versatile but relatively slower) bitmap mode. http://uwsgi-docs.readthedocs.io/en/latest/Caching.html#single-block-faster-vs-bitmaps-slower .. warning:: Considered production ready only from uWSGI 2.0.2. :param bool use_lastmod: Enabling will update last_modified_at timestamp of each cache on every cache item modification. Enable it if you want to track this value or if other features depend on it. This value will then be accessible via the stats socket. :param bool full_silent: By default uWSGI will print warning message on every cache set operation if the cache is full. To disable this warning set this option. .. note:: Available since 2.0.4. :param bool full_purge_lru: Allows the caching framework to evict Least Recently Used (LRU) item when you try to add new item to cache storage that is full. .. note:: ``expires`` argument will be ignored.
[ "Creates", "cache", ".", "Default", "mode", ":", "single", "block", "." ]
python
train
LIVVkit/LIVVkit
livvkit/util/elements.py
https://github.com/LIVVkit/LIVVkit/blob/680120cd437e408673e62e535fc0a246c7fc17db/livvkit/util/elements.py#L92-L126
def tab(tab_name, element_list=None, section_list=None): """ Returns a dictionary representing a new tab to display elements. This can be thought of as a simple container for displaying multiple types of information. Args: tab_name: The title to display element_list: The list of elements to display. If a single element is given it will be wrapped in a list. section_list: A list of sections to display. Returns: A dictionary with metadata specifying that it is to be rendered as a page containing multiple elements and/or tab. """ _tab = { 'Type': 'Tab', 'Title': tab_name, } if element_list is not None: if isinstance(element_list, list): _tab['Elements'] = element_list else: _tab['Elements'] = [element_list] if section_list is not None: if isinstance(section_list, list): _tab['Sections'] = section_list else: if 'Elements' not in section_list: _tab['Elements'] = element_list else: _tab['Elements'].append(element_list) return _tab
[ "def", "tab", "(", "tab_name", ",", "element_list", "=", "None", ",", "section_list", "=", "None", ")", ":", "_tab", "=", "{", "'Type'", ":", "'Tab'", ",", "'Title'", ":", "tab_name", ",", "}", "if", "element_list", "is", "not", "None", ":", "if", "isinstance", "(", "element_list", ",", "list", ")", ":", "_tab", "[", "'Elements'", "]", "=", "element_list", "else", ":", "_tab", "[", "'Elements'", "]", "=", "[", "element_list", "]", "if", "section_list", "is", "not", "None", ":", "if", "isinstance", "(", "section_list", ",", "list", ")", ":", "_tab", "[", "'Sections'", "]", "=", "section_list", "else", ":", "if", "'Elements'", "not", "in", "section_list", ":", "_tab", "[", "'Elements'", "]", "=", "element_list", "else", ":", "_tab", "[", "'Elements'", "]", ".", "append", "(", "element_list", ")", "return", "_tab" ]
Returns a dictionary representing a new tab to display elements. This can be thought of as a simple container for displaying multiple types of information. Args: tab_name: The title to display element_list: The list of elements to display. If a single element is given it will be wrapped in a list. section_list: A list of sections to display. Returns: A dictionary with metadata specifying that it is to be rendered as a page containing multiple elements and/or tab.
[ "Returns", "a", "dictionary", "representing", "a", "new", "tab", "to", "display", "elements", ".", "This", "can", "be", "thought", "of", "as", "a", "simple", "container", "for", "displaying", "multiple", "types", "of", "information", "." ]
python
train
codenerix/django-codenerix
codenerix/authbackend.py
https://github.com/codenerix/django-codenerix/blob/1f5527b352141caaee902b37b2648791a06bd57d/codenerix/authbackend.py#L407-L429
def debug(self, msg): ''' Handle the debugging to a file ''' # If debug is not disabled if self.__debug is not False: # If never was set, try to set it up if self.__debug is None: # Check what do we have inside settings debug_filename = getattr(settings, "AD_DEBUG_FILE", None) if debug_filename: # Open the debug file pointer self.__debug = open(settings.AD_DEBUG_FILE, 'a') else: # Disable debuging forever self.__debug = False if self.__debug: # Debug the given message self.__debug.write("{}\n".format(msg)) self.__debug.flush()
[ "def", "debug", "(", "self", ",", "msg", ")", ":", "# If debug is not disabled", "if", "self", ".", "__debug", "is", "not", "False", ":", "# If never was set, try to set it up", "if", "self", ".", "__debug", "is", "None", ":", "# Check what do we have inside settings", "debug_filename", "=", "getattr", "(", "settings", ",", "\"AD_DEBUG_FILE\"", ",", "None", ")", "if", "debug_filename", ":", "# Open the debug file pointer", "self", ".", "__debug", "=", "open", "(", "settings", ".", "AD_DEBUG_FILE", ",", "'a'", ")", "else", ":", "# Disable debuging forever", "self", ".", "__debug", "=", "False", "if", "self", ".", "__debug", ":", "# Debug the given message", "self", ".", "__debug", ".", "write", "(", "\"{}\\n\"", ".", "format", "(", "msg", ")", ")", "self", ".", "__debug", ".", "flush", "(", ")" ]
Handle the debugging to a file
[ "Handle", "the", "debugging", "to", "a", "file" ]
python
train
nickmckay/LiPD-utilities
Python/lipd/directory.py
https://github.com/nickmckay/LiPD-utilities/blob/5dab6bbeffc5effd68e3a6beaca6b76aa928e860/Python/lipd/directory.py#L192-L202
def collect_metadata_file(full_path): """ Create the file metadata and add it to the appropriate section by file-type :param str full_path: :param dict existing_files: :return dict existing files: """ fne = os.path.basename(full_path) fn = os.path.splitext(fne)[0] obj = {"full_path": full_path, "filename_ext": fne, "filename_no_ext": fn, "dir": os.path.dirname(full_path)} return obj
[ "def", "collect_metadata_file", "(", "full_path", ")", ":", "fne", "=", "os", ".", "path", ".", "basename", "(", "full_path", ")", "fn", "=", "os", ".", "path", ".", "splitext", "(", "fne", ")", "[", "0", "]", "obj", "=", "{", "\"full_path\"", ":", "full_path", ",", "\"filename_ext\"", ":", "fne", ",", "\"filename_no_ext\"", ":", "fn", ",", "\"dir\"", ":", "os", ".", "path", ".", "dirname", "(", "full_path", ")", "}", "return", "obj" ]
Create the file metadata and add it to the appropriate section by file-type :param str full_path: :param dict existing_files: :return dict existing files:
[ "Create", "the", "file", "metadata", "and", "add", "it", "to", "the", "appropriate", "section", "by", "file", "-", "type", ":", "param", "str", "full_path", ":", ":", "param", "dict", "existing_files", ":", ":", "return", "dict", "existing", "files", ":" ]
python
train
rshk/python-libxdo
xdo/__init__.py
https://github.com/rshk/python-libxdo/blob/84cafa5943b005bc423edd28203a5266b3579ac3/xdo/__init__.py#L596-L604
def select_window_with_click(self): """ Get a window ID by clicking on it. This function blocks until a selection is made. """ window_ret = window_t(0) _libxdo.xdo_select_window_with_click( self._xdo, ctypes.byref(window_ret)) return window_ret.value
[ "def", "select_window_with_click", "(", "self", ")", ":", "window_ret", "=", "window_t", "(", "0", ")", "_libxdo", ".", "xdo_select_window_with_click", "(", "self", ".", "_xdo", ",", "ctypes", ".", "byref", "(", "window_ret", ")", ")", "return", "window_ret", ".", "value" ]
Get a window ID by clicking on it. This function blocks until a selection is made.
[ "Get", "a", "window", "ID", "by", "clicking", "on", "it", ".", "This", "function", "blocks", "until", "a", "selection", "is", "made", "." ]
python
train
bububa/pyTOP
pyTOP/simba.py
https://github.com/bububa/pyTOP/blob/1e48009bcfe886be392628244b370e6374e1f2b2/pyTOP/simba.py#L310-L322
def add(self, campaign_id, item_id, default_price, title, img_url, nick=None): '''xxxxx.xxxxx.adgroup.add =================================== 创建一个推广组''' request = TOPRequest('xxxxx.xxxxx.adgroup.add') request['campaign_id'] = campaign_id request['item_id'] = item_id request['default_price'] = default_price request['title'] = title request['img_url'] = img_url if nick!=None: request['nick'] = nick self.create(self.execute(request), fields=['success','result','success','result_code','result_message'], models={'result':ADGroup}) return self.result
[ "def", "add", "(", "self", ",", "campaign_id", ",", "item_id", ",", "default_price", ",", "title", ",", "img_url", ",", "nick", "=", "None", ")", ":", "request", "=", "TOPRequest", "(", "'xxxxx.xxxxx.adgroup.add'", ")", "request", "[", "'campaign_id'", "]", "=", "campaign_id", "request", "[", "'item_id'", "]", "=", "item_id", "request", "[", "'default_price'", "]", "=", "default_price", "request", "[", "'title'", "]", "=", "title", "request", "[", "'img_url'", "]", "=", "img_url", "if", "nick", "!=", "None", ":", "request", "[", "'nick'", "]", "=", "nick", "self", ".", "create", "(", "self", ".", "execute", "(", "request", ")", ",", "fields", "=", "[", "'success'", ",", "'result'", ",", "'success'", ",", "'result_code'", ",", "'result_message'", "]", ",", "models", "=", "{", "'result'", ":", "ADGroup", "}", ")", "return", "self", ".", "result" ]
xxxxx.xxxxx.adgroup.add =================================== 创建一个推广组
[ "xxxxx", ".", "xxxxx", ".", "adgroup", ".", "add", "===================================", "创建一个推广组" ]
python
train
tensorflow/tensor2tensor
tensor2tensor/data_generators/text_encoder.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/data_generators/text_encoder.py#L750-L866
def build_from_token_counts(self, token_counts, min_count, num_iterations=4, reserved_tokens=None, max_subtoken_length=None): """Train a SubwordTextEncoder based on a dictionary of word counts. Args: token_counts: a dictionary of Unicode strings to int. min_count: an integer - discard subtokens with lower counts. num_iterations: an integer. how many iterations of refinement. reserved_tokens: List of reserved tokens. The global variable `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this argument is `None`, it will use `RESERVED_TOKENS`. max_subtoken_length: Maximum length of a subtoken. If this is not set, then the runtime and memory use of creating the vocab is quadratic in the length of the longest token. If this is set, then it is instead O(max_subtoken_length * length of longest token). Raises: ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it is not clear what the space is being reserved for, or when it will be filled in. """ if reserved_tokens is None: reserved_tokens = RESERVED_TOKENS else: # There is not complete freedom in replacing RESERVED_TOKENS. for default, proposed in zip(RESERVED_TOKENS, reserved_tokens): if default != proposed: raise ValueError("RESERVED_TOKENS must be a prefix of " "reserved_tokens.") # Initialize the alphabet. Note, this must include reserved tokens or it can # result in encoding failures. alphabet_tokens = chain(six.iterkeys(token_counts), [native_to_unicode(t) for t in reserved_tokens]) self._init_alphabet_from_tokens(alphabet_tokens) # Bootstrap the initial list of subtokens with the characters from the # alphabet plus the escaping characters. self._init_subtokens_from_list(list(self._alphabet), reserved_tokens=reserved_tokens) # We build iteratively. On each iteration, we segment all the words, # then count the resulting potential subtokens, keeping the ones # with high enough counts for our new vocabulary. if min_count < 1: min_count = 1 for i in range(num_iterations): tf.logging.info("Iteration {0}".format(i)) # Collect all substrings of the encoded token that break along current # subtoken boundaries. subtoken_counts = collections.defaultdict(int) for token, count in six.iteritems(token_counts): iter_start_time = time.time() escaped_token = _escape_token(token, self._alphabet) subtokens = self._escaped_token_to_subtoken_strings(escaped_token) start = 0 for subtoken in subtokens: last_position = len(escaped_token) + 1 if max_subtoken_length is not None: last_position = min(last_position, start + max_subtoken_length) for end in range(start + 1, last_position): new_subtoken = escaped_token[start:end] subtoken_counts[new_subtoken] += count start += len(subtoken) iter_time_secs = time.time() - iter_start_time if iter_time_secs > 0.1: tf.logging.info(u"Processing token [{0}] took {1} seconds, consider " "setting Text2TextProblem.max_subtoken_length to a " "smaller value.".format(token, iter_time_secs)) # Array of sets of candidate subtoken strings, by length. len_to_subtoken_strings = [] for subtoken_string, count in six.iteritems(subtoken_counts): lsub = len(subtoken_string) if count >= min_count: while len(len_to_subtoken_strings) <= lsub: len_to_subtoken_strings.append(set()) len_to_subtoken_strings[lsub].add(subtoken_string) # Consider the candidates longest to shortest, so that if we accept # a longer subtoken string, we can decrement the counts of its prefixes. new_subtoken_strings = [] for lsub in range(len(len_to_subtoken_strings) - 1, 0, -1): subtoken_strings = len_to_subtoken_strings[lsub] for subtoken_string in subtoken_strings: count = subtoken_counts[subtoken_string] if count >= min_count: # Exclude alphabet tokens here, as they must be included later, # explicitly, regardless of count. if subtoken_string not in self._alphabet: new_subtoken_strings.append((count, subtoken_string)) for l in range(1, lsub): subtoken_counts[subtoken_string[:l]] -= count # Include the alphabet explicitly to guarantee all strings are encodable. new_subtoken_strings.extend((subtoken_counts.get(a, 0), a) for a in self._alphabet) new_subtoken_strings.sort(reverse=True) # Reinitialize to the candidate vocabulary. new_subtoken_strings = [subtoken for _, subtoken in new_subtoken_strings] if reserved_tokens: escaped_reserved_tokens = [ _escape_token(native_to_unicode(t), self._alphabet) for t in reserved_tokens ] new_subtoken_strings = escaped_reserved_tokens + new_subtoken_strings self._init_subtokens_from_list(new_subtoken_strings) tf.logging.info("vocab_size = %d" % self.vocab_size)
[ "def", "build_from_token_counts", "(", "self", ",", "token_counts", ",", "min_count", ",", "num_iterations", "=", "4", ",", "reserved_tokens", "=", "None", ",", "max_subtoken_length", "=", "None", ")", ":", "if", "reserved_tokens", "is", "None", ":", "reserved_tokens", "=", "RESERVED_TOKENS", "else", ":", "# There is not complete freedom in replacing RESERVED_TOKENS.", "for", "default", ",", "proposed", "in", "zip", "(", "RESERVED_TOKENS", ",", "reserved_tokens", ")", ":", "if", "default", "!=", "proposed", ":", "raise", "ValueError", "(", "\"RESERVED_TOKENS must be a prefix of \"", "\"reserved_tokens.\"", ")", "# Initialize the alphabet. Note, this must include reserved tokens or it can", "# result in encoding failures.", "alphabet_tokens", "=", "chain", "(", "six", ".", "iterkeys", "(", "token_counts", ")", ",", "[", "native_to_unicode", "(", "t", ")", "for", "t", "in", "reserved_tokens", "]", ")", "self", ".", "_init_alphabet_from_tokens", "(", "alphabet_tokens", ")", "# Bootstrap the initial list of subtokens with the characters from the", "# alphabet plus the escaping characters.", "self", ".", "_init_subtokens_from_list", "(", "list", "(", "self", ".", "_alphabet", ")", ",", "reserved_tokens", "=", "reserved_tokens", ")", "# We build iteratively. On each iteration, we segment all the words,", "# then count the resulting potential subtokens, keeping the ones", "# with high enough counts for our new vocabulary.", "if", "min_count", "<", "1", ":", "min_count", "=", "1", "for", "i", "in", "range", "(", "num_iterations", ")", ":", "tf", ".", "logging", ".", "info", "(", "\"Iteration {0}\"", ".", "format", "(", "i", ")", ")", "# Collect all substrings of the encoded token that break along current", "# subtoken boundaries.", "subtoken_counts", "=", "collections", ".", "defaultdict", "(", "int", ")", "for", "token", ",", "count", "in", "six", ".", "iteritems", "(", "token_counts", ")", ":", "iter_start_time", "=", "time", ".", "time", "(", ")", "escaped_token", "=", "_escape_token", "(", "token", ",", "self", ".", "_alphabet", ")", "subtokens", "=", "self", ".", "_escaped_token_to_subtoken_strings", "(", "escaped_token", ")", "start", "=", "0", "for", "subtoken", "in", "subtokens", ":", "last_position", "=", "len", "(", "escaped_token", ")", "+", "1", "if", "max_subtoken_length", "is", "not", "None", ":", "last_position", "=", "min", "(", "last_position", ",", "start", "+", "max_subtoken_length", ")", "for", "end", "in", "range", "(", "start", "+", "1", ",", "last_position", ")", ":", "new_subtoken", "=", "escaped_token", "[", "start", ":", "end", "]", "subtoken_counts", "[", "new_subtoken", "]", "+=", "count", "start", "+=", "len", "(", "subtoken", ")", "iter_time_secs", "=", "time", ".", "time", "(", ")", "-", "iter_start_time", "if", "iter_time_secs", ">", "0.1", ":", "tf", ".", "logging", ".", "info", "(", "u\"Processing token [{0}] took {1} seconds, consider \"", "\"setting Text2TextProblem.max_subtoken_length to a \"", "\"smaller value.\"", ".", "format", "(", "token", ",", "iter_time_secs", ")", ")", "# Array of sets of candidate subtoken strings, by length.", "len_to_subtoken_strings", "=", "[", "]", "for", "subtoken_string", ",", "count", "in", "six", ".", "iteritems", "(", "subtoken_counts", ")", ":", "lsub", "=", "len", "(", "subtoken_string", ")", "if", "count", ">=", "min_count", ":", "while", "len", "(", "len_to_subtoken_strings", ")", "<=", "lsub", ":", "len_to_subtoken_strings", ".", "append", "(", "set", "(", ")", ")", "len_to_subtoken_strings", "[", "lsub", "]", ".", "add", "(", "subtoken_string", ")", "# Consider the candidates longest to shortest, so that if we accept", "# a longer subtoken string, we can decrement the counts of its prefixes.", "new_subtoken_strings", "=", "[", "]", "for", "lsub", "in", "range", "(", "len", "(", "len_to_subtoken_strings", ")", "-", "1", ",", "0", ",", "-", "1", ")", ":", "subtoken_strings", "=", "len_to_subtoken_strings", "[", "lsub", "]", "for", "subtoken_string", "in", "subtoken_strings", ":", "count", "=", "subtoken_counts", "[", "subtoken_string", "]", "if", "count", ">=", "min_count", ":", "# Exclude alphabet tokens here, as they must be included later,", "# explicitly, regardless of count.", "if", "subtoken_string", "not", "in", "self", ".", "_alphabet", ":", "new_subtoken_strings", ".", "append", "(", "(", "count", ",", "subtoken_string", ")", ")", "for", "l", "in", "range", "(", "1", ",", "lsub", ")", ":", "subtoken_counts", "[", "subtoken_string", "[", ":", "l", "]", "]", "-=", "count", "# Include the alphabet explicitly to guarantee all strings are encodable.", "new_subtoken_strings", ".", "extend", "(", "(", "subtoken_counts", ".", "get", "(", "a", ",", "0", ")", ",", "a", ")", "for", "a", "in", "self", ".", "_alphabet", ")", "new_subtoken_strings", ".", "sort", "(", "reverse", "=", "True", ")", "# Reinitialize to the candidate vocabulary.", "new_subtoken_strings", "=", "[", "subtoken", "for", "_", ",", "subtoken", "in", "new_subtoken_strings", "]", "if", "reserved_tokens", ":", "escaped_reserved_tokens", "=", "[", "_escape_token", "(", "native_to_unicode", "(", "t", ")", ",", "self", ".", "_alphabet", ")", "for", "t", "in", "reserved_tokens", "]", "new_subtoken_strings", "=", "escaped_reserved_tokens", "+", "new_subtoken_strings", "self", ".", "_init_subtokens_from_list", "(", "new_subtoken_strings", ")", "tf", ".", "logging", ".", "info", "(", "\"vocab_size = %d\"", "%", "self", ".", "vocab_size", ")" ]
Train a SubwordTextEncoder based on a dictionary of word counts. Args: token_counts: a dictionary of Unicode strings to int. min_count: an integer - discard subtokens with lower counts. num_iterations: an integer. how many iterations of refinement. reserved_tokens: List of reserved tokens. The global variable `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this argument is `None`, it will use `RESERVED_TOKENS`. max_subtoken_length: Maximum length of a subtoken. If this is not set, then the runtime and memory use of creating the vocab is quadratic in the length of the longest token. If this is set, then it is instead O(max_subtoken_length * length of longest token). Raises: ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it is not clear what the space is being reserved for, or when it will be filled in.
[ "Train", "a", "SubwordTextEncoder", "based", "on", "a", "dictionary", "of", "word", "counts", "." ]
python
train
sendwithus/sendwithus_python
sendwithus/__init__.py
https://github.com/sendwithus/sendwithus_python/blob/8ae50d514febd44f7d9be3c838b4d92f99412832/sendwithus/__init__.py#L755-L774
def _api_request(self, endpoint, http_method, *args, **kwargs): """Private method for api requests""" logger.debug(' > Queing batch api request for endpoint: %s' % endpoint) path = self._build_request_path(endpoint, absolute=False) logger.debug('\tpath: %s' % path) data = None if 'payload' in kwargs: data = kwargs['payload'] logger.debug('\tdata: %s' % data) command = { "path": path, "method": http_method } if data: command['body'] = data self._commands.append(command)
[ "def", "_api_request", "(", "self", ",", "endpoint", ",", "http_method", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "logger", ".", "debug", "(", "' > Queing batch api request for endpoint: %s'", "%", "endpoint", ")", "path", "=", "self", ".", "_build_request_path", "(", "endpoint", ",", "absolute", "=", "False", ")", "logger", ".", "debug", "(", "'\\tpath: %s'", "%", "path", ")", "data", "=", "None", "if", "'payload'", "in", "kwargs", ":", "data", "=", "kwargs", "[", "'payload'", "]", "logger", ".", "debug", "(", "'\\tdata: %s'", "%", "data", ")", "command", "=", "{", "\"path\"", ":", "path", ",", "\"method\"", ":", "http_method", "}", "if", "data", ":", "command", "[", "'body'", "]", "=", "data", "self", ".", "_commands", ".", "append", "(", "command", ")" ]
Private method for api requests
[ "Private", "method", "for", "api", "requests" ]
python
valid
alvarogzp/telegram-bot-framework
bot/multithreading/scheduler.py
https://github.com/alvarogzp/telegram-bot-framework/blob/7b597a415c1901901c677976cb13100fc3083107/bot/multithreading/scheduler.py#L156-L166
def new_worker_pool(self, name: str, min_workers: int = 0, max_workers: int = 1, max_seconds_idle: int = DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE): """ Creates a new worker pool and starts it. Returns the Worker that schedules works to the pool. """ if not self.running: return self.immediate_worker worker = self._new_worker_pool(name, min_workers, max_workers, max_seconds_idle) self._start_worker_pool(worker) return worker
[ "def", "new_worker_pool", "(", "self", ",", "name", ":", "str", ",", "min_workers", ":", "int", "=", "0", ",", "max_workers", ":", "int", "=", "1", ",", "max_seconds_idle", ":", "int", "=", "DEFAULT_WORKER_POOL_MAX_SECONDS_IDLE", ")", ":", "if", "not", "self", ".", "running", ":", "return", "self", ".", "immediate_worker", "worker", "=", "self", ".", "_new_worker_pool", "(", "name", ",", "min_workers", ",", "max_workers", ",", "max_seconds_idle", ")", "self", ".", "_start_worker_pool", "(", "worker", ")", "return", "worker" ]
Creates a new worker pool and starts it. Returns the Worker that schedules works to the pool.
[ "Creates", "a", "new", "worker", "pool", "and", "starts", "it", ".", "Returns", "the", "Worker", "that", "schedules", "works", "to", "the", "pool", "." ]
python
train
apache/incubator-mxnet
python/mxnet/optimizer/optimizer.py
https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/python/mxnet/optimizer/optimizer.py#L1701-L1710
def get_states(self, dump_optimizer=False): """Gets updater states. Parameters ---------- dump_optimizer : bool, default False Whether to also save the optimizer itself. This would also save optimizer information such as learning rate and weight decay schedules. """ return pickle.dumps((self.states, self.optimizer) if dump_optimizer else self.states)
[ "def", "get_states", "(", "self", ",", "dump_optimizer", "=", "False", ")", ":", "return", "pickle", ".", "dumps", "(", "(", "self", ".", "states", ",", "self", ".", "optimizer", ")", "if", "dump_optimizer", "else", "self", ".", "states", ")" ]
Gets updater states. Parameters ---------- dump_optimizer : bool, default False Whether to also save the optimizer itself. This would also save optimizer information such as learning rate and weight decay schedules.
[ "Gets", "updater", "states", "." ]
python
train
spyder-ide/spyder
spyder/widgets/fileswitcher.py
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/widgets/fileswitcher.py#L565-L575
def get_widget(self, index=None, path=None, tabs=None): """Get widget by index. If no tabs and index specified the current active widget is returned. """ if (index and tabs) or (path and tabs): return tabs.widget(index) elif self.plugin: return self.get_plugin_tabwidget(self.plugin).currentWidget() else: return self.plugins_tabs[0][0].currentWidget()
[ "def", "get_widget", "(", "self", ",", "index", "=", "None", ",", "path", "=", "None", ",", "tabs", "=", "None", ")", ":", "if", "(", "index", "and", "tabs", ")", "or", "(", "path", "and", "tabs", ")", ":", "return", "tabs", ".", "widget", "(", "index", ")", "elif", "self", ".", "plugin", ":", "return", "self", ".", "get_plugin_tabwidget", "(", "self", ".", "plugin", ")", ".", "currentWidget", "(", ")", "else", ":", "return", "self", ".", "plugins_tabs", "[", "0", "]", "[", "0", "]", ".", "currentWidget", "(", ")" ]
Get widget by index. If no tabs and index specified the current active widget is returned.
[ "Get", "widget", "by", "index", "." ]
python
train
ARMmbed/yotta
yotta/lib/component.py
https://github.com/ARMmbed/yotta/blob/56bc1e56c602fa20307b23fe27518e9cd6c11af1/yotta/lib/component.py#L41-L65
def _truthyConfValue(v): ''' Determine yotta-config truthiness. In yotta config land truthiness is different to python or json truthiness (in order to map nicely only preprocessor and CMake definediness): json -> python -> truthy/falsey false -> False -> Falsey null -> None -> Falsey undefined -> None -> Falsey 0 -> 0 -> Falsey "" -> "" -> Truthy (different from python) "0" -> "0" -> Truthy {} -> {} -> Truthy (different from python) [] -> [] -> Truthy (different from python) everything else is truthy ''' if v is False: return False elif v is None: return False elif v == 0: return False else: # everything else is truthy! return True
[ "def", "_truthyConfValue", "(", "v", ")", ":", "if", "v", "is", "False", ":", "return", "False", "elif", "v", "is", "None", ":", "return", "False", "elif", "v", "==", "0", ":", "return", "False", "else", ":", "# everything else is truthy!", "return", "True" ]
Determine yotta-config truthiness. In yotta config land truthiness is different to python or json truthiness (in order to map nicely only preprocessor and CMake definediness): json -> python -> truthy/falsey false -> False -> Falsey null -> None -> Falsey undefined -> None -> Falsey 0 -> 0 -> Falsey "" -> "" -> Truthy (different from python) "0" -> "0" -> Truthy {} -> {} -> Truthy (different from python) [] -> [] -> Truthy (different from python) everything else is truthy
[ "Determine", "yotta", "-", "config", "truthiness", ".", "In", "yotta", "config", "land", "truthiness", "is", "different", "to", "python", "or", "json", "truthiness", "(", "in", "order", "to", "map", "nicely", "only", "preprocessor", "and", "CMake", "definediness", ")", ":" ]
python
valid
datacats/datacats
datacats/environment.py
https://github.com/datacats/datacats/blob/e4bae503efa997660fb3f34fe166699569653157/datacats/environment.py#L295-L304
def create_ckan_ini(self): """ Use make-config to generate an initial development.ini file """ self.run_command( command='/scripts/run_as_user.sh /usr/lib/ckan/bin/paster make-config' ' ckan /project/development.ini', rw_project=True, ro={scripts.get_script_path('run_as_user.sh'): '/scripts/run_as_user.sh'}, )
[ "def", "create_ckan_ini", "(", "self", ")", ":", "self", ".", "run_command", "(", "command", "=", "'/scripts/run_as_user.sh /usr/lib/ckan/bin/paster make-config'", "' ckan /project/development.ini'", ",", "rw_project", "=", "True", ",", "ro", "=", "{", "scripts", ".", "get_script_path", "(", "'run_as_user.sh'", ")", ":", "'/scripts/run_as_user.sh'", "}", ",", ")" ]
Use make-config to generate an initial development.ini file
[ "Use", "make", "-", "config", "to", "generate", "an", "initial", "development", ".", "ini", "file" ]
python
train
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L297-L307
def get_normed_points(point_array, norm): # good to go """ input: point_array, norm output: normed array """ norm = float(norm) #floated_array = [] #for p in point_array: # need to make sure each point is a float #floated_array.append(float(p)) points = old_div(numpy.array(point_array), norm) return points
[ "def", "get_normed_points", "(", "point_array", ",", "norm", ")", ":", "# good to go", "norm", "=", "float", "(", "norm", ")", "#floated_array = []", "#for p in point_array: # need to make sure each point is a float", "#floated_array.append(float(p))", "points", "=", "old_div", "(", "numpy", ".", "array", "(", "point_array", ")", ",", "norm", ")", "return", "points" ]
input: point_array, norm output: normed array
[ "input", ":", "point_array", "norm", "output", ":", "normed", "array" ]
python
train
Vagrants/blackbird
blackbird/utils/configread.py
https://github.com/Vagrants/blackbird/blob/3b38cd5650caae362e0668dbd38bf8f88233e079/blackbird/utils/configread.py#L229-L250
def add_default_module_dir(self): """ Add directory to store built-in plugins to `module_dir` parameter. Default directory to store plugins is `BLACKBIRD_INSTALL_DIR/plugins`. :rtype: None :return: None """ default_module_dir = os.path.join( os.path.abspath(os.path.curdir), 'plugins' ) module_dir_params = { 'module_dir': [default_module_dir] } if 'module_dir' in self.config['global']: module_dir_params['module_dir'].append( self.config['global']['module_dir'] ) self.config['global'].update( module_dir_params )
[ "def", "add_default_module_dir", "(", "self", ")", ":", "default_module_dir", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "curdir", ")", ",", "'plugins'", ")", "module_dir_params", "=", "{", "'module_dir'", ":", "[", "default_module_dir", "]", "}", "if", "'module_dir'", "in", "self", ".", "config", "[", "'global'", "]", ":", "module_dir_params", "[", "'module_dir'", "]", ".", "append", "(", "self", ".", "config", "[", "'global'", "]", "[", "'module_dir'", "]", ")", "self", ".", "config", "[", "'global'", "]", ".", "update", "(", "module_dir_params", ")" ]
Add directory to store built-in plugins to `module_dir` parameter. Default directory to store plugins is `BLACKBIRD_INSTALL_DIR/plugins`. :rtype: None :return: None
[ "Add", "directory", "to", "store", "built", "-", "in", "plugins", "to", "module_dir", "parameter", ".", "Default", "directory", "to", "store", "plugins", "is", "BLACKBIRD_INSTALL_DIR", "/", "plugins", ".", ":", "rtype", ":", "None", ":", "return", ":", "None" ]
python
train
jayvdb/flake8-putty
flake8_putty/config.py
https://github.com/jayvdb/flake8-putty/blob/854b2c6daef409974c2f5e9c5acaf0a069b0ff23/flake8_putty/config.py#L267-L278
def match(self, filename, line, codes): """Match rule.""" if ((not self.file_selectors or self.file_match_any(filename)) and (not self.environment_marker_selector or self.environment_marker_evaluate()) and (not self.code_selectors or self.codes_match_any(codes))): if self.regex_selectors: return super(Rule, self).match(filename, line, codes) else: return True return False
[ "def", "match", "(", "self", ",", "filename", ",", "line", ",", "codes", ")", ":", "if", "(", "(", "not", "self", ".", "file_selectors", "or", "self", ".", "file_match_any", "(", "filename", ")", ")", "and", "(", "not", "self", ".", "environment_marker_selector", "or", "self", ".", "environment_marker_evaluate", "(", ")", ")", "and", "(", "not", "self", ".", "code_selectors", "or", "self", ".", "codes_match_any", "(", "codes", ")", ")", ")", ":", "if", "self", ".", "regex_selectors", ":", "return", "super", "(", "Rule", ",", "self", ")", ".", "match", "(", "filename", ",", "line", ",", "codes", ")", "else", ":", "return", "True", "return", "False" ]
Match rule.
[ "Match", "rule", "." ]
python
train
dereneaton/ipyrad
ipyrad/analysis/bucky.py
https://github.com/dereneaton/ipyrad/blob/5eeb8a178160f45faf71bf47cec4abe998a575d1/ipyrad/analysis/bucky.py#L599-L608
def _resolveambig(subseq): """ Randomly resolves iupac hetero codes. This is a shortcut for now, we could instead use the phased alleles in RAD loci. """ N = [] for col in subseq: rand = np.random.binomial(1, 0.5) N.append([_AMBIGS[i][rand] for i in col]) return np.array(N)
[ "def", "_resolveambig", "(", "subseq", ")", ":", "N", "=", "[", "]", "for", "col", "in", "subseq", ":", "rand", "=", "np", ".", "random", ".", "binomial", "(", "1", ",", "0.5", ")", "N", ".", "append", "(", "[", "_AMBIGS", "[", "i", "]", "[", "rand", "]", "for", "i", "in", "col", "]", ")", "return", "np", ".", "array", "(", "N", ")" ]
Randomly resolves iupac hetero codes. This is a shortcut for now, we could instead use the phased alleles in RAD loci.
[ "Randomly", "resolves", "iupac", "hetero", "codes", ".", "This", "is", "a", "shortcut", "for", "now", "we", "could", "instead", "use", "the", "phased", "alleles", "in", "RAD", "loci", "." ]
python
valid
pypa/pipenv
pipenv/project.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/project.py#L159-L164
def path_to(self, p): """Returns the absolute path to a given relative path.""" if os.path.isabs(p): return p return os.sep.join([self._original_dir, p])
[ "def", "path_to", "(", "self", ",", "p", ")", ":", "if", "os", ".", "path", ".", "isabs", "(", "p", ")", ":", "return", "p", "return", "os", ".", "sep", ".", "join", "(", "[", "self", ".", "_original_dir", ",", "p", "]", ")" ]
Returns the absolute path to a given relative path.
[ "Returns", "the", "absolute", "path", "to", "a", "given", "relative", "path", "." ]
python
train
gholt/swiftly
swiftly/client/standardclient.py
https://github.com/gholt/swiftly/blob/5bcc1c65323b1caf1f85adbefd9fc4988c072149/swiftly/client/standardclient.py#L222-L250
def auth(self): """ See :py:func:`swiftly.client.client.Client.auth` """ self.reset() if not self.auth_url: raise ValueError('No Auth URL has been provided.') funcs = [] if self.auth_methods: for method in self.auth_methods.split(','): funcs.append(getattr(self, '_' + method)) if not funcs: if '1.0' in self.auth_url: funcs = [self._auth1, self._auth2key, self._auth2password] if not self.auth_tenant: funcs.append(self._auth2password_force_tenant) else: funcs = [self._auth2key, self._auth2password] if not self.auth_tenant: funcs.append(self._auth2password_force_tenant) funcs.append(self._auth1) info = [] for func in funcs: status, reason = func() info.append('%s %s' % (status, reason)) if status // 100 == 2: break else: raise self.HTTPException('Auth failure %r.' % info)
[ "def", "auth", "(", "self", ")", ":", "self", ".", "reset", "(", ")", "if", "not", "self", ".", "auth_url", ":", "raise", "ValueError", "(", "'No Auth URL has been provided.'", ")", "funcs", "=", "[", "]", "if", "self", ".", "auth_methods", ":", "for", "method", "in", "self", ".", "auth_methods", ".", "split", "(", "','", ")", ":", "funcs", ".", "append", "(", "getattr", "(", "self", ",", "'_'", "+", "method", ")", ")", "if", "not", "funcs", ":", "if", "'1.0'", "in", "self", ".", "auth_url", ":", "funcs", "=", "[", "self", ".", "_auth1", ",", "self", ".", "_auth2key", ",", "self", ".", "_auth2password", "]", "if", "not", "self", ".", "auth_tenant", ":", "funcs", ".", "append", "(", "self", ".", "_auth2password_force_tenant", ")", "else", ":", "funcs", "=", "[", "self", ".", "_auth2key", ",", "self", ".", "_auth2password", "]", "if", "not", "self", ".", "auth_tenant", ":", "funcs", ".", "append", "(", "self", ".", "_auth2password_force_tenant", ")", "funcs", ".", "append", "(", "self", ".", "_auth1", ")", "info", "=", "[", "]", "for", "func", "in", "funcs", ":", "status", ",", "reason", "=", "func", "(", ")", "info", ".", "append", "(", "'%s %s'", "%", "(", "status", ",", "reason", ")", ")", "if", "status", "//", "100", "==", "2", ":", "break", "else", ":", "raise", "self", ".", "HTTPException", "(", "'Auth failure %r.'", "%", "info", ")" ]
See :py:func:`swiftly.client.client.Client.auth`
[ "See", ":", "py", ":", "func", ":", "swiftly", ".", "client", ".", "client", ".", "Client", ".", "auth" ]
python
test
fake-name/ChromeController
ChromeController/Generator/Generated.py
https://github.com/fake-name/ChromeController/blob/914dd136184e8f1165c7aa6ef30418aaf10c61f0/ChromeController/Generator/Generated.py#L6830-L6866
def Runtime_compileScript(self, expression, sourceURL, persistScript, **kwargs ): """ Function path: Runtime.compileScript Domain: Runtime Method name: compileScript Parameters: Required arguments: 'expression' (type: string) -> Expression to compile. 'sourceURL' (type: string) -> Source url to be set for the script. 'persistScript' (type: boolean) -> Specifies whether the compiled script should be persisted. Optional arguments: 'executionContextId' (type: ExecutionContextId) -> Specifies in which execution context to perform script run. If the parameter is omitted the evaluation will be performed in the context of the inspected page. Returns: 'scriptId' (type: ScriptId) -> Id of the script. 'exceptionDetails' (type: ExceptionDetails) -> Exception details. Description: Compiles expression. """ assert isinstance(expression, (str,) ), "Argument 'expression' must be of type '['str']'. Received type: '%s'" % type( expression) assert isinstance(sourceURL, (str,) ), "Argument 'sourceURL' must be of type '['str']'. Received type: '%s'" % type( sourceURL) assert isinstance(persistScript, (bool,) ), "Argument 'persistScript' must be of type '['bool']'. Received type: '%s'" % type( persistScript) expected = ['executionContextId'] passed_keys = list(kwargs.keys()) assert all([(key in expected) for key in passed_keys] ), "Allowed kwargs are ['executionContextId']. Passed kwargs: %s" % passed_keys subdom_funcs = self.synchronous_command('Runtime.compileScript', expression=expression, sourceURL=sourceURL, persistScript= persistScript, **kwargs) return subdom_funcs
[ "def", "Runtime_compileScript", "(", "self", ",", "expression", ",", "sourceURL", ",", "persistScript", ",", "*", "*", "kwargs", ")", ":", "assert", "isinstance", "(", "expression", ",", "(", "str", ",", ")", ")", ",", "\"Argument 'expression' must be of type '['str']'. Received type: '%s'\"", "%", "type", "(", "expression", ")", "assert", "isinstance", "(", "sourceURL", ",", "(", "str", ",", ")", ")", ",", "\"Argument 'sourceURL' must be of type '['str']'. Received type: '%s'\"", "%", "type", "(", "sourceURL", ")", "assert", "isinstance", "(", "persistScript", ",", "(", "bool", ",", ")", ")", ",", "\"Argument 'persistScript' must be of type '['bool']'. Received type: '%s'\"", "%", "type", "(", "persistScript", ")", "expected", "=", "[", "'executionContextId'", "]", "passed_keys", "=", "list", "(", "kwargs", ".", "keys", "(", ")", ")", "assert", "all", "(", "[", "(", "key", "in", "expected", ")", "for", "key", "in", "passed_keys", "]", ")", ",", "\"Allowed kwargs are ['executionContextId']. Passed kwargs: %s\"", "%", "passed_keys", "subdom_funcs", "=", "self", ".", "synchronous_command", "(", "'Runtime.compileScript'", ",", "expression", "=", "expression", ",", "sourceURL", "=", "sourceURL", ",", "persistScript", "=", "persistScript", ",", "*", "*", "kwargs", ")", "return", "subdom_funcs" ]
Function path: Runtime.compileScript Domain: Runtime Method name: compileScript Parameters: Required arguments: 'expression' (type: string) -> Expression to compile. 'sourceURL' (type: string) -> Source url to be set for the script. 'persistScript' (type: boolean) -> Specifies whether the compiled script should be persisted. Optional arguments: 'executionContextId' (type: ExecutionContextId) -> Specifies in which execution context to perform script run. If the parameter is omitted the evaluation will be performed in the context of the inspected page. Returns: 'scriptId' (type: ScriptId) -> Id of the script. 'exceptionDetails' (type: ExceptionDetails) -> Exception details. Description: Compiles expression.
[ "Function", "path", ":", "Runtime", ".", "compileScript", "Domain", ":", "Runtime", "Method", "name", ":", "compileScript", "Parameters", ":", "Required", "arguments", ":", "expression", "(", "type", ":", "string", ")", "-", ">", "Expression", "to", "compile", ".", "sourceURL", "(", "type", ":", "string", ")", "-", ">", "Source", "url", "to", "be", "set", "for", "the", "script", ".", "persistScript", "(", "type", ":", "boolean", ")", "-", ">", "Specifies", "whether", "the", "compiled", "script", "should", "be", "persisted", ".", "Optional", "arguments", ":", "executionContextId", "(", "type", ":", "ExecutionContextId", ")", "-", ">", "Specifies", "in", "which", "execution", "context", "to", "perform", "script", "run", ".", "If", "the", "parameter", "is", "omitted", "the", "evaluation", "will", "be", "performed", "in", "the", "context", "of", "the", "inspected", "page", ".", "Returns", ":", "scriptId", "(", "type", ":", "ScriptId", ")", "-", ">", "Id", "of", "the", "script", ".", "exceptionDetails", "(", "type", ":", "ExceptionDetails", ")", "-", ">", "Exception", "details", ".", "Description", ":", "Compiles", "expression", "." ]
python
train
saltstack/salt
salt/modules/rh_ip.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/rh_ip.py#L963-L968
def _write_file_network(data, filename): ''' Writes a file to disk ''' with salt.utils.files.fopen(filename, 'w') as fp_: fp_.write(salt.utils.stringutils.to_str(data))
[ "def", "_write_file_network", "(", "data", ",", "filename", ")", ":", "with", "salt", ".", "utils", ".", "files", ".", "fopen", "(", "filename", ",", "'w'", ")", "as", "fp_", ":", "fp_", ".", "write", "(", "salt", ".", "utils", ".", "stringutils", ".", "to_str", "(", "data", ")", ")" ]
Writes a file to disk
[ "Writes", "a", "file", "to", "disk" ]
python
train
Robpol86/libnl
libnl/list_.py
https://github.com/Robpol86/libnl/blob/274e9fdaa39822d06ef70b799ed4a95937a4d923/libnl/list_.py#L62-L69
def nl_list_del(obj): """https://github.com/thom311/libnl/blob/libnl3_2_25/include/netlink/list.h#L49. Positional arguments: obj -- nl_list_head class instance. """ obj.next.prev = obj.prev obj.prev.next_ = obj.next_
[ "def", "nl_list_del", "(", "obj", ")", ":", "obj", ".", "next", ".", "prev", "=", "obj", ".", "prev", "obj", ".", "prev", ".", "next_", "=", "obj", ".", "next_" ]
https://github.com/thom311/libnl/blob/libnl3_2_25/include/netlink/list.h#L49. Positional arguments: obj -- nl_list_head class instance.
[ "https", ":", "//", "github", ".", "com", "/", "thom311", "/", "libnl", "/", "blob", "/", "libnl3_2_25", "/", "include", "/", "netlink", "/", "list", ".", "h#L49", "." ]
python
train
duguyue100/minesweeper
minesweeper/gui.py
https://github.com/duguyue100/minesweeper/blob/38b1910f4c34d0275ac10a300285aba6f1d91d61/minesweeper/gui.py#L117-L132
def update_grid(self): """Update grid according to info map.""" info_map = self.ms_game.get_info_map() for i in xrange(self.ms_game.board_height): for j in xrange(self.ms_game.board_width): self.grid_wgs[(i, j)].info_label(info_map[i, j]) self.ctrl_wg.move_counter.display(self.ms_game.num_moves) if self.ms_game.game_status == 2: self.ctrl_wg.reset_button.setIcon(QtGui.QIcon(CONTINUE_PATH)) elif self.ms_game.game_status == 1: self.ctrl_wg.reset_button.setIcon(QtGui.QIcon(WIN_PATH)) self.timer.stop() elif self.ms_game.game_status == 0: self.ctrl_wg.reset_button.setIcon(QtGui.QIcon(LOSE_PATH)) self.timer.stop()
[ "def", "update_grid", "(", "self", ")", ":", "info_map", "=", "self", ".", "ms_game", ".", "get_info_map", "(", ")", "for", "i", "in", "xrange", "(", "self", ".", "ms_game", ".", "board_height", ")", ":", "for", "j", "in", "xrange", "(", "self", ".", "ms_game", ".", "board_width", ")", ":", "self", ".", "grid_wgs", "[", "(", "i", ",", "j", ")", "]", ".", "info_label", "(", "info_map", "[", "i", ",", "j", "]", ")", "self", ".", "ctrl_wg", ".", "move_counter", ".", "display", "(", "self", ".", "ms_game", ".", "num_moves", ")", "if", "self", ".", "ms_game", ".", "game_status", "==", "2", ":", "self", ".", "ctrl_wg", ".", "reset_button", ".", "setIcon", "(", "QtGui", ".", "QIcon", "(", "CONTINUE_PATH", ")", ")", "elif", "self", ".", "ms_game", ".", "game_status", "==", "1", ":", "self", ".", "ctrl_wg", ".", "reset_button", ".", "setIcon", "(", "QtGui", ".", "QIcon", "(", "WIN_PATH", ")", ")", "self", ".", "timer", ".", "stop", "(", ")", "elif", "self", ".", "ms_game", ".", "game_status", "==", "0", ":", "self", ".", "ctrl_wg", ".", "reset_button", ".", "setIcon", "(", "QtGui", ".", "QIcon", "(", "LOSE_PATH", ")", ")", "self", ".", "timer", ".", "stop", "(", ")" ]
Update grid according to info map.
[ "Update", "grid", "according", "to", "info", "map", "." ]
python
train
ninuxorg/nodeshot
nodeshot/networking/net/views.py
https://github.com/ninuxorg/nodeshot/blob/2466f0a55f522b2696026f196436ce7ba3f1e5c6/nodeshot/networking/net/views.py#L35-L55
def get_queryset(self): """ Optionally restricts the returned devices by filtering against a `search` query parameter in the URL. """ # retrieve all devices which are published and accessible to current user # and use joins to retrieve related fields queryset = super(DeviceList, self).get_queryset()#.select_related('layer', 'status', 'user') # retrieve value of querystring parameter "search" search = self.request.query_params.get('search', None) if search is not None: search_query = ( Q(name__icontains=search) | Q(description__icontains=search) ) # add instructions for search to queryset queryset = queryset.filter(search_query) return queryset
[ "def", "get_queryset", "(", "self", ")", ":", "# retrieve all devices which are published and accessible to current user", "# and use joins to retrieve related fields", "queryset", "=", "super", "(", "DeviceList", ",", "self", ")", ".", "get_queryset", "(", ")", "#.select_related('layer', 'status', 'user')", "# retrieve value of querystring parameter \"search\"", "search", "=", "self", ".", "request", ".", "query_params", ".", "get", "(", "'search'", ",", "None", ")", "if", "search", "is", "not", "None", ":", "search_query", "=", "(", "Q", "(", "name__icontains", "=", "search", ")", "|", "Q", "(", "description__icontains", "=", "search", ")", ")", "# add instructions for search to queryset", "queryset", "=", "queryset", ".", "filter", "(", "search_query", ")", "return", "queryset" ]
Optionally restricts the returned devices by filtering against a `search` query parameter in the URL.
[ "Optionally", "restricts", "the", "returned", "devices", "by", "filtering", "against", "a", "search", "query", "parameter", "in", "the", "URL", "." ]
python
train
CamDavidsonPilon/lifelines
lifelines/plotting.py
https://github.com/CamDavidsonPilon/lifelines/blob/bdf6be6f1d10eea4c46365ee0ee6a47d8c30edf8/lifelines/plotting.py#L409-L446
def plot_loglogs(cls, loc=None, iloc=None, show_censors=False, censor_styles=None, **kwargs): """ Specifies a plot of the log(-log(SV)) versus log(time) where SV is the estimated survival function. """ def loglog(s): return np.log(-np.log(s)) if (loc is not None) and (iloc is not None): raise ValueError("Cannot set both loc and iloc in call to .plot().") if censor_styles is None: censor_styles = {} set_kwargs_ax(kwargs) set_kwargs_color(kwargs) set_kwargs_drawstyle(kwargs) kwargs["logx"] = True dataframe_slicer = create_dataframe_slicer(iloc, loc) # plot censors ax = kwargs["ax"] colour = kwargs["c"] if show_censors and cls.event_table["censored"].sum() > 0: cs = {"marker": "+", "ms": 12, "mew": 1} cs.update(censor_styles) times = dataframe_slicer(cls.event_table.loc[(cls.event_table["censored"] > 0)]).index.values.astype(float) v = cls.predict(times) # don't log times, as Pandas will take care of all log-scaling later. ax.plot(times, loglog(v), linestyle="None", color=colour, **cs) # plot estimate dataframe_slicer(loglog(cls.survival_function_)).plot(**kwargs) ax.set_xlabel("log(timeline)") ax.set_ylabel("log(-log(survival_function_))") return ax
[ "def", "plot_loglogs", "(", "cls", ",", "loc", "=", "None", ",", "iloc", "=", "None", ",", "show_censors", "=", "False", ",", "censor_styles", "=", "None", ",", "*", "*", "kwargs", ")", ":", "def", "loglog", "(", "s", ")", ":", "return", "np", ".", "log", "(", "-", "np", ".", "log", "(", "s", ")", ")", "if", "(", "loc", "is", "not", "None", ")", "and", "(", "iloc", "is", "not", "None", ")", ":", "raise", "ValueError", "(", "\"Cannot set both loc and iloc in call to .plot().\"", ")", "if", "censor_styles", "is", "None", ":", "censor_styles", "=", "{", "}", "set_kwargs_ax", "(", "kwargs", ")", "set_kwargs_color", "(", "kwargs", ")", "set_kwargs_drawstyle", "(", "kwargs", ")", "kwargs", "[", "\"logx\"", "]", "=", "True", "dataframe_slicer", "=", "create_dataframe_slicer", "(", "iloc", ",", "loc", ")", "# plot censors", "ax", "=", "kwargs", "[", "\"ax\"", "]", "colour", "=", "kwargs", "[", "\"c\"", "]", "if", "show_censors", "and", "cls", ".", "event_table", "[", "\"censored\"", "]", ".", "sum", "(", ")", ">", "0", ":", "cs", "=", "{", "\"marker\"", ":", "\"+\"", ",", "\"ms\"", ":", "12", ",", "\"mew\"", ":", "1", "}", "cs", ".", "update", "(", "censor_styles", ")", "times", "=", "dataframe_slicer", "(", "cls", ".", "event_table", ".", "loc", "[", "(", "cls", ".", "event_table", "[", "\"censored\"", "]", ">", "0", ")", "]", ")", ".", "index", ".", "values", ".", "astype", "(", "float", ")", "v", "=", "cls", ".", "predict", "(", "times", ")", "# don't log times, as Pandas will take care of all log-scaling later.", "ax", ".", "plot", "(", "times", ",", "loglog", "(", "v", ")", ",", "linestyle", "=", "\"None\"", ",", "color", "=", "colour", ",", "*", "*", "cs", ")", "# plot estimate", "dataframe_slicer", "(", "loglog", "(", "cls", ".", "survival_function_", ")", ")", ".", "plot", "(", "*", "*", "kwargs", ")", "ax", ".", "set_xlabel", "(", "\"log(timeline)\"", ")", "ax", ".", "set_ylabel", "(", "\"log(-log(survival_function_))\"", ")", "return", "ax" ]
Specifies a plot of the log(-log(SV)) versus log(time) where SV is the estimated survival function.
[ "Specifies", "a", "plot", "of", "the", "log", "(", "-", "log", "(", "SV", "))", "versus", "log", "(", "time", ")", "where", "SV", "is", "the", "estimated", "survival", "function", "." ]
python
train
PyGithub/PyGithub
github/Repository.py
https://github.com/PyGithub/PyGithub/blob/f716df86bbe7dc276c6596699fa9712b61ef974c/github/Repository.py#L2674-L2682
def subscribe_to_hub(self, event, callback, secret=github.GithubObject.NotSet): """ :calls: `POST /hub <http://developer.github.com/>`_ :param event: string :param callback: string :param secret: string :rtype: None """ return self._hub("subscribe", event, callback, secret)
[ "def", "subscribe_to_hub", "(", "self", ",", "event", ",", "callback", ",", "secret", "=", "github", ".", "GithubObject", ".", "NotSet", ")", ":", "return", "self", ".", "_hub", "(", "\"subscribe\"", ",", "event", ",", "callback", ",", "secret", ")" ]
:calls: `POST /hub <http://developer.github.com/>`_ :param event: string :param callback: string :param secret: string :rtype: None
[ ":", "calls", ":", "POST", "/", "hub", "<http", ":", "//", "developer", ".", "github", ".", "com", "/", ">", "_", ":", "param", "event", ":", "string", ":", "param", "callback", ":", "string", ":", "param", "secret", ":", "string", ":", "rtype", ":", "None" ]
python
train
pypa/pipenv
pipenv/vendor/pexpect/pty_spawn.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/pexpect/pty_spawn.py#L557-L561
def _log_control(self, s): """Write control characters to the appropriate log files""" if self.encoding is not None: s = s.decode(self.encoding, 'replace') self._log(s, 'send')
[ "def", "_log_control", "(", "self", ",", "s", ")", ":", "if", "self", ".", "encoding", "is", "not", "None", ":", "s", "=", "s", ".", "decode", "(", "self", ".", "encoding", ",", "'replace'", ")", "self", ".", "_log", "(", "s", ",", "'send'", ")" ]
Write control characters to the appropriate log files
[ "Write", "control", "characters", "to", "the", "appropriate", "log", "files" ]
python
train
numenta/nupic
src/nupic/algorithms/knn_classifier.py
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/algorithms/knn_classifier.py#L840-L870
def getPattern(self, idx, sparseBinaryForm=False, cat=None): """Gets a training pattern either by index or category number. :param idx: Index of the training pattern :param sparseBinaryForm: If true, returns a list of the indices of the non-zero bits in the training pattern :param cat: If not None, get the first pattern belonging to category cat. If this is specified, idx must be None. :returns: The training pattern with specified index """ if cat is not None: assert idx is None idx = self._categoryList.index(cat) if not self.useSparseMemory: pattern = self._Memory[idx] if sparseBinaryForm: pattern = pattern.nonzero()[0] else: (nz, values) = self._Memory.rowNonZeros(idx) if not sparseBinaryForm: pattern = numpy.zeros(self._Memory.nCols()) numpy.put(pattern, nz, 1) else: pattern = nz return pattern
[ "def", "getPattern", "(", "self", ",", "idx", ",", "sparseBinaryForm", "=", "False", ",", "cat", "=", "None", ")", ":", "if", "cat", "is", "not", "None", ":", "assert", "idx", "is", "None", "idx", "=", "self", ".", "_categoryList", ".", "index", "(", "cat", ")", "if", "not", "self", ".", "useSparseMemory", ":", "pattern", "=", "self", ".", "_Memory", "[", "idx", "]", "if", "sparseBinaryForm", ":", "pattern", "=", "pattern", ".", "nonzero", "(", ")", "[", "0", "]", "else", ":", "(", "nz", ",", "values", ")", "=", "self", ".", "_Memory", ".", "rowNonZeros", "(", "idx", ")", "if", "not", "sparseBinaryForm", ":", "pattern", "=", "numpy", ".", "zeros", "(", "self", ".", "_Memory", ".", "nCols", "(", ")", ")", "numpy", ".", "put", "(", "pattern", ",", "nz", ",", "1", ")", "else", ":", "pattern", "=", "nz", "return", "pattern" ]
Gets a training pattern either by index or category number. :param idx: Index of the training pattern :param sparseBinaryForm: If true, returns a list of the indices of the non-zero bits in the training pattern :param cat: If not None, get the first pattern belonging to category cat. If this is specified, idx must be None. :returns: The training pattern with specified index
[ "Gets", "a", "training", "pattern", "either", "by", "index", "or", "category", "number", "." ]
python
valid
JasonKessler/scattertext
scattertext/characteristic/DenseRankCharacteristicness.py
https://github.com/JasonKessler/scattertext/blob/cacf1f687d218ee8cae3fc05cc901db824bb1b81/scattertext/characteristic/DenseRankCharacteristicness.py#L37-L74
def get_scores(self, corpus): ''' Parameters ---------- corpus Returns ------- float, pd.Series float: point on x-axis at even characteristicness pd.Series: term -> value between 0 and 1, sorted by score in a descending manner Background scores from corpus ''' term_ranks = self.term_ranker(corpus).get_ranks() freq_df = pd.DataFrame({ 'corpus': term_ranks.sum(axis=1), 'standard': self.background_frequencies.get_background_frequency_df()['background']} ).dropna() corpus_rank = rankdata(freq_df.corpus, 'dense') standard_rank = rankdata(freq_df.standard, 'dense') scores = corpus_rank/corpus_rank.max() - standard_rank/standard_rank.max() #scores = RankDifference().get_scores(bg['corpus'], bg['bg']).sort_values() # import pdb; pdb.set_trace() if self.rerank_ranks: rank_scores, zero_marker = self._rerank_scores(scores) freq_df['score'] = pd.Series(rank_scores, index=freq_df.index) else: if scores.min() < 0 and scores.max() > 0: zero_marker = -scores.min() / (scores.max() - scores.min()) elif scores.min() > 0: zero_marker = 0 else: zero_marker = 1 freq_df['score'] = scale(scores) return zero_marker, freq_df.sort_values(by='score', ascending=False)['score']
[ "def", "get_scores", "(", "self", ",", "corpus", ")", ":", "term_ranks", "=", "self", ".", "term_ranker", "(", "corpus", ")", ".", "get_ranks", "(", ")", "freq_df", "=", "pd", ".", "DataFrame", "(", "{", "'corpus'", ":", "term_ranks", ".", "sum", "(", "axis", "=", "1", ")", ",", "'standard'", ":", "self", ".", "background_frequencies", ".", "get_background_frequency_df", "(", ")", "[", "'background'", "]", "}", ")", ".", "dropna", "(", ")", "corpus_rank", "=", "rankdata", "(", "freq_df", ".", "corpus", ",", "'dense'", ")", "standard_rank", "=", "rankdata", "(", "freq_df", ".", "standard", ",", "'dense'", ")", "scores", "=", "corpus_rank", "/", "corpus_rank", ".", "max", "(", ")", "-", "standard_rank", "/", "standard_rank", ".", "max", "(", ")", "#scores = RankDifference().get_scores(bg['corpus'], bg['bg']).sort_values()", "# import pdb; pdb.set_trace()", "if", "self", ".", "rerank_ranks", ":", "rank_scores", ",", "zero_marker", "=", "self", ".", "_rerank_scores", "(", "scores", ")", "freq_df", "[", "'score'", "]", "=", "pd", ".", "Series", "(", "rank_scores", ",", "index", "=", "freq_df", ".", "index", ")", "else", ":", "if", "scores", ".", "min", "(", ")", "<", "0", "and", "scores", ".", "max", "(", ")", ">", "0", ":", "zero_marker", "=", "-", "scores", ".", "min", "(", ")", "/", "(", "scores", ".", "max", "(", ")", "-", "scores", ".", "min", "(", ")", ")", "elif", "scores", ".", "min", "(", ")", ">", "0", ":", "zero_marker", "=", "0", "else", ":", "zero_marker", "=", "1", "freq_df", "[", "'score'", "]", "=", "scale", "(", "scores", ")", "return", "zero_marker", ",", "freq_df", ".", "sort_values", "(", "by", "=", "'score'", ",", "ascending", "=", "False", ")", "[", "'score'", "]" ]
Parameters ---------- corpus Returns ------- float, pd.Series float: point on x-axis at even characteristicness pd.Series: term -> value between 0 and 1, sorted by score in a descending manner Background scores from corpus
[ "Parameters", "----------", "corpus" ]
python
train
edoburu/django-debugtools
debugtools/formatter.py
https://github.com/edoburu/django-debugtools/blob/5c609c00fa9954330cd135fc62a1e18b8e7fea8a/debugtools/formatter.py#L129-L152
def _style_text(text): """ Apply some HTML highlighting to the contents. This can't be done in the """ # Escape text and apply some formatting. # To have really good highlighting, pprint would have to be re-implemented. text = escape(text) text = text.replace(' &lt;iterator object&gt;', " <small>&lt;<var>this object can be used in a 'for' loop</var>&gt;</small>") text = text.replace(' &lt;dynamic item&gt;', ' <small>&lt;<var>this object may have extra field names</var>&gt;</small>') text = text.replace(' &lt;dynamic attribute&gt;', ' <small>&lt;<var>this object may have extra field names</var>&gt;</small>') text = RE_PROXY.sub('\g<1><small>&lt;<var>proxy object</var>&gt;</small>', text) text = RE_FUNCTION.sub('\g<1><small>&lt;<var>object method</var>&gt;</small>', text) text = RE_GENERATOR.sub("\g<1><small>&lt;<var>generator, use 'for' to traverse it</var>&gt;</small>", text) text = RE_OBJECT_ADDRESS.sub('\g<1><small>&lt;<var>\g<2> object</var>&gt;</small>', text) text = RE_MANAGER.sub('\g<1><small>&lt;<var>manager, use <kbd>.all</kbd> to traverse it</var>&gt;</small>', text) text = RE_CLASS_REPR.sub('\g<1><small>&lt;<var>\g<2> class</var>&gt;</small>', text) # Since Django's WSGIRequest does a pprint like format for it's __repr__, make that styling consistent text = RE_REQUEST_FIELDNAME.sub('\g<1>:\n <strong style="color: #222;">\g<2></strong>: ', text) text = RE_REQUEST_CLEANUP1.sub('\g<1>', text) text = RE_REQUEST_CLEANUP2.sub(')', text) return mark_safe(text)
[ "def", "_style_text", "(", "text", ")", ":", "# Escape text and apply some formatting.", "# To have really good highlighting, pprint would have to be re-implemented.", "text", "=", "escape", "(", "text", ")", "text", "=", "text", ".", "replace", "(", "' &lt;iterator object&gt;'", ",", "\" <small>&lt;<var>this object can be used in a 'for' loop</var>&gt;</small>\"", ")", "text", "=", "text", ".", "replace", "(", "' &lt;dynamic item&gt;'", ",", "' <small>&lt;<var>this object may have extra field names</var>&gt;</small>'", ")", "text", "=", "text", ".", "replace", "(", "' &lt;dynamic attribute&gt;'", ",", "' <small>&lt;<var>this object may have extra field names</var>&gt;</small>'", ")", "text", "=", "RE_PROXY", ".", "sub", "(", "'\\g<1><small>&lt;<var>proxy object</var>&gt;</small>'", ",", "text", ")", "text", "=", "RE_FUNCTION", ".", "sub", "(", "'\\g<1><small>&lt;<var>object method</var>&gt;</small>'", ",", "text", ")", "text", "=", "RE_GENERATOR", ".", "sub", "(", "\"\\g<1><small>&lt;<var>generator, use 'for' to traverse it</var>&gt;</small>\"", ",", "text", ")", "text", "=", "RE_OBJECT_ADDRESS", ".", "sub", "(", "'\\g<1><small>&lt;<var>\\g<2> object</var>&gt;</small>'", ",", "text", ")", "text", "=", "RE_MANAGER", ".", "sub", "(", "'\\g<1><small>&lt;<var>manager, use <kbd>.all</kbd> to traverse it</var>&gt;</small>'", ",", "text", ")", "text", "=", "RE_CLASS_REPR", ".", "sub", "(", "'\\g<1><small>&lt;<var>\\g<2> class</var>&gt;</small>'", ",", "text", ")", "# Since Django's WSGIRequest does a pprint like format for it's __repr__, make that styling consistent", "text", "=", "RE_REQUEST_FIELDNAME", ".", "sub", "(", "'\\g<1>:\\n <strong style=\"color: #222;\">\\g<2></strong>: '", ",", "text", ")", "text", "=", "RE_REQUEST_CLEANUP1", ".", "sub", "(", "'\\g<1>'", ",", "text", ")", "text", "=", "RE_REQUEST_CLEANUP2", ".", "sub", "(", "')'", ",", "text", ")", "return", "mark_safe", "(", "text", ")" ]
Apply some HTML highlighting to the contents. This can't be done in the
[ "Apply", "some", "HTML", "highlighting", "to", "the", "contents", ".", "This", "can", "t", "be", "done", "in", "the" ]
python
test
rwl/pylon
pyreto/util.py
https://github.com/rwl/pylon/blob/916514255db1ae1661406f0283df756baf960d14/pyreto/util.py#L96-L106
def weighted_choice(lst): """ Makes weighted choices. Accepts a list of tuples with the item and probability as a pair like: >>> x = [('one', 0.25), ('two', 0.25), ('three', 0.5)] >>> y=windex(x) """ n = random.uniform(0, 1) for item, weight in lst: if n < weight: break n = n - weight return item
[ "def", "weighted_choice", "(", "lst", ")", ":", "n", "=", "random", ".", "uniform", "(", "0", ",", "1", ")", "for", "item", ",", "weight", "in", "lst", ":", "if", "n", "<", "weight", ":", "break", "n", "=", "n", "-", "weight", "return", "item" ]
Makes weighted choices. Accepts a list of tuples with the item and probability as a pair like: >>> x = [('one', 0.25), ('two', 0.25), ('three', 0.5)] >>> y=windex(x)
[ "Makes", "weighted", "choices", ".", "Accepts", "a", "list", "of", "tuples", "with", "the", "item", "and", "probability", "as", "a", "pair", "like", ":", ">>>", "x", "=", "[", "(", "one", "0", ".", "25", ")", "(", "two", "0", ".", "25", ")", "(", "three", "0", ".", "5", ")", "]", ">>>", "y", "=", "windex", "(", "x", ")" ]
python
train
portantier/habu
habu/lib/ip2asn.py
https://github.com/portantier/habu/blob/87091e389dc6332fe1b82830c22b2eefc55816f2/habu/lib/ip2asn.py#L7-L77
def ip2asn(ipaddr): """Returns the ASN data associated with an IP (v4 or v6) >>> from pprint import pprint >>> pprint(ip2asn('8.8.8.8')) {'asn': '15169', 'asname': 'GOOGLE - Google Inc., US', 'cc': 'US', 'net': '8.8.8.0/24', 'rir': 'ARIN'} >>> pprint(ip2asn('2001:4860:4860::8888')) {'asn': '15169', 'asname': 'GOOGLE - Google Inc., US', 'cc': 'US', 'net': '2001:4860::/32', 'rir': 'ARIN'} >>> pprint(ip2asn('unk')) None """ try: ip = ipaddress.ip_network(ipaddr) except ValueError: return None if ip.is_private: return None if ip.version == 4: a, b, c, d = str(ip.exploded).split('/')[0].split('.') reversed = "%s.%s.%s.%s" % (d, c, b, a) name = "%s.origin.asn.cymru.com" % (reversed) else: only_addr = str(ip.exploded).split('/')[0].replace(':', '') reversed = '' for number in only_addr[::-1]: reversed += number reversed += '.' reversed = reversed.rstrip('.') name = "%s.origin6.asn.cymru.com" % (reversed) try: response = dns.resolver.query(name, 'TXT') except: return None # "15169 | 8.8.4.0/24 | US | arin |" r = {} r['asn'] = response[0].to_text().split('|')[0].strip(" \"").split(' ')[0] r['net'] = response[0].to_text().split('|')[1].strip(" \"") r['cc'] = response[0].to_text().split('|')[2].strip(" \"") r['rir'] = response[0].to_text().split('|')[3].strip(" \"").upper() r['asname'] = 'unknown' # Get AS Name # "15169 | US | arin | 2000-03-30 | GOOGLE - Google Inc.,US" try: name = "AS%s.asn.cymru.com" % (r['asn']) response = dns.resolver.query(name, 'TXT') r['asname'] = response[0].to_text().split('|')[4].strip(" \"") except: pass return(r)
[ "def", "ip2asn", "(", "ipaddr", ")", ":", "try", ":", "ip", "=", "ipaddress", ".", "ip_network", "(", "ipaddr", ")", "except", "ValueError", ":", "return", "None", "if", "ip", ".", "is_private", ":", "return", "None", "if", "ip", ".", "version", "==", "4", ":", "a", ",", "b", ",", "c", ",", "d", "=", "str", "(", "ip", ".", "exploded", ")", ".", "split", "(", "'/'", ")", "[", "0", "]", ".", "split", "(", "'.'", ")", "reversed", "=", "\"%s.%s.%s.%s\"", "%", "(", "d", ",", "c", ",", "b", ",", "a", ")", "name", "=", "\"%s.origin.asn.cymru.com\"", "%", "(", "reversed", ")", "else", ":", "only_addr", "=", "str", "(", "ip", ".", "exploded", ")", ".", "split", "(", "'/'", ")", "[", "0", "]", ".", "replace", "(", "':'", ",", "''", ")", "reversed", "=", "''", "for", "number", "in", "only_addr", "[", ":", ":", "-", "1", "]", ":", "reversed", "+=", "number", "reversed", "+=", "'.'", "reversed", "=", "reversed", ".", "rstrip", "(", "'.'", ")", "name", "=", "\"%s.origin6.asn.cymru.com\"", "%", "(", "reversed", ")", "try", ":", "response", "=", "dns", ".", "resolver", ".", "query", "(", "name", ",", "'TXT'", ")", "except", ":", "return", "None", "# \"15169 | 8.8.4.0/24 | US | arin |\"", "r", "=", "{", "}", "r", "[", "'asn'", "]", "=", "response", "[", "0", "]", ".", "to_text", "(", ")", ".", "split", "(", "'|'", ")", "[", "0", "]", ".", "strip", "(", "\" \\\"\"", ")", ".", "split", "(", "' '", ")", "[", "0", "]", "r", "[", "'net'", "]", "=", "response", "[", "0", "]", ".", "to_text", "(", ")", ".", "split", "(", "'|'", ")", "[", "1", "]", ".", "strip", "(", "\" \\\"\"", ")", "r", "[", "'cc'", "]", "=", "response", "[", "0", "]", ".", "to_text", "(", ")", ".", "split", "(", "'|'", ")", "[", "2", "]", ".", "strip", "(", "\" \\\"\"", ")", "r", "[", "'rir'", "]", "=", "response", "[", "0", "]", ".", "to_text", "(", ")", ".", "split", "(", "'|'", ")", "[", "3", "]", ".", "strip", "(", "\" \\\"\"", ")", ".", "upper", "(", ")", "r", "[", "'asname'", "]", "=", "'unknown'", "# Get AS Name", "# \"15169 | US | arin | 2000-03-30 | GOOGLE - Google Inc.,US\"", "try", ":", "name", "=", "\"AS%s.asn.cymru.com\"", "%", "(", "r", "[", "'asn'", "]", ")", "response", "=", "dns", ".", "resolver", ".", "query", "(", "name", ",", "'TXT'", ")", "r", "[", "'asname'", "]", "=", "response", "[", "0", "]", ".", "to_text", "(", ")", ".", "split", "(", "'|'", ")", "[", "4", "]", ".", "strip", "(", "\" \\\"\"", ")", "except", ":", "pass", "return", "(", "r", ")" ]
Returns the ASN data associated with an IP (v4 or v6) >>> from pprint import pprint >>> pprint(ip2asn('8.8.8.8')) {'asn': '15169', 'asname': 'GOOGLE - Google Inc., US', 'cc': 'US', 'net': '8.8.8.0/24', 'rir': 'ARIN'} >>> pprint(ip2asn('2001:4860:4860::8888')) {'asn': '15169', 'asname': 'GOOGLE - Google Inc., US', 'cc': 'US', 'net': '2001:4860::/32', 'rir': 'ARIN'} >>> pprint(ip2asn('unk')) None
[ "Returns", "the", "ASN", "data", "associated", "with", "an", "IP", "(", "v4", "or", "v6", ")" ]
python
train
Robpol86/sphinxcontrib-versioning
sphinxcontrib/versioning/__main__.py
https://github.com/Robpol86/sphinxcontrib-versioning/blob/920edec0ac764081b583a2ecf4e6952762b9dbf2/sphinxcontrib/versioning/__main__.py#L210-L234
def override_root_main_ref(config, remotes, banner): """Override root_ref or banner_main_ref with tags in config if user requested. :param sphinxcontrib.versioning.lib.Config config: Runtime configuration. :param iter remotes: List of dicts from Versions.remotes. :param bool banner: Evaluate banner main ref instead of root ref. :return: If root/main ref exists. :rtype: bool """ log = logging.getLogger(__name__) greatest_tag = config.banner_greatest_tag if banner else config.greatest_tag recent_tag = config.banner_recent_tag if banner else config.recent_tag if greatest_tag or recent_tag: candidates = [r for r in remotes if r['kind'] == 'tags'] if candidates: multi_sort(candidates, ['semver' if greatest_tag else 'time']) config.update({'banner_main_ref' if banner else 'root_ref': candidates[0]['name']}, overwrite=True) else: flag = '--banner-main-ref' if banner else '--root-ref' log.warning('No git tags with docs found in remote. Falling back to %s value.', flag) ref = config.banner_main_ref if banner else config.root_ref return ref in [r['name'] for r in remotes]
[ "def", "override_root_main_ref", "(", "config", ",", "remotes", ",", "banner", ")", ":", "log", "=", "logging", ".", "getLogger", "(", "__name__", ")", "greatest_tag", "=", "config", ".", "banner_greatest_tag", "if", "banner", "else", "config", ".", "greatest_tag", "recent_tag", "=", "config", ".", "banner_recent_tag", "if", "banner", "else", "config", ".", "recent_tag", "if", "greatest_tag", "or", "recent_tag", ":", "candidates", "=", "[", "r", "for", "r", "in", "remotes", "if", "r", "[", "'kind'", "]", "==", "'tags'", "]", "if", "candidates", ":", "multi_sort", "(", "candidates", ",", "[", "'semver'", "if", "greatest_tag", "else", "'time'", "]", ")", "config", ".", "update", "(", "{", "'banner_main_ref'", "if", "banner", "else", "'root_ref'", ":", "candidates", "[", "0", "]", "[", "'name'", "]", "}", ",", "overwrite", "=", "True", ")", "else", ":", "flag", "=", "'--banner-main-ref'", "if", "banner", "else", "'--root-ref'", "log", ".", "warning", "(", "'No git tags with docs found in remote. Falling back to %s value.'", ",", "flag", ")", "ref", "=", "config", ".", "banner_main_ref", "if", "banner", "else", "config", ".", "root_ref", "return", "ref", "in", "[", "r", "[", "'name'", "]", "for", "r", "in", "remotes", "]" ]
Override root_ref or banner_main_ref with tags in config if user requested. :param sphinxcontrib.versioning.lib.Config config: Runtime configuration. :param iter remotes: List of dicts from Versions.remotes. :param bool banner: Evaluate banner main ref instead of root ref. :return: If root/main ref exists. :rtype: bool
[ "Override", "root_ref", "or", "banner_main_ref", "with", "tags", "in", "config", "if", "user", "requested", "." ]
python
train
xxtea/xxtea-python
xxtea/__init__.py
https://github.com/xxtea/xxtea-python/blob/35bd893cb42dce338631d051be9302fcbc21b7fc/xxtea/__init__.py#L42-L51
def decrypt(data, key): '''decrypt the data with the key''' data_len = len(data) data = ffi.from_buffer(data) key = ffi.from_buffer(__tobytes(key)) out_len = ffi.new('size_t *') result = lib.xxtea_decrypt(data, data_len, key, out_len) ret = ffi.buffer(result, out_len[0])[:] lib.free(result) return ret
[ "def", "decrypt", "(", "data", ",", "key", ")", ":", "data_len", "=", "len", "(", "data", ")", "data", "=", "ffi", ".", "from_buffer", "(", "data", ")", "key", "=", "ffi", ".", "from_buffer", "(", "__tobytes", "(", "key", ")", ")", "out_len", "=", "ffi", ".", "new", "(", "'size_t *'", ")", "result", "=", "lib", ".", "xxtea_decrypt", "(", "data", ",", "data_len", ",", "key", ",", "out_len", ")", "ret", "=", "ffi", ".", "buffer", "(", "result", ",", "out_len", "[", "0", "]", ")", "[", ":", "]", "lib", ".", "free", "(", "result", ")", "return", "ret" ]
decrypt the data with the key
[ "decrypt", "the", "data", "with", "the", "key" ]
python
train
trendmicro/flask-ini
flask_ini.py
https://github.com/trendmicro/flask-ini/blob/a1e4baa598c9a01021a1333d9c15e4d99c8334dd/flask_ini.py#L38-L58
def _load_item(self, key): '''Load the specified item from the [flask] section. Type is determined by the type of the equivalent value in app.default_config or string if unknown.''' key_u = key.upper() default = current_app.default_config.get(key_u) # One of the default config vars is a timedelta - interpret it # as an int and construct using it if isinstance(default, datetime.timedelta): current_app.config[key_u] = datetime.timedelta(self.getint('flask', key)) elif isinstance(default, bool): current_app.config[key_u] = self.getboolean('flask', key) elif isinstance(default, float): current_app.config[key_u] = self.getfloat('flask', key) elif isinstance(default, int): current_app.config[key_u] = self.getint('flask', key) else: # All the string keys need to be coerced into str() # because Flask expects some of them not to be unicode current_app.config[key_u] = str(self.get('flask', key))
[ "def", "_load_item", "(", "self", ",", "key", ")", ":", "key_u", "=", "key", ".", "upper", "(", ")", "default", "=", "current_app", ".", "default_config", ".", "get", "(", "key_u", ")", "# One of the default config vars is a timedelta - interpret it", "# as an int and construct using it", "if", "isinstance", "(", "default", ",", "datetime", ".", "timedelta", ")", ":", "current_app", ".", "config", "[", "key_u", "]", "=", "datetime", ".", "timedelta", "(", "self", ".", "getint", "(", "'flask'", ",", "key", ")", ")", "elif", "isinstance", "(", "default", ",", "bool", ")", ":", "current_app", ".", "config", "[", "key_u", "]", "=", "self", ".", "getboolean", "(", "'flask'", ",", "key", ")", "elif", "isinstance", "(", "default", ",", "float", ")", ":", "current_app", ".", "config", "[", "key_u", "]", "=", "self", ".", "getfloat", "(", "'flask'", ",", "key", ")", "elif", "isinstance", "(", "default", ",", "int", ")", ":", "current_app", ".", "config", "[", "key_u", "]", "=", "self", ".", "getint", "(", "'flask'", ",", "key", ")", "else", ":", "# All the string keys need to be coerced into str()", "# because Flask expects some of them not to be unicode", "current_app", ".", "config", "[", "key_u", "]", "=", "str", "(", "self", ".", "get", "(", "'flask'", ",", "key", ")", ")" ]
Load the specified item from the [flask] section. Type is determined by the type of the equivalent value in app.default_config or string if unknown.
[ "Load", "the", "specified", "item", "from", "the", "[", "flask", "]", "section", ".", "Type", "is", "determined", "by", "the", "type", "of", "the", "equivalent", "value", "in", "app", ".", "default_config", "or", "string", "if", "unknown", "." ]
python
train
photo/openphoto-python
trovebox/api/api_tag.py
https://github.com/photo/openphoto-python/blob/209a1da27c8d8c88dbcf4ea6c6f57031ea1bc44b/trovebox/api/api_tag.py#L9-L17
def list(self, **kwds): """ Endpoint: /tags/list.json Returns a list of Tag objects. """ tags = self._client.get("/tags/list.json", **kwds)["result"] tags = self._result_to_list(tags) return [Tag(self._client, tag) for tag in tags]
[ "def", "list", "(", "self", ",", "*", "*", "kwds", ")", ":", "tags", "=", "self", ".", "_client", ".", "get", "(", "\"/tags/list.json\"", ",", "*", "*", "kwds", ")", "[", "\"result\"", "]", "tags", "=", "self", ".", "_result_to_list", "(", "tags", ")", "return", "[", "Tag", "(", "self", ".", "_client", ",", "tag", ")", "for", "tag", "in", "tags", "]" ]
Endpoint: /tags/list.json Returns a list of Tag objects.
[ "Endpoint", ":", "/", "tags", "/", "list", ".", "json" ]
python
train
Esri/ArcREST
src/arcresthelper/common.py
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcresthelper/common.py#L434-L457
def unicode_convert(obj): """Converts unicode objects to anscii. Args: obj (object): The object to convert. Returns: The object converted to anscii, if possible. For ``dict`` and ``list``, the object type is maintained. """ try: if isinstance(obj, dict): return {unicode_convert(key): unicode_convert(value) for key, value in obj.items()} elif isinstance(obj, list): return [unicode_convert(element) for element in obj] elif isinstance(obj, str): return obj elif isinstance(obj, six.text_type): return obj.encode('utf-8') elif isinstance(obj, six.integer_types): return obj else: return obj except: return obj
[ "def", "unicode_convert", "(", "obj", ")", ":", "try", ":", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "return", "{", "unicode_convert", "(", "key", ")", ":", "unicode_convert", "(", "value", ")", "for", "key", ",", "value", "in", "obj", ".", "items", "(", ")", "}", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "return", "[", "unicode_convert", "(", "element", ")", "for", "element", "in", "obj", "]", "elif", "isinstance", "(", "obj", ",", "str", ")", ":", "return", "obj", "elif", "isinstance", "(", "obj", ",", "six", ".", "text_type", ")", ":", "return", "obj", ".", "encode", "(", "'utf-8'", ")", "elif", "isinstance", "(", "obj", ",", "six", ".", "integer_types", ")", ":", "return", "obj", "else", ":", "return", "obj", "except", ":", "return", "obj" ]
Converts unicode objects to anscii. Args: obj (object): The object to convert. Returns: The object converted to anscii, if possible. For ``dict`` and ``list``, the object type is maintained.
[ "Converts", "unicode", "objects", "to", "anscii", "." ]
python
train
apple/turicreate
src/external/coremltools_wrap/coremltools/coremltools/models/pipeline.py
https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/external/coremltools_wrap/coremltools/coremltools/models/pipeline.py#L61-L79
def add_model(self, spec): """ Add a protobuf spec or :py:class:`models.MLModel` instance to the pipeline. All input features of this model must either match the input_features of the pipeline, or match the outputs of a previous model. Parameters ---------- spec: [MLModel, Model_pb2] A protobuf spec or MLModel instance containing a model. """ if isinstance(spec, _model.MLModel): spec = spec._spec pipeline = self.spec.pipeline step_spec = pipeline.models.add() step_spec.CopyFrom(spec)
[ "def", "add_model", "(", "self", ",", "spec", ")", ":", "if", "isinstance", "(", "spec", ",", "_model", ".", "MLModel", ")", ":", "spec", "=", "spec", ".", "_spec", "pipeline", "=", "self", ".", "spec", ".", "pipeline", "step_spec", "=", "pipeline", ".", "models", ".", "add", "(", ")", "step_spec", ".", "CopyFrom", "(", "spec", ")" ]
Add a protobuf spec or :py:class:`models.MLModel` instance to the pipeline. All input features of this model must either match the input_features of the pipeline, or match the outputs of a previous model. Parameters ---------- spec: [MLModel, Model_pb2] A protobuf spec or MLModel instance containing a model.
[ "Add", "a", "protobuf", "spec", "or", ":", "py", ":", "class", ":", "models", ".", "MLModel", "instance", "to", "the", "pipeline", "." ]
python
train
inspirehep/inspire-crawler
inspire_crawler/cli.py
https://github.com/inspirehep/inspire-crawler/blob/36d5cc0cd87cc597ba80e680b7de7254b120173a/inspire_crawler/cli.py#L256-L309
def schedule_crawl_cli(spider_name, workflow_name, dont_force_crawl, kwarg): """Schedule a new crawl. Note: Currently the oaiharvesting is done on inspire side, before this, so it's not supported here yet. """ extra_kwargs = {} for extra_kwarg in kwarg: if '=' not in extra_kwarg: raise TypeError( 'Bad formatted kwarg (%s), it should be in the form:\n' ' --kwarg key=value' % extra_kwarg ) key, value = extra_kwarg.split('=', 1) extra_kwargs[key] = value settings = {'CRAWL_ONCE_ENABLED': False} if dont_force_crawl: settings = {} try: crawler_job_uid = schedule_crawl( spider=spider_name, workflow=workflow_name, crawler_settings=settings, **extra_kwargs ) except ScrapydResponseError as error: message = str(error) if 'spider' in message and 'not found' in message: click.echo('%s' % error) click.echo('\n Available spiders:') spiders = list_spiders() click.echo('\n'.join(spiders)) raise click.Abort() else: raise crawler_job = models.CrawlerJob.query.filter_by( job_id=crawler_job_uid ).one() click.echo( 'Once the job is started, you can see the logs of the job with the ' 'command:\n' ' inspirehep crawler job list\n' ' inspirehep crawler job logs %s\n' '\n' 'and for the associated workflow (it\'s job_id should be %s):\n' ' inspirehep crawler workflow list\n' % (crawler_job.id, crawler_job_uid) )
[ "def", "schedule_crawl_cli", "(", "spider_name", ",", "workflow_name", ",", "dont_force_crawl", ",", "kwarg", ")", ":", "extra_kwargs", "=", "{", "}", "for", "extra_kwarg", "in", "kwarg", ":", "if", "'='", "not", "in", "extra_kwarg", ":", "raise", "TypeError", "(", "'Bad formatted kwarg (%s), it should be in the form:\\n'", "' --kwarg key=value'", "%", "extra_kwarg", ")", "key", ",", "value", "=", "extra_kwarg", ".", "split", "(", "'='", ",", "1", ")", "extra_kwargs", "[", "key", "]", "=", "value", "settings", "=", "{", "'CRAWL_ONCE_ENABLED'", ":", "False", "}", "if", "dont_force_crawl", ":", "settings", "=", "{", "}", "try", ":", "crawler_job_uid", "=", "schedule_crawl", "(", "spider", "=", "spider_name", ",", "workflow", "=", "workflow_name", ",", "crawler_settings", "=", "settings", ",", "*", "*", "extra_kwargs", ")", "except", "ScrapydResponseError", "as", "error", ":", "message", "=", "str", "(", "error", ")", "if", "'spider'", "in", "message", "and", "'not found'", "in", "message", ":", "click", ".", "echo", "(", "'%s'", "%", "error", ")", "click", ".", "echo", "(", "'\\n Available spiders:'", ")", "spiders", "=", "list_spiders", "(", ")", "click", ".", "echo", "(", "'\\n'", ".", "join", "(", "spiders", ")", ")", "raise", "click", ".", "Abort", "(", ")", "else", ":", "raise", "crawler_job", "=", "models", ".", "CrawlerJob", ".", "query", ".", "filter_by", "(", "job_id", "=", "crawler_job_uid", ")", ".", "one", "(", ")", "click", ".", "echo", "(", "'Once the job is started, you can see the logs of the job with the '", "'command:\\n'", "' inspirehep crawler job list\\n'", "' inspirehep crawler job logs %s\\n'", "'\\n'", "'and for the associated workflow (it\\'s job_id should be %s):\\n'", "' inspirehep crawler workflow list\\n'", "%", "(", "crawler_job", ".", "id", ",", "crawler_job_uid", ")", ")" ]
Schedule a new crawl. Note: Currently the oaiharvesting is done on inspire side, before this, so it's not supported here yet.
[ "Schedule", "a", "new", "crawl", "." ]
python
train
materialsproject/pymatgen
pymatgen/io/lammps/data.py
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/lammps/data.py#L1117-L1130
def to_file(self, filename): """ Saves object to a file in YAML format. Args: filename (str): Filename. """ d = {"mass_info": self.mass_info, "nonbond_coeffs": self.nonbond_coeffs, "topo_coeffs": self.topo_coeffs} yaml = YAML(typ="safe") with open(filename, "w") as f: yaml.dump(d, f)
[ "def", "to_file", "(", "self", ",", "filename", ")", ":", "d", "=", "{", "\"mass_info\"", ":", "self", ".", "mass_info", ",", "\"nonbond_coeffs\"", ":", "self", ".", "nonbond_coeffs", ",", "\"topo_coeffs\"", ":", "self", ".", "topo_coeffs", "}", "yaml", "=", "YAML", "(", "typ", "=", "\"safe\"", ")", "with", "open", "(", "filename", ",", "\"w\"", ")", "as", "f", ":", "yaml", ".", "dump", "(", "d", ",", "f", ")" ]
Saves object to a file in YAML format. Args: filename (str): Filename.
[ "Saves", "object", "to", "a", "file", "in", "YAML", "format", "." ]
python
train
evhub/coconut
coconut/command/command.py
https://github.com/evhub/coconut/blob/ff97177344e7604e89a0a98a977a87ed2a56fc6d/coconut/command/command.py#L470-L485
def get_input(self, more=False): """Prompt for code input.""" received = None try: received = self.prompt.input(more) except KeyboardInterrupt: print() printerr("KeyboardInterrupt") except EOFError: print() self.exit_runner() else: if received.startswith(exit_chars): self.exit_runner() received = None return received
[ "def", "get_input", "(", "self", ",", "more", "=", "False", ")", ":", "received", "=", "None", "try", ":", "received", "=", "self", ".", "prompt", ".", "input", "(", "more", ")", "except", "KeyboardInterrupt", ":", "print", "(", ")", "printerr", "(", "\"KeyboardInterrupt\"", ")", "except", "EOFError", ":", "print", "(", ")", "self", ".", "exit_runner", "(", ")", "else", ":", "if", "received", ".", "startswith", "(", "exit_chars", ")", ":", "self", ".", "exit_runner", "(", ")", "received", "=", "None", "return", "received" ]
Prompt for code input.
[ "Prompt", "for", "code", "input", "." ]
python
train
opendatateam/udata
udata/harvest/actions.py
https://github.com/opendatateam/udata/blob/f016585af94b0ff6bd73738c700324adc8ba7f8f/udata/harvest/actions.py#L160-L187
def preview_from_config(name, url, backend, description=None, frequency=DEFAULT_HARVEST_FREQUENCY, owner=None, organization=None, config=None, ): '''Preview an harvesting from a source created with the given parameters''' if owner and not isinstance(owner, User): owner = User.get(owner) if organization and not isinstance(organization, Organization): organization = Organization.get(organization) source = HarvestSource( name=name, url=url, backend=backend, description=description, frequency=frequency or DEFAULT_HARVEST_FREQUENCY, owner=owner, organization=organization, config=config, ) cls = backends.get(current_app, source.backend) max_items = current_app.config['HARVEST_PREVIEW_MAX_ITEMS'] backend = cls(source, dryrun=True, max_items=max_items) return backend.harvest()
[ "def", "preview_from_config", "(", "name", ",", "url", ",", "backend", ",", "description", "=", "None", ",", "frequency", "=", "DEFAULT_HARVEST_FREQUENCY", ",", "owner", "=", "None", ",", "organization", "=", "None", ",", "config", "=", "None", ",", ")", ":", "if", "owner", "and", "not", "isinstance", "(", "owner", ",", "User", ")", ":", "owner", "=", "User", ".", "get", "(", "owner", ")", "if", "organization", "and", "not", "isinstance", "(", "organization", ",", "Organization", ")", ":", "organization", "=", "Organization", ".", "get", "(", "organization", ")", "source", "=", "HarvestSource", "(", "name", "=", "name", ",", "url", "=", "url", ",", "backend", "=", "backend", ",", "description", "=", "description", ",", "frequency", "=", "frequency", "or", "DEFAULT_HARVEST_FREQUENCY", ",", "owner", "=", "owner", ",", "organization", "=", "organization", ",", "config", "=", "config", ",", ")", "cls", "=", "backends", ".", "get", "(", "current_app", ",", "source", ".", "backend", ")", "max_items", "=", "current_app", ".", "config", "[", "'HARVEST_PREVIEW_MAX_ITEMS'", "]", "backend", "=", "cls", "(", "source", ",", "dryrun", "=", "True", ",", "max_items", "=", "max_items", ")", "return", "backend", ".", "harvest", "(", ")" ]
Preview an harvesting from a source created with the given parameters
[ "Preview", "an", "harvesting", "from", "a", "source", "created", "with", "the", "given", "parameters" ]
python
train
BetterWorks/django-anonymizer
anonymizer/replacers.py
https://github.com/BetterWorks/django-anonymizer/blob/2d25bb6e8b5e4230c58031c4b6d10cc536669b3e/anonymizer/replacers.py#L53-L57
def datetime(anon, obj, field, val): """ Returns a random datetime """ return anon.faker.datetime(field=field)
[ "def", "datetime", "(", "anon", ",", "obj", ",", "field", ",", "val", ")", ":", "return", "anon", ".", "faker", ".", "datetime", "(", "field", "=", "field", ")" ]
Returns a random datetime
[ "Returns", "a", "random", "datetime" ]
python
train
kervi/kervi-devices
kervi/devices/displays/dummy_display_driver.py
https://github.com/kervi/kervi-devices/blob/c6aaddc6da1d0bce0ea2b0c6eb8393ba10aefa56/kervi/devices/displays/dummy_display_driver.py#L105-L116
def image(self, image): """Set buffer to value of Python Imaging Library image. The image should be in 1 bit mode and a size equal to the display size. """ if image.mode != '1': raise ValueError('Image must be in mode 1.') imwidth, imheight = image.size if imwidth != self.width or imheight != self.height: raise ValueError('Image must be same dimensions as display ({0}x{1}).' \ .format(self.width, self.height)) print("bitmap display: image") image.save("dummydisplay.bmp")
[ "def", "image", "(", "self", ",", "image", ")", ":", "if", "image", ".", "mode", "!=", "'1'", ":", "raise", "ValueError", "(", "'Image must be in mode 1.'", ")", "imwidth", ",", "imheight", "=", "image", ".", "size", "if", "imwidth", "!=", "self", ".", "width", "or", "imheight", "!=", "self", ".", "height", ":", "raise", "ValueError", "(", "'Image must be same dimensions as display ({0}x{1}).'", ".", "format", "(", "self", ".", "width", ",", "self", ".", "height", ")", ")", "print", "(", "\"bitmap display: image\"", ")", "image", ".", "save", "(", "\"dummydisplay.bmp\"", ")" ]
Set buffer to value of Python Imaging Library image. The image should be in 1 bit mode and a size equal to the display size.
[ "Set", "buffer", "to", "value", "of", "Python", "Imaging", "Library", "image", ".", "The", "image", "should", "be", "in", "1", "bit", "mode", "and", "a", "size", "equal", "to", "the", "display", "size", "." ]
python
train
PythonCharmers/python-future
src/future/backports/datetime.py
https://github.com/PythonCharmers/python-future/blob/c423752879acc05eebc29b0bb9909327bd5c7308/src/future/backports/datetime.py#L1354-L1379
def fromtimestamp(cls, t, tz=None): """Construct a datetime from a POSIX timestamp (like time.time()). A timezone info object may be passed in as well. """ _check_tzinfo_arg(tz) converter = _time.localtime if tz is None else _time.gmtime t, frac = divmod(t, 1.0) us = int(frac * 1e6) # If timestamp is less than one microsecond smaller than a # full second, us can be rounded up to 1000000. In this case, # roll over to seconds, otherwise, ValueError is raised # by the constructor. if us == 1000000: t += 1 us = 0 y, m, d, hh, mm, ss, weekday, jday, dst = converter(t) ss = min(ss, 59) # clamp out leap seconds if the platform has them result = cls(y, m, d, hh, mm, ss, us, tz) if tz is not None: result = tz.fromutc(result) return result
[ "def", "fromtimestamp", "(", "cls", ",", "t", ",", "tz", "=", "None", ")", ":", "_check_tzinfo_arg", "(", "tz", ")", "converter", "=", "_time", ".", "localtime", "if", "tz", "is", "None", "else", "_time", ".", "gmtime", "t", ",", "frac", "=", "divmod", "(", "t", ",", "1.0", ")", "us", "=", "int", "(", "frac", "*", "1e6", ")", "# If timestamp is less than one microsecond smaller than a", "# full second, us can be rounded up to 1000000. In this case,", "# roll over to seconds, otherwise, ValueError is raised", "# by the constructor.", "if", "us", "==", "1000000", ":", "t", "+=", "1", "us", "=", "0", "y", ",", "m", ",", "d", ",", "hh", ",", "mm", ",", "ss", ",", "weekday", ",", "jday", ",", "dst", "=", "converter", "(", "t", ")", "ss", "=", "min", "(", "ss", ",", "59", ")", "# clamp out leap seconds if the platform has them", "result", "=", "cls", "(", "y", ",", "m", ",", "d", ",", "hh", ",", "mm", ",", "ss", ",", "us", ",", "tz", ")", "if", "tz", "is", "not", "None", ":", "result", "=", "tz", ".", "fromutc", "(", "result", ")", "return", "result" ]
Construct a datetime from a POSIX timestamp (like time.time()). A timezone info object may be passed in as well.
[ "Construct", "a", "datetime", "from", "a", "POSIX", "timestamp", "(", "like", "time", ".", "time", "()", ")", "." ]
python
train
blockstack-packages/blockstack-profiles-py
blockstack_profiles/token_verifying.py
https://github.com/blockstack-packages/blockstack-profiles-py/blob/103783798df78cf0f007801e79ec6298f00b2817/blockstack_profiles/token_verifying.py#L102-L124
def get_profile_from_tokens(token_records, public_key_or_address, hierarchical_keys=False): """ A function for extracting a profile from a list of tokens. """ if hierarchical_keys: raise NotImplementedError("Hierarchical key support not implemented") profile = {} for token_record in token_records: # print token_record try: decoded_token = verify_token_record(token_record, public_key_or_address) except ValueError: # traceback.print_exc() continue else: if "payload" in decoded_token: if "claim" in decoded_token["payload"]: claim = decoded_token["payload"]["claim"] profile.update(claim) return profile
[ "def", "get_profile_from_tokens", "(", "token_records", ",", "public_key_or_address", ",", "hierarchical_keys", "=", "False", ")", ":", "if", "hierarchical_keys", ":", "raise", "NotImplementedError", "(", "\"Hierarchical key support not implemented\"", ")", "profile", "=", "{", "}", "for", "token_record", "in", "token_records", ":", "# print token_record", "try", ":", "decoded_token", "=", "verify_token_record", "(", "token_record", ",", "public_key_or_address", ")", "except", "ValueError", ":", "# traceback.print_exc()", "continue", "else", ":", "if", "\"payload\"", "in", "decoded_token", ":", "if", "\"claim\"", "in", "decoded_token", "[", "\"payload\"", "]", ":", "claim", "=", "decoded_token", "[", "\"payload\"", "]", "[", "\"claim\"", "]", "profile", ".", "update", "(", "claim", ")", "return", "profile" ]
A function for extracting a profile from a list of tokens.
[ "A", "function", "for", "extracting", "a", "profile", "from", "a", "list", "of", "tokens", "." ]
python
train
roclark/sportsreference
sportsreference/ncaab/boxscore.py
https://github.com/roclark/sportsreference/blob/ea0bae432be76450e137671d2998eb38f962dffd/sportsreference/ncaab/boxscore.py#L255-L282
def _parse_game_date_and_location(self, field, boxscore): """ Retrieve the game's date and location. The date and location of the game follow a more complicated parsing scheme and should be handled differently from other tags. Both fields are separated by a newline character ('\n') with the first line being the date and the second being the location. Parameters ---------- field : string The name of the attribute to parse boxscore : PyQuery object A PyQuery object containing all of the HTML data from the boxscore. Returns ------- string Depending on the requested field, returns a text representation of either the date or location of the game. """ scheme = BOXSCORE_SCHEME[field] items = [i.text() for i in boxscore(scheme).items()] game_info = items[0].split('\n') if len(game_info) < 3 and field == 'location': return None return game_info[BOXSCORE_ELEMENT_INDEX[field]]
[ "def", "_parse_game_date_and_location", "(", "self", ",", "field", ",", "boxscore", ")", ":", "scheme", "=", "BOXSCORE_SCHEME", "[", "field", "]", "items", "=", "[", "i", ".", "text", "(", ")", "for", "i", "in", "boxscore", "(", "scheme", ")", ".", "items", "(", ")", "]", "game_info", "=", "items", "[", "0", "]", ".", "split", "(", "'\\n'", ")", "if", "len", "(", "game_info", ")", "<", "3", "and", "field", "==", "'location'", ":", "return", "None", "return", "game_info", "[", "BOXSCORE_ELEMENT_INDEX", "[", "field", "]", "]" ]
Retrieve the game's date and location. The date and location of the game follow a more complicated parsing scheme and should be handled differently from other tags. Both fields are separated by a newline character ('\n') with the first line being the date and the second being the location. Parameters ---------- field : string The name of the attribute to parse boxscore : PyQuery object A PyQuery object containing all of the HTML data from the boxscore. Returns ------- string Depending on the requested field, returns a text representation of either the date or location of the game.
[ "Retrieve", "the", "game", "s", "date", "and", "location", "." ]
python
train
fhcrc/seqmagick
seqmagick/transform.py
https://github.com/fhcrc/seqmagick/blob/1642bb87ba5c171fbd307f9da0f8a0ee1d69d5ed/seqmagick/transform.py#L362-L368
def ungap_sequences(records, gap_chars=GAP_TABLE): """ Remove gaps from sequences, given an alignment. """ logging.info('Applying _ungap_sequences generator: removing all gap characters') for record in records: yield ungap_all(record, gap_chars)
[ "def", "ungap_sequences", "(", "records", ",", "gap_chars", "=", "GAP_TABLE", ")", ":", "logging", ".", "info", "(", "'Applying _ungap_sequences generator: removing all gap characters'", ")", "for", "record", "in", "records", ":", "yield", "ungap_all", "(", "record", ",", "gap_chars", ")" ]
Remove gaps from sequences, given an alignment.
[ "Remove", "gaps", "from", "sequences", "given", "an", "alignment", "." ]
python
train
cisco-sas/kitty
kitty/model/low_level/container.py
https://github.com/cisco-sas/kitty/blob/cb0760989dcdfe079e43ac574d872d0b18953a32/kitty/model/low_level/container.py#L294-L302
def pop(self): ''' Remove a the top container from the container stack ''' if not self._containers: raise KittyException('no container to pop') self._containers.pop() if self._container(): self._container().pop()
[ "def", "pop", "(", "self", ")", ":", "if", "not", "self", ".", "_containers", ":", "raise", "KittyException", "(", "'no container to pop'", ")", "self", ".", "_containers", ".", "pop", "(", ")", "if", "self", ".", "_container", "(", ")", ":", "self", ".", "_container", "(", ")", ".", "pop", "(", ")" ]
Remove a the top container from the container stack
[ "Remove", "a", "the", "top", "container", "from", "the", "container", "stack" ]
python
train
krzysiekfonal/grammaregex
grammaregex/grammaregex.py
https://github.com/krzysiekfonal/grammaregex/blob/5212075433fc5201da628acf09cdf5bf73aa1ad0/grammaregex/grammaregex.py#L79-L111
def match_tree(sentence, pattern): """Matches given sentence with provided pattern. :param sentence: sentence from Spacy(see: http://spacy.io/docs/#doc-spans-sents) representing complete statement :param pattern: pattern to which sentence will be compared :return: True if sentence match to pattern, False otherwise :raises: PatternSyntaxException: if pattern has wrong syntax """ if not verify_pattern(pattern): raise PatternSyntaxException(pattern) def _match_node(t, p): pat_node = p.pop(0) if p else "" return not pat_node or (_match_token(t, pat_node, False) and _match_edge(t.children,p)) def _match_edge(edges,p): pat_edge = p.pop(0) if p else "" if not pat_edge: return True elif not edges: return False else: for (t) in edges: if (_match_token(t, pat_edge, True)) and _match_node(t, list(p)): return True elif pat_edge == "**" and _match_edge(t.children, ["**"] + p): return True return False return _match_node(sentence.root, pattern.split("/"))
[ "def", "match_tree", "(", "sentence", ",", "pattern", ")", ":", "if", "not", "verify_pattern", "(", "pattern", ")", ":", "raise", "PatternSyntaxException", "(", "pattern", ")", "def", "_match_node", "(", "t", ",", "p", ")", ":", "pat_node", "=", "p", ".", "pop", "(", "0", ")", "if", "p", "else", "\"\"", "return", "not", "pat_node", "or", "(", "_match_token", "(", "t", ",", "pat_node", ",", "False", ")", "and", "_match_edge", "(", "t", ".", "children", ",", "p", ")", ")", "def", "_match_edge", "(", "edges", ",", "p", ")", ":", "pat_edge", "=", "p", ".", "pop", "(", "0", ")", "if", "p", "else", "\"\"", "if", "not", "pat_edge", ":", "return", "True", "elif", "not", "edges", ":", "return", "False", "else", ":", "for", "(", "t", ")", "in", "edges", ":", "if", "(", "_match_token", "(", "t", ",", "pat_edge", ",", "True", ")", ")", "and", "_match_node", "(", "t", ",", "list", "(", "p", ")", ")", ":", "return", "True", "elif", "pat_edge", "==", "\"**\"", "and", "_match_edge", "(", "t", ".", "children", ",", "[", "\"**\"", "]", "+", "p", ")", ":", "return", "True", "return", "False", "return", "_match_node", "(", "sentence", ".", "root", ",", "pattern", ".", "split", "(", "\"/\"", ")", ")" ]
Matches given sentence with provided pattern. :param sentence: sentence from Spacy(see: http://spacy.io/docs/#doc-spans-sents) representing complete statement :param pattern: pattern to which sentence will be compared :return: True if sentence match to pattern, False otherwise :raises: PatternSyntaxException: if pattern has wrong syntax
[ "Matches", "given", "sentence", "with", "provided", "pattern", "." ]
python
train
pkgw/pwkit
pwkit/dulk_models.py
https://github.com/pkgw/pwkit/blob/d40957a1c3d2ea34e7ceac2267ee9635135f2793/pwkit/dulk_models.py#L175-L205
def calc_gs_nu_pk(b, ne, delta, sinth, depth): """Calculate the frequency of peak synchrotron emission, ν_pk. This is Dulk (1985) equation 39, which is a fitting function assuming a power-law electron population. Arguments are: b Magnetic field strength in Gauss ne The density of electrons per cubic centimeter with energies greater than 10 keV. delta The power-law index defining the energy distribution of the electron population, with ``n(E) ~ E^(-delta)``. The equation is valid for ``2 <~ delta <~ 7``. sinth The sine of the angle between the line of sight and the magnetic field direction. The equation is valid for θ > 20° or ``sinth > 0.34`` or so. depth The path length through the emitting medium, in cm. The return value is peak frequency in Hz. No complaints are raised if you attempt to use the equation outside of its range of validity. """ coldens = ne * depth return (2.72e3 * 10**(0.27 * delta) * sinth**(0.41 + 0.03 * delta) * coldens**(0.32 - 0.03 * delta) * b**(0.68 + 0.03 * delta))
[ "def", "calc_gs_nu_pk", "(", "b", ",", "ne", ",", "delta", ",", "sinth", ",", "depth", ")", ":", "coldens", "=", "ne", "*", "depth", "return", "(", "2.72e3", "*", "10", "**", "(", "0.27", "*", "delta", ")", "*", "sinth", "**", "(", "0.41", "+", "0.03", "*", "delta", ")", "*", "coldens", "**", "(", "0.32", "-", "0.03", "*", "delta", ")", "*", "b", "**", "(", "0.68", "+", "0.03", "*", "delta", ")", ")" ]
Calculate the frequency of peak synchrotron emission, ν_pk. This is Dulk (1985) equation 39, which is a fitting function assuming a power-law electron population. Arguments are: b Magnetic field strength in Gauss ne The density of electrons per cubic centimeter with energies greater than 10 keV. delta The power-law index defining the energy distribution of the electron population, with ``n(E) ~ E^(-delta)``. The equation is valid for ``2 <~ delta <~ 7``. sinth The sine of the angle between the line of sight and the magnetic field direction. The equation is valid for θ > 20° or ``sinth > 0.34`` or so. depth The path length through the emitting medium, in cm. The return value is peak frequency in Hz. No complaints are raised if you attempt to use the equation outside of its range of validity.
[ "Calculate", "the", "frequency", "of", "peak", "synchrotron", "emission", "ν_pk", "." ]
python
train
GoogleCloudPlatform/appengine-mapreduce
python/src/mapreduce/namespace_range.py
https://github.com/GoogleCloudPlatform/appengine-mapreduce/blob/2045eb3605b6ecb40c83d11dd5442a89fe5c5dd6/python/src/mapreduce/namespace_range.py#L324-L330
def to_json_object(self): """Returns a dict representation that can be serialized to JSON.""" obj_dict = dict(namespace_start=self.namespace_start, namespace_end=self.namespace_end) if self.app is not None: obj_dict['app'] = self.app return obj_dict
[ "def", "to_json_object", "(", "self", ")", ":", "obj_dict", "=", "dict", "(", "namespace_start", "=", "self", ".", "namespace_start", ",", "namespace_end", "=", "self", ".", "namespace_end", ")", "if", "self", ".", "app", "is", "not", "None", ":", "obj_dict", "[", "'app'", "]", "=", "self", ".", "app", "return", "obj_dict" ]
Returns a dict representation that can be serialized to JSON.
[ "Returns", "a", "dict", "representation", "that", "can", "be", "serialized", "to", "JSON", "." ]
python
train
has2k1/plotnine
plotnine/guides/guide.py
https://github.com/has2k1/plotnine/blob/566e579af705367e584fb27a74e6c5199624ca89/plotnine/guides/guide.py#L93-L105
def _default(self, key, default=None): """ Lookup value of *key* themeable If *key* not in themeable or value is None, return the *default* value. """ try: value = self.theme.themeables.property(key) except KeyError: value = None return value if value is not None else default
[ "def", "_default", "(", "self", ",", "key", ",", "default", "=", "None", ")", ":", "try", ":", "value", "=", "self", ".", "theme", ".", "themeables", ".", "property", "(", "key", ")", "except", "KeyError", ":", "value", "=", "None", "return", "value", "if", "value", "is", "not", "None", "else", "default" ]
Lookup value of *key* themeable If *key* not in themeable or value is None, return the *default* value.
[ "Lookup", "value", "of", "*", "key", "*", "themeable" ]
python
train
datacats/datacats
datacats/cli/manage.py
https://github.com/datacats/datacats/blob/e4bae503efa997660fb3f34fe166699569653157/datacats/cli/manage.py#L206-L244
def logs(environment, opts): """Display or follow container logs Usage: datacats logs [--postgres | --solr | --datapusher] [-s NAME] [-tr] [--tail=LINES] [ENVIRONMENT] datacats logs -f [--postgres | --solr | --datapusher] [-s NAME] [-r] [ENVIRONMENT] Options: --datapusher Show logs for datapusher instead of web logs --postgres Show postgres database logs instead of web logs -f --follow Follow logs instead of exiting immediately --solr Show solr search logs instead of web logs -t --timestamps Add timestamps to log lines -s --site=NAME Specify a site for logs if needed [default: primary] --tail=LINES Number of lines to show [default: all] ENVIRONMENT may be an environment name or a path to an environment directory. Default: '.' """ container = 'web' if opts['--solr']: container = 'solr' if opts['--postgres']: container = 'postgres' if opts['--datapusher']: container = 'datapusher' tail = opts['--tail'] if tail != 'all': tail = int(tail) l = environment.logs(container, tail, opts['--follow'], opts['--timestamps']) if not opts['--follow']: print l return try: for message in l: write(message) except KeyboardInterrupt: print
[ "def", "logs", "(", "environment", ",", "opts", ")", ":", "container", "=", "'web'", "if", "opts", "[", "'--solr'", "]", ":", "container", "=", "'solr'", "if", "opts", "[", "'--postgres'", "]", ":", "container", "=", "'postgres'", "if", "opts", "[", "'--datapusher'", "]", ":", "container", "=", "'datapusher'", "tail", "=", "opts", "[", "'--tail'", "]", "if", "tail", "!=", "'all'", ":", "tail", "=", "int", "(", "tail", ")", "l", "=", "environment", ".", "logs", "(", "container", ",", "tail", ",", "opts", "[", "'--follow'", "]", ",", "opts", "[", "'--timestamps'", "]", ")", "if", "not", "opts", "[", "'--follow'", "]", ":", "print", "l", "return", "try", ":", "for", "message", "in", "l", ":", "write", "(", "message", ")", "except", "KeyboardInterrupt", ":", "print" ]
Display or follow container logs Usage: datacats logs [--postgres | --solr | --datapusher] [-s NAME] [-tr] [--tail=LINES] [ENVIRONMENT] datacats logs -f [--postgres | --solr | --datapusher] [-s NAME] [-r] [ENVIRONMENT] Options: --datapusher Show logs for datapusher instead of web logs --postgres Show postgres database logs instead of web logs -f --follow Follow logs instead of exiting immediately --solr Show solr search logs instead of web logs -t --timestamps Add timestamps to log lines -s --site=NAME Specify a site for logs if needed [default: primary] --tail=LINES Number of lines to show [default: all] ENVIRONMENT may be an environment name or a path to an environment directory. Default: '.'
[ "Display", "or", "follow", "container", "logs" ]
python
train
andy-esch/sqterritory
sqterritory/territory.py
https://github.com/andy-esch/sqterritory/blob/53bcf7c8946f5d216d1ceccf55f9f339125b8205/sqterritory/territory.py#L74-L102
def _get_target_nearest(self): """Get nearest target for each origin""" reps_query = """ SELECT DISTINCT ON(g2.cartodb_id) g1.cartodb_id As origin_id, g2.the_geom, g2.cartodb_id + {maxorigin} as cartodb_id, g2.the_geom_webmercator FROM {origin_table} As g1, {target_table} As g2 ORDER BY g2.cartodb_id, g1.the_geom <-> g2.the_geom """.format( maxorigin=self.origins.index.max(), origin_table=self.origin_table, target_table=self.target_table ) nearest_reps = self.context.query( reps_query, decode_geom=True ) nearest_reps = gpd.GeoDataFrame(nearest_reps, geometry='geometry') init_labels = nearest_reps['origin_id'].values # update with new information self.targets['labels'] = init_labels logging.info('nearest targets retrieved') return nearest_reps
[ "def", "_get_target_nearest", "(", "self", ")", ":", "reps_query", "=", "\"\"\"\n SELECT DISTINCT ON(g2.cartodb_id)\n g1.cartodb_id As origin_id,\n g2.the_geom,\n g2.cartodb_id + {maxorigin} as cartodb_id,\n g2.the_geom_webmercator\n FROM {origin_table} As g1, {target_table} As g2\n ORDER BY g2.cartodb_id, g1.the_geom <-> g2.the_geom\n \"\"\"", ".", "format", "(", "maxorigin", "=", "self", ".", "origins", ".", "index", ".", "max", "(", ")", ",", "origin_table", "=", "self", ".", "origin_table", ",", "target_table", "=", "self", ".", "target_table", ")", "nearest_reps", "=", "self", ".", "context", ".", "query", "(", "reps_query", ",", "decode_geom", "=", "True", ")", "nearest_reps", "=", "gpd", ".", "GeoDataFrame", "(", "nearest_reps", ",", "geometry", "=", "'geometry'", ")", "init_labels", "=", "nearest_reps", "[", "'origin_id'", "]", ".", "values", "# update with new information", "self", ".", "targets", "[", "'labels'", "]", "=", "init_labels", "logging", ".", "info", "(", "'nearest targets retrieved'", ")", "return", "nearest_reps" ]
Get nearest target for each origin
[ "Get", "nearest", "target", "for", "each", "origin" ]
python
train
Erotemic/utool
utool/util_cplat.py
https://github.com/Erotemic/utool/blob/3b27e1f4e6e6fb23cd8744af7b7195b57d99e03a/utool/util_cplat.py#L544-L622
def view_directory(dname=None, fname=None, verbose=True): """ View a directory in the operating system file browser. Currently supports windows explorer, mac open, and linux nautlius. Args: dname (str): directory name fname (str): a filename to select in the directory (nautlius only) verbose (bool): CommandLine: python -m utool.util_cplat --test-view_directory Example: >>> # DISABLE_DOCTEST >>> # DOCTEST_DISABLE >>> from utool.util_cplat import * # NOQA >>> import utool as ut >>> dname = ut.truepath('~') >>> verbose = True >>> view_directory(dname, verbose) Example: >>> # DISABLE_DOCTEST >>> from utool.util_cplat import * # NOQA >>> import utool as ut >>> base = ut.ensure_app_cache_dir('utool', 'test_vd') >>> dirs = [ >>> '', >>> 'dir1', >>> 'has space', >>> 'space at end ', >>> ' space at start ', >>> '"quotes and spaces"', >>> "'single quotes and spaces'", >>> 'Frogram Piles (y2K)', >>> ] >>> dirs_ = [ut.ensuredir(join(base, d)) for d in dirs] >>> for dname in dirs_: >>> ut.view_directory(dname, verbose=False) >>> fpath = join(base, 'afile.txt') >>> ut.touch(fpath) >>> ut.view_directory(base, fpath, verbose=False) """ from utool.util_arg import STRICT from utool.util_path import checkpath # from utool.util_str import SINGLE_QUOTE, DOUBLE_QUOTE if HAVE_PATHLIB and isinstance(dname, pathlib.Path): dname = str(dname) if verbose: print('[cplat] view_directory(%r) ' % dname) dname = os.getcwd() if dname is None else dname open_prog = { 'win32': 'explorer.exe', 'linux': 'nautilus', 'darwin': 'open' }[OS_TYPE] dname = normpath(dname) if STRICT: assert checkpath(dname, verbose=verbose), 'directory doesnt exit' if fname is not None and OS_TYPE == 'linux': arg = join(dname, fname) else: arg = dname # if ' ' in dname and not dname.startswith((SINGLE_QUOTE, DOUBLE_QUOTE)): # # Ensure quotations # dname = '"%s"' % dname # if not WIN32: # arg = dname # # arg = subprocess.list2cmdline([dname]) # # arg = pipes.quote(dname) # else: # arg = dname # spawn and detatch process args = (open_prog, arg) print(subprocess.list2cmdline(args)) subprocess.Popen(args)
[ "def", "view_directory", "(", "dname", "=", "None", ",", "fname", "=", "None", ",", "verbose", "=", "True", ")", ":", "from", "utool", ".", "util_arg", "import", "STRICT", "from", "utool", ".", "util_path", "import", "checkpath", "# from utool.util_str import SINGLE_QUOTE, DOUBLE_QUOTE", "if", "HAVE_PATHLIB", "and", "isinstance", "(", "dname", ",", "pathlib", ".", "Path", ")", ":", "dname", "=", "str", "(", "dname", ")", "if", "verbose", ":", "print", "(", "'[cplat] view_directory(%r) '", "%", "dname", ")", "dname", "=", "os", ".", "getcwd", "(", ")", "if", "dname", "is", "None", "else", "dname", "open_prog", "=", "{", "'win32'", ":", "'explorer.exe'", ",", "'linux'", ":", "'nautilus'", ",", "'darwin'", ":", "'open'", "}", "[", "OS_TYPE", "]", "dname", "=", "normpath", "(", "dname", ")", "if", "STRICT", ":", "assert", "checkpath", "(", "dname", ",", "verbose", "=", "verbose", ")", ",", "'directory doesnt exit'", "if", "fname", "is", "not", "None", "and", "OS_TYPE", "==", "'linux'", ":", "arg", "=", "join", "(", "dname", ",", "fname", ")", "else", ":", "arg", "=", "dname", "# if ' ' in dname and not dname.startswith((SINGLE_QUOTE, DOUBLE_QUOTE)):", "# # Ensure quotations", "# dname = '\"%s\"' % dname", "# if not WIN32:", "# arg = dname", "# # arg = subprocess.list2cmdline([dname])", "# # arg = pipes.quote(dname)", "# else:", "# arg = dname", "# spawn and detatch process", "args", "=", "(", "open_prog", ",", "arg", ")", "print", "(", "subprocess", ".", "list2cmdline", "(", "args", ")", ")", "subprocess", ".", "Popen", "(", "args", ")" ]
View a directory in the operating system file browser. Currently supports windows explorer, mac open, and linux nautlius. Args: dname (str): directory name fname (str): a filename to select in the directory (nautlius only) verbose (bool): CommandLine: python -m utool.util_cplat --test-view_directory Example: >>> # DISABLE_DOCTEST >>> # DOCTEST_DISABLE >>> from utool.util_cplat import * # NOQA >>> import utool as ut >>> dname = ut.truepath('~') >>> verbose = True >>> view_directory(dname, verbose) Example: >>> # DISABLE_DOCTEST >>> from utool.util_cplat import * # NOQA >>> import utool as ut >>> base = ut.ensure_app_cache_dir('utool', 'test_vd') >>> dirs = [ >>> '', >>> 'dir1', >>> 'has space', >>> 'space at end ', >>> ' space at start ', >>> '"quotes and spaces"', >>> "'single quotes and spaces'", >>> 'Frogram Piles (y2K)', >>> ] >>> dirs_ = [ut.ensuredir(join(base, d)) for d in dirs] >>> for dname in dirs_: >>> ut.view_directory(dname, verbose=False) >>> fpath = join(base, 'afile.txt') >>> ut.touch(fpath) >>> ut.view_directory(base, fpath, verbose=False)
[ "View", "a", "directory", "in", "the", "operating", "system", "file", "browser", ".", "Currently", "supports", "windows", "explorer", "mac", "open", "and", "linux", "nautlius", "." ]
python
train
AtsushiSakai/SimpleTkGUIKit
SimpleTkGUIKit/SimpleTkGUIKit.py
https://github.com/AtsushiSakai/SimpleTkGUIKit/blob/e7cbb06ff32afb165cdaa4fe396ca2f172c66ff0/SimpleTkGUIKit/SimpleTkGUIKit.py#L134-L167
def GetEntries(dataList, title="Select", msg=""): """ Get entries of the list title: Window name mag: Label of the check button return data dictionary like: {'y': '5.0', 'x': '100', 'z': 'save'} """ root = tkinter.Tk() root.title(title) label = tkinter.Label(root, text=msg) label.pack() entries = [] for item in dataList: tkinter.Label(root, text=item).pack() entry = tkinter.Entry(root) entry.pack() entries.append(entry) # print entries tkinter.Button(root, text="OK", fg="black", command=root.quit).pack() root.mainloop() result = {} for (entry, data) in zip(entries, dataList): result[data] = entry.get() root.destroy() print(result) return result
[ "def", "GetEntries", "(", "dataList", ",", "title", "=", "\"Select\"", ",", "msg", "=", "\"\"", ")", ":", "root", "=", "tkinter", ".", "Tk", "(", ")", "root", ".", "title", "(", "title", ")", "label", "=", "tkinter", ".", "Label", "(", "root", ",", "text", "=", "msg", ")", "label", ".", "pack", "(", ")", "entries", "=", "[", "]", "for", "item", "in", "dataList", ":", "tkinter", ".", "Label", "(", "root", ",", "text", "=", "item", ")", ".", "pack", "(", ")", "entry", "=", "tkinter", ".", "Entry", "(", "root", ")", "entry", ".", "pack", "(", ")", "entries", ".", "append", "(", "entry", ")", "# print entries", "tkinter", ".", "Button", "(", "root", ",", "text", "=", "\"OK\"", ",", "fg", "=", "\"black\"", ",", "command", "=", "root", ".", "quit", ")", ".", "pack", "(", ")", "root", ".", "mainloop", "(", ")", "result", "=", "{", "}", "for", "(", "entry", ",", "data", ")", "in", "zip", "(", "entries", ",", "dataList", ")", ":", "result", "[", "data", "]", "=", "entry", ".", "get", "(", ")", "root", ".", "destroy", "(", ")", "print", "(", "result", ")", "return", "result" ]
Get entries of the list title: Window name mag: Label of the check button return data dictionary like: {'y': '5.0', 'x': '100', 'z': 'save'}
[ "Get", "entries", "of", "the", "list" ]
python
train
yyuu/botornado
boto/connection.py
https://github.com/yyuu/botornado/blob/fffb056f5ff2324d1d5c1304014cfb1d899f602e/boto/connection.py#L699-L797
def _mexe(self, request, sender=None, override_num_retries=None, retry_handler=None): """ mexe - Multi-execute inside a loop, retrying multiple times to handle transient Internet errors by simply trying again. Also handles redirects. This code was inspired by the S3Utils classes posted to the boto-users Google group by Larry Bates. Thanks! """ boto.log.debug('Method: %s' % request.method) boto.log.debug('Path: %s' % request.path) boto.log.debug('Data: %s' % request.body) boto.log.debug('Headers: %s' % request.headers) boto.log.debug('Host: %s' % request.host) response = None body = None e = None if override_num_retries is None: num_retries = config.getint('Boto', 'num_retries', self.num_retries) else: num_retries = override_num_retries i = 0 connection = self.get_http_connection(request.host, self.is_secure) while i <= num_retries: # Use binary exponential backoff to desynchronize client requests next_sleep = random.random() * (2 ** i) try: # we now re-sign each request before it is retried boto.log.debug('Token: %s' % self.provider.security_token) request.authorize(connection=self) if callable(sender): response = sender(connection, request.method, request.path, request.body, request.headers) else: connection.request(request.method, request.path, request.body, request.headers) response = connection.getresponse() location = response.getheader('location') # -- gross hack -- # httplib gets confused with chunked responses to HEAD requests # so I have to fake it out if request.method == 'HEAD' and getattr(response, 'chunked', False): response.chunked = 0 if callable(retry_handler): status = retry_handler(response, i, next_sleep) if status: msg, i, next_sleep = status if msg: boto.log.debug(msg) time.sleep(next_sleep) continue if response.status == 500 or response.status == 503: msg = 'Received %d response. ' % response.status msg += 'Retrying in %3.1f seconds' % next_sleep boto.log.debug(msg) body = response.read() elif response.status < 300 or response.status >= 400 or \ not location: self.put_http_connection(request.host, self.is_secure, connection) return response else: scheme, request.host, request.path, \ params, query, fragment = urlparse.urlparse(location) if query: request.path += '?' + query msg = 'Redirecting: %s' % scheme + '://' msg += request.host + request.path boto.log.debug(msg) connection = self.get_http_connection(request.host, scheme == 'https') continue except self.http_exceptions, e: for unretryable in self.http_unretryable_exceptions: if isinstance(e, unretryable): boto.log.debug( 'encountered unretryable %s exception, re-raising' % e.__class__.__name__) raise e boto.log.debug('encountered %s exception, reconnecting' % \ e.__class__.__name__) connection = self.new_http_connection(request.host, self.is_secure) time.sleep(next_sleep) i += 1 # If we made it here, it's because we have exhausted our retries # and stil haven't succeeded. So, if we have a response object, # use it to raise an exception. # Otherwise, raise the exception that must have already h#appened. if response: raise BotoServerError(response.status, response.reason, body) elif e: raise e else: msg = 'Please report this exception as a Boto Issue!' raise BotoClientError(msg)
[ "def", "_mexe", "(", "self", ",", "request", ",", "sender", "=", "None", ",", "override_num_retries", "=", "None", ",", "retry_handler", "=", "None", ")", ":", "boto", ".", "log", ".", "debug", "(", "'Method: %s'", "%", "request", ".", "method", ")", "boto", ".", "log", ".", "debug", "(", "'Path: %s'", "%", "request", ".", "path", ")", "boto", ".", "log", ".", "debug", "(", "'Data: %s'", "%", "request", ".", "body", ")", "boto", ".", "log", ".", "debug", "(", "'Headers: %s'", "%", "request", ".", "headers", ")", "boto", ".", "log", ".", "debug", "(", "'Host: %s'", "%", "request", ".", "host", ")", "response", "=", "None", "body", "=", "None", "e", "=", "None", "if", "override_num_retries", "is", "None", ":", "num_retries", "=", "config", ".", "getint", "(", "'Boto'", ",", "'num_retries'", ",", "self", ".", "num_retries", ")", "else", ":", "num_retries", "=", "override_num_retries", "i", "=", "0", "connection", "=", "self", ".", "get_http_connection", "(", "request", ".", "host", ",", "self", ".", "is_secure", ")", "while", "i", "<=", "num_retries", ":", "# Use binary exponential backoff to desynchronize client requests", "next_sleep", "=", "random", ".", "random", "(", ")", "*", "(", "2", "**", "i", ")", "try", ":", "# we now re-sign each request before it is retried", "boto", ".", "log", ".", "debug", "(", "'Token: %s'", "%", "self", ".", "provider", ".", "security_token", ")", "request", ".", "authorize", "(", "connection", "=", "self", ")", "if", "callable", "(", "sender", ")", ":", "response", "=", "sender", "(", "connection", ",", "request", ".", "method", ",", "request", ".", "path", ",", "request", ".", "body", ",", "request", ".", "headers", ")", "else", ":", "connection", ".", "request", "(", "request", ".", "method", ",", "request", ".", "path", ",", "request", ".", "body", ",", "request", ".", "headers", ")", "response", "=", "connection", ".", "getresponse", "(", ")", "location", "=", "response", ".", "getheader", "(", "'location'", ")", "# -- gross hack --", "# httplib gets confused with chunked responses to HEAD requests", "# so I have to fake it out", "if", "request", ".", "method", "==", "'HEAD'", "and", "getattr", "(", "response", ",", "'chunked'", ",", "False", ")", ":", "response", ".", "chunked", "=", "0", "if", "callable", "(", "retry_handler", ")", ":", "status", "=", "retry_handler", "(", "response", ",", "i", ",", "next_sleep", ")", "if", "status", ":", "msg", ",", "i", ",", "next_sleep", "=", "status", "if", "msg", ":", "boto", ".", "log", ".", "debug", "(", "msg", ")", "time", ".", "sleep", "(", "next_sleep", ")", "continue", "if", "response", ".", "status", "==", "500", "or", "response", ".", "status", "==", "503", ":", "msg", "=", "'Received %d response. '", "%", "response", ".", "status", "msg", "+=", "'Retrying in %3.1f seconds'", "%", "next_sleep", "boto", ".", "log", ".", "debug", "(", "msg", ")", "body", "=", "response", ".", "read", "(", ")", "elif", "response", ".", "status", "<", "300", "or", "response", ".", "status", ">=", "400", "or", "not", "location", ":", "self", ".", "put_http_connection", "(", "request", ".", "host", ",", "self", ".", "is_secure", ",", "connection", ")", "return", "response", "else", ":", "scheme", ",", "request", ".", "host", ",", "request", ".", "path", ",", "params", ",", "query", ",", "fragment", "=", "urlparse", ".", "urlparse", "(", "location", ")", "if", "query", ":", "request", ".", "path", "+=", "'?'", "+", "query", "msg", "=", "'Redirecting: %s'", "%", "scheme", "+", "'://'", "msg", "+=", "request", ".", "host", "+", "request", ".", "path", "boto", ".", "log", ".", "debug", "(", "msg", ")", "connection", "=", "self", ".", "get_http_connection", "(", "request", ".", "host", ",", "scheme", "==", "'https'", ")", "continue", "except", "self", ".", "http_exceptions", ",", "e", ":", "for", "unretryable", "in", "self", ".", "http_unretryable_exceptions", ":", "if", "isinstance", "(", "e", ",", "unretryable", ")", ":", "boto", ".", "log", ".", "debug", "(", "'encountered unretryable %s exception, re-raising'", "%", "e", ".", "__class__", ".", "__name__", ")", "raise", "e", "boto", ".", "log", ".", "debug", "(", "'encountered %s exception, reconnecting'", "%", "e", ".", "__class__", ".", "__name__", ")", "connection", "=", "self", ".", "new_http_connection", "(", "request", ".", "host", ",", "self", ".", "is_secure", ")", "time", ".", "sleep", "(", "next_sleep", ")", "i", "+=", "1", "# If we made it here, it's because we have exhausted our retries", "# and stil haven't succeeded. So, if we have a response object,", "# use it to raise an exception.", "# Otherwise, raise the exception that must have already h#appened.", "if", "response", ":", "raise", "BotoServerError", "(", "response", ".", "status", ",", "response", ".", "reason", ",", "body", ")", "elif", "e", ":", "raise", "e", "else", ":", "msg", "=", "'Please report this exception as a Boto Issue!'", "raise", "BotoClientError", "(", "msg", ")" ]
mexe - Multi-execute inside a loop, retrying multiple times to handle transient Internet errors by simply trying again. Also handles redirects. This code was inspired by the S3Utils classes posted to the boto-users Google group by Larry Bates. Thanks!
[ "mexe", "-", "Multi", "-", "execute", "inside", "a", "loop", "retrying", "multiple", "times", "to", "handle", "transient", "Internet", "errors", "by", "simply", "trying", "again", ".", "Also", "handles", "redirects", "." ]
python
train
cloud9ers/gurumate
environment/lib/python2.7/site-packages/MySQL_python-1.2.4c1-py2.7-linux-x86_64.egg/MySQLdb/cursors.py
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/MySQL_python-1.2.4c1-py2.7-linux-x86_64.egg/MySQLdb/cursors.py#L206-L254
def executemany(self, query, args): """Execute a multi-row query. query -- string, query to execute on server args Sequence of sequences or mappings, parameters to use with query. Returns long integer rows affected, if any. This method improves performance on multiple-row INSERT and REPLACE. Otherwise it is equivalent to looping over args with execute(). """ del self.messages[:] db = self._get_db() if not args: return if isinstance(query, unicode): query = query.encode(db.unicode_literal.charset) m = insert_values.search(query) if not m: r = 0 for a in args: r = r + self.execute(query, a) return r p = m.start(1) e = m.end(1) qv = m.group(1) try: q = [ qv % db.literal(a) for a in args ] except TypeError, msg: if msg.args[0] in ("not enough arguments for format string", "not all arguments converted"): self.errorhandler(self, ProgrammingError, msg.args[0]) else: self.errorhandler(self, TypeError, msg) except (SystemExit, KeyboardInterrupt): raise except: exc, value, tb = sys.exc_info() del tb self.errorhandler(self, exc, value) r = self._query('\n'.join([query[:p], ',\n'.join(q), query[e:]])) if not self._defer_warnings: self._warning_check() return r
[ "def", "executemany", "(", "self", ",", "query", ",", "args", ")", ":", "del", "self", ".", "messages", "[", ":", "]", "db", "=", "self", ".", "_get_db", "(", ")", "if", "not", "args", ":", "return", "if", "isinstance", "(", "query", ",", "unicode", ")", ":", "query", "=", "query", ".", "encode", "(", "db", ".", "unicode_literal", ".", "charset", ")", "m", "=", "insert_values", ".", "search", "(", "query", ")", "if", "not", "m", ":", "r", "=", "0", "for", "a", "in", "args", ":", "r", "=", "r", "+", "self", ".", "execute", "(", "query", ",", "a", ")", "return", "r", "p", "=", "m", ".", "start", "(", "1", ")", "e", "=", "m", ".", "end", "(", "1", ")", "qv", "=", "m", ".", "group", "(", "1", ")", "try", ":", "q", "=", "[", "qv", "%", "db", ".", "literal", "(", "a", ")", "for", "a", "in", "args", "]", "except", "TypeError", ",", "msg", ":", "if", "msg", ".", "args", "[", "0", "]", "in", "(", "\"not enough arguments for format string\"", ",", "\"not all arguments converted\"", ")", ":", "self", ".", "errorhandler", "(", "self", ",", "ProgrammingError", ",", "msg", ".", "args", "[", "0", "]", ")", "else", ":", "self", ".", "errorhandler", "(", "self", ",", "TypeError", ",", "msg", ")", "except", "(", "SystemExit", ",", "KeyboardInterrupt", ")", ":", "raise", "except", ":", "exc", ",", "value", ",", "tb", "=", "sys", ".", "exc_info", "(", ")", "del", "tb", "self", ".", "errorhandler", "(", "self", ",", "exc", ",", "value", ")", "r", "=", "self", ".", "_query", "(", "'\\n'", ".", "join", "(", "[", "query", "[", ":", "p", "]", ",", "',\\n'", ".", "join", "(", "q", ")", ",", "query", "[", "e", ":", "]", "]", ")", ")", "if", "not", "self", ".", "_defer_warnings", ":", "self", ".", "_warning_check", "(", ")", "return", "r" ]
Execute a multi-row query. query -- string, query to execute on server args Sequence of sequences or mappings, parameters to use with query. Returns long integer rows affected, if any. This method improves performance on multiple-row INSERT and REPLACE. Otherwise it is equivalent to looping over args with execute().
[ "Execute", "a", "multi", "-", "row", "query", ".", "query", "--", "string", "query", "to", "execute", "on", "server" ]
python
test
dariusbakunas/rawdisk
rawdisk/filesystems/detector.py
https://github.com/dariusbakunas/rawdisk/blob/1dc9d0b377fe5da3c406ccec4abc238c54167403/rawdisk/filesystems/detector.py#L67-L77
def register_mbr_plugin(self, fs_id, plugin): """Used in plugin's registration routine, to associate it's detection method with given filesystem id Args: fs_id: filesystem id that is read from MBR partition entry plugin: plugin that supports this filesystem """ self.logger.debug('MBR: {}, FS ID: {}' .format(self.__get_plugin_name(plugin), fs_id)) self.__mbr_plugins[fs_id].append(plugin)
[ "def", "register_mbr_plugin", "(", "self", ",", "fs_id", ",", "plugin", ")", ":", "self", ".", "logger", ".", "debug", "(", "'MBR: {}, FS ID: {}'", ".", "format", "(", "self", ".", "__get_plugin_name", "(", "plugin", ")", ",", "fs_id", ")", ")", "self", ".", "__mbr_plugins", "[", "fs_id", "]", ".", "append", "(", "plugin", ")" ]
Used in plugin's registration routine, to associate it's detection method with given filesystem id Args: fs_id: filesystem id that is read from MBR partition entry plugin: plugin that supports this filesystem
[ "Used", "in", "plugin", "s", "registration", "routine", "to", "associate", "it", "s", "detection", "method", "with", "given", "filesystem", "id" ]
python
train
Hackerfleet/hfos
modules/library/hfos/library/manager.py
https://github.com/Hackerfleet/hfos/blob/b6df14eacaffb6be5c844108873ff8763ec7f0c9/modules/library/hfos/library/manager.py#L141-L215
def _augment_book(self, uuid, event): """ Checks if the newly created object is a book and only has an ISBN. If so, tries to fetch the book data off the internet. :param uuid: uuid of book to augment :param client: requesting client """ try: if not isbnmeta: self.log( "No isbntools found! Install it to get full " "functionality!", lvl=warn) return new_book = objectmodels['book'].find_one({'uuid': uuid}) try: if len(new_book.isbn) != 0: self.log('Got a lookup candidate: ', new_book._fields) try: meta = isbnmeta( new_book.isbn, service=self.config.isbnservice ) mapping = libraryfieldmapping[ self.config.isbnservice ] new_meta = {} for key in meta.keys(): if key in mapping: if isinstance(mapping[key], tuple): name, conv = mapping[key] try: new_meta[name] = conv(meta[key]) except ValueError: self.log( 'Bad value from lookup:', name, conv, key ) else: new_meta[mapping[key]] = meta[key] new_book.update(new_meta) new_book.save() self._notify_result(event, new_book) self.log("Book successfully augmented from ", self.config.isbnservice) except Exception as e: self.log("Error during meta lookup: ", e, type(e), new_book.isbn, lvl=error, exc=True) error_response = { 'component': 'hfos.alert.manager', 'action': 'notify', 'data': { 'type': 'error', 'message': 'Could not look up metadata, sorry:' + str(e) } } self.log(event, event.client, pretty=True) self.fireEvent(send(event.client.uuid, error_response)) except Exception as e: self.log("Error during book update.", e, type(e), exc=True, lvl=error) except Exception as e: self.log("Book creation notification error: ", uuid, e, type(e), lvl=error, exc=True)
[ "def", "_augment_book", "(", "self", ",", "uuid", ",", "event", ")", ":", "try", ":", "if", "not", "isbnmeta", ":", "self", ".", "log", "(", "\"No isbntools found! Install it to get full \"", "\"functionality!\"", ",", "lvl", "=", "warn", ")", "return", "new_book", "=", "objectmodels", "[", "'book'", "]", ".", "find_one", "(", "{", "'uuid'", ":", "uuid", "}", ")", "try", ":", "if", "len", "(", "new_book", ".", "isbn", ")", "!=", "0", ":", "self", ".", "log", "(", "'Got a lookup candidate: '", ",", "new_book", ".", "_fields", ")", "try", ":", "meta", "=", "isbnmeta", "(", "new_book", ".", "isbn", ",", "service", "=", "self", ".", "config", ".", "isbnservice", ")", "mapping", "=", "libraryfieldmapping", "[", "self", ".", "config", ".", "isbnservice", "]", "new_meta", "=", "{", "}", "for", "key", "in", "meta", ".", "keys", "(", ")", ":", "if", "key", "in", "mapping", ":", "if", "isinstance", "(", "mapping", "[", "key", "]", ",", "tuple", ")", ":", "name", ",", "conv", "=", "mapping", "[", "key", "]", "try", ":", "new_meta", "[", "name", "]", "=", "conv", "(", "meta", "[", "key", "]", ")", "except", "ValueError", ":", "self", ".", "log", "(", "'Bad value from lookup:'", ",", "name", ",", "conv", ",", "key", ")", "else", ":", "new_meta", "[", "mapping", "[", "key", "]", "]", "=", "meta", "[", "key", "]", "new_book", ".", "update", "(", "new_meta", ")", "new_book", ".", "save", "(", ")", "self", ".", "_notify_result", "(", "event", ",", "new_book", ")", "self", ".", "log", "(", "\"Book successfully augmented from \"", ",", "self", ".", "config", ".", "isbnservice", ")", "except", "Exception", "as", "e", ":", "self", ".", "log", "(", "\"Error during meta lookup: \"", ",", "e", ",", "type", "(", "e", ")", ",", "new_book", ".", "isbn", ",", "lvl", "=", "error", ",", "exc", "=", "True", ")", "error_response", "=", "{", "'component'", ":", "'hfos.alert.manager'", ",", "'action'", ":", "'notify'", ",", "'data'", ":", "{", "'type'", ":", "'error'", ",", "'message'", ":", "'Could not look up metadata, sorry:'", "+", "str", "(", "e", ")", "}", "}", "self", ".", "log", "(", "event", ",", "event", ".", "client", ",", "pretty", "=", "True", ")", "self", ".", "fireEvent", "(", "send", "(", "event", ".", "client", ".", "uuid", ",", "error_response", ")", ")", "except", "Exception", "as", "e", ":", "self", ".", "log", "(", "\"Error during book update.\"", ",", "e", ",", "type", "(", "e", ")", ",", "exc", "=", "True", ",", "lvl", "=", "error", ")", "except", "Exception", "as", "e", ":", "self", ".", "log", "(", "\"Book creation notification error: \"", ",", "uuid", ",", "e", ",", "type", "(", "e", ")", ",", "lvl", "=", "error", ",", "exc", "=", "True", ")" ]
Checks if the newly created object is a book and only has an ISBN. If so, tries to fetch the book data off the internet. :param uuid: uuid of book to augment :param client: requesting client
[ "Checks", "if", "the", "newly", "created", "object", "is", "a", "book", "and", "only", "has", "an", "ISBN", ".", "If", "so", "tries", "to", "fetch", "the", "book", "data", "off", "the", "internet", "." ]
python
train
saltstack/salt
salt/modules/win_iis.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/win_iis.py#L1547-L1586
def list_vdirs(site, app=_DEFAULT_APP): ''' Get all configured IIS virtual directories for the specified site, or for the combination of site and application. Args: site (str): The IIS site name. app (str): The IIS application. Returns: dict: A dictionary of the virtual directory names and properties. CLI Example: .. code-block:: bash salt '*' win_iis.list_vdirs site ''' ret = dict() ps_cmd = ['Get-WebVirtualDirectory', '-Site', r"'{0}'".format(site), '-Application', r"'{0}'".format(app), '|', "Select-Object PhysicalPath, @{ Name = 'name';", r"Expression = { $_.path.Split('/')[-1] } }"] cmd_ret = _srvmgr(cmd=ps_cmd, return_json=True) try: items = salt.utils.json.loads(cmd_ret['stdout'], strict=False) except ValueError: raise CommandExecutionError('Unable to parse return data as Json.') for item in items: ret[item['name']] = {'sourcepath': item['physicalPath']} if not ret: log.warning('No vdirs found in output: %s', cmd_ret) return ret
[ "def", "list_vdirs", "(", "site", ",", "app", "=", "_DEFAULT_APP", ")", ":", "ret", "=", "dict", "(", ")", "ps_cmd", "=", "[", "'Get-WebVirtualDirectory'", ",", "'-Site'", ",", "r\"'{0}'\"", ".", "format", "(", "site", ")", ",", "'-Application'", ",", "r\"'{0}'\"", ".", "format", "(", "app", ")", ",", "'|'", ",", "\"Select-Object PhysicalPath, @{ Name = 'name';\"", ",", "r\"Expression = { $_.path.Split('/')[-1] } }\"", "]", "cmd_ret", "=", "_srvmgr", "(", "cmd", "=", "ps_cmd", ",", "return_json", "=", "True", ")", "try", ":", "items", "=", "salt", ".", "utils", ".", "json", ".", "loads", "(", "cmd_ret", "[", "'stdout'", "]", ",", "strict", "=", "False", ")", "except", "ValueError", ":", "raise", "CommandExecutionError", "(", "'Unable to parse return data as Json.'", ")", "for", "item", "in", "items", ":", "ret", "[", "item", "[", "'name'", "]", "]", "=", "{", "'sourcepath'", ":", "item", "[", "'physicalPath'", "]", "}", "if", "not", "ret", ":", "log", ".", "warning", "(", "'No vdirs found in output: %s'", ",", "cmd_ret", ")", "return", "ret" ]
Get all configured IIS virtual directories for the specified site, or for the combination of site and application. Args: site (str): The IIS site name. app (str): The IIS application. Returns: dict: A dictionary of the virtual directory names and properties. CLI Example: .. code-block:: bash salt '*' win_iis.list_vdirs site
[ "Get", "all", "configured", "IIS", "virtual", "directories", "for", "the", "specified", "site", "or", "for", "the", "combination", "of", "site", "and", "application", "." ]
python
train
h2oai/h2o-3
h2o-py/h2o/frame.py
https://github.com/h2oai/h2o-3/blob/dd62aaa1e7f680a8b16ee14bc66b0fb5195c2ad8/h2o-py/h2o/frame.py#L2988-L2995
def signif(self, digits=6): """ Round doubles/floats to the given number of significant digits. :param int digits: Number of significant digits to retain. :returns: new H2OFrame with rounded values from the original frame. """ return H2OFrame._expr(expr=ExprNode("signif", self, digits), cache=self._ex._cache)
[ "def", "signif", "(", "self", ",", "digits", "=", "6", ")", ":", "return", "H2OFrame", ".", "_expr", "(", "expr", "=", "ExprNode", "(", "\"signif\"", ",", "self", ",", "digits", ")", ",", "cache", "=", "self", ".", "_ex", ".", "_cache", ")" ]
Round doubles/floats to the given number of significant digits. :param int digits: Number of significant digits to retain. :returns: new H2OFrame with rounded values from the original frame.
[ "Round", "doubles", "/", "floats", "to", "the", "given", "number", "of", "significant", "digits", "." ]
python
test
seleniumbase/SeleniumBase
seleniumbase/fixtures/base_case.py
https://github.com/seleniumbase/SeleniumBase/blob/62e5b43ee1f90a9ed923841bdd53b1b38358f43a/seleniumbase/fixtures/base_case.py#L2344-L2350
def find_partial_link_text(self, partial_link_text, timeout=settings.LARGE_TIMEOUT): """ Same as wait_for_partial_link_text() - returns the element """ if self.timeout_multiplier and timeout == settings.LARGE_TIMEOUT: timeout = self.__get_new_timeout(timeout) return self.wait_for_partial_link_text( partial_link_text, timeout=timeout)
[ "def", "find_partial_link_text", "(", "self", ",", "partial_link_text", ",", "timeout", "=", "settings", ".", "LARGE_TIMEOUT", ")", ":", "if", "self", ".", "timeout_multiplier", "and", "timeout", "==", "settings", ".", "LARGE_TIMEOUT", ":", "timeout", "=", "self", ".", "__get_new_timeout", "(", "timeout", ")", "return", "self", ".", "wait_for_partial_link_text", "(", "partial_link_text", ",", "timeout", "=", "timeout", ")" ]
Same as wait_for_partial_link_text() - returns the element
[ "Same", "as", "wait_for_partial_link_text", "()", "-", "returns", "the", "element" ]
python
train
gwastro/pycbc
pycbc/inference/sampler/emcee_pt.py
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/inference/sampler/emcee_pt.py#L119-L172
def from_config(cls, cp, model, nprocesses=1, use_mpi=False): """ Loads the sampler from the given config file. For generating the temperature ladder to be used by emcee_pt, either the number of temperatures (provided by the option 'ntemps'), or the path to a file storing inverse temperature values (provided under a subsection inverse-temperatures-file) can be loaded from the config file. If the latter, the file should be of hdf format, having an attribute named 'betas' storing the list of inverse temperature values to be provided to emcee_pt. If the former, emcee_pt will construct the ladder with "ntemps" geometrically spaced temperatures. """ section = "sampler" # check name assert cp.get(section, "name") == cls.name, ( "name in section [sampler] must match mine") # get the number of walkers to use nwalkers = int(cp.get(section, "nwalkers")) if cp.has_option(section, "ntemps") and \ cp.has_option(section, "inverse-temperatures-file"): raise ValueError("Must specify either ntemps or " "inverse-temperatures-file, not both.") if cp.has_option(section, "inverse-temperatures-file"): # get the path of the file containing inverse temperatures values. inverse_temperatures_file = cp.get(section, "inverse-temperatures-file") with h5py.File(inverse_temperatures_file, "r") as fp: try: betas = numpy.array(fp.attrs['betas']) ntemps = betas.shape[0] except KeyError: raise AttributeError("No attribute called betas") else: # get the number of temperatures betas = None ntemps = int(cp.get(section, "ntemps")) # get the checkpoint interval, if it's specified checkpoint_interval = cls.checkpoint_from_config(cp, section) checkpoint_signal = cls.ckpt_signal_from_config(cp, section) # get the loglikelihood function logl = get_optional_arg_from_config(cp, section, 'logl-function') obj = cls(model, ntemps, nwalkers, betas=betas, checkpoint_interval=checkpoint_interval, checkpoint_signal=checkpoint_signal, loglikelihood_function=logl, nprocesses=nprocesses, use_mpi=use_mpi) # set target obj.set_target_from_config(cp, section) # add burn-in if it's specified obj.set_burn_in_from_config(cp) # set prethin options obj.set_thin_interval_from_config(cp, section) return obj
[ "def", "from_config", "(", "cls", ",", "cp", ",", "model", ",", "nprocesses", "=", "1", ",", "use_mpi", "=", "False", ")", ":", "section", "=", "\"sampler\"", "# check name", "assert", "cp", ".", "get", "(", "section", ",", "\"name\"", ")", "==", "cls", ".", "name", ",", "(", "\"name in section [sampler] must match mine\"", ")", "# get the number of walkers to use", "nwalkers", "=", "int", "(", "cp", ".", "get", "(", "section", ",", "\"nwalkers\"", ")", ")", "if", "cp", ".", "has_option", "(", "section", ",", "\"ntemps\"", ")", "and", "cp", ".", "has_option", "(", "section", ",", "\"inverse-temperatures-file\"", ")", ":", "raise", "ValueError", "(", "\"Must specify either ntemps or \"", "\"inverse-temperatures-file, not both.\"", ")", "if", "cp", ".", "has_option", "(", "section", ",", "\"inverse-temperatures-file\"", ")", ":", "# get the path of the file containing inverse temperatures values.", "inverse_temperatures_file", "=", "cp", ".", "get", "(", "section", ",", "\"inverse-temperatures-file\"", ")", "with", "h5py", ".", "File", "(", "inverse_temperatures_file", ",", "\"r\"", ")", "as", "fp", ":", "try", ":", "betas", "=", "numpy", ".", "array", "(", "fp", ".", "attrs", "[", "'betas'", "]", ")", "ntemps", "=", "betas", ".", "shape", "[", "0", "]", "except", "KeyError", ":", "raise", "AttributeError", "(", "\"No attribute called betas\"", ")", "else", ":", "# get the number of temperatures", "betas", "=", "None", "ntemps", "=", "int", "(", "cp", ".", "get", "(", "section", ",", "\"ntemps\"", ")", ")", "# get the checkpoint interval, if it's specified", "checkpoint_interval", "=", "cls", ".", "checkpoint_from_config", "(", "cp", ",", "section", ")", "checkpoint_signal", "=", "cls", ".", "ckpt_signal_from_config", "(", "cp", ",", "section", ")", "# get the loglikelihood function", "logl", "=", "get_optional_arg_from_config", "(", "cp", ",", "section", ",", "'logl-function'", ")", "obj", "=", "cls", "(", "model", ",", "ntemps", ",", "nwalkers", ",", "betas", "=", "betas", ",", "checkpoint_interval", "=", "checkpoint_interval", ",", "checkpoint_signal", "=", "checkpoint_signal", ",", "loglikelihood_function", "=", "logl", ",", "nprocesses", "=", "nprocesses", ",", "use_mpi", "=", "use_mpi", ")", "# set target", "obj", ".", "set_target_from_config", "(", "cp", ",", "section", ")", "# add burn-in if it's specified", "obj", ".", "set_burn_in_from_config", "(", "cp", ")", "# set prethin options", "obj", ".", "set_thin_interval_from_config", "(", "cp", ",", "section", ")", "return", "obj" ]
Loads the sampler from the given config file. For generating the temperature ladder to be used by emcee_pt, either the number of temperatures (provided by the option 'ntemps'), or the path to a file storing inverse temperature values (provided under a subsection inverse-temperatures-file) can be loaded from the config file. If the latter, the file should be of hdf format, having an attribute named 'betas' storing the list of inverse temperature values to be provided to emcee_pt. If the former, emcee_pt will construct the ladder with "ntemps" geometrically spaced temperatures.
[ "Loads", "the", "sampler", "from", "the", "given", "config", "file", "." ]
python
train
CamDavidsonPilon/lifelines
lifelines/utils/__init__.py
https://github.com/CamDavidsonPilon/lifelines/blob/bdf6be6f1d10eea4c46365ee0ee6a47d8c30edf8/lifelines/utils/__init__.py#L110-L145
def qth_survival_time(q, survival_function, cdf=False): """ Returns the time when a single survival function reaches the qth percentile. Parameters ---------- q: float a float between 0 and 1 that represents the time when the survival function hit's the qth percentile. survival_function: Series or single-column DataFrame. cdf: boolean, optional When doing left-censored data, cdf=True is used. Returns ------- float See Also -------- qth_survival_times, median_survival_times """ if type(survival_function) is pd.DataFrame: # pylint: disable=unidiomatic-typecheck if survival_function.shape[1] > 1: raise ValueError( "Expecting a dataframe (or series) with a single column. Provide that or use utils.qth_survival_times." ) survival_function = survival_function.T.squeeze() if cdf: if survival_function.iloc[0] > q: return -np.inf v = survival_function.index[survival_function.searchsorted([q])[0]] else: if survival_function.iloc[-1] > q: return np.inf v = survival_function.index[(-survival_function).searchsorted([-q])[0]] return v
[ "def", "qth_survival_time", "(", "q", ",", "survival_function", ",", "cdf", "=", "False", ")", ":", "if", "type", "(", "survival_function", ")", "is", "pd", ".", "DataFrame", ":", "# pylint: disable=unidiomatic-typecheck", "if", "survival_function", ".", "shape", "[", "1", "]", ">", "1", ":", "raise", "ValueError", "(", "\"Expecting a dataframe (or series) with a single column. Provide that or use utils.qth_survival_times.\"", ")", "survival_function", "=", "survival_function", ".", "T", ".", "squeeze", "(", ")", "if", "cdf", ":", "if", "survival_function", ".", "iloc", "[", "0", "]", ">", "q", ":", "return", "-", "np", ".", "inf", "v", "=", "survival_function", ".", "index", "[", "survival_function", ".", "searchsorted", "(", "[", "q", "]", ")", "[", "0", "]", "]", "else", ":", "if", "survival_function", ".", "iloc", "[", "-", "1", "]", ">", "q", ":", "return", "np", ".", "inf", "v", "=", "survival_function", ".", "index", "[", "(", "-", "survival_function", ")", ".", "searchsorted", "(", "[", "-", "q", "]", ")", "[", "0", "]", "]", "return", "v" ]
Returns the time when a single survival function reaches the qth percentile. Parameters ---------- q: float a float between 0 and 1 that represents the time when the survival function hit's the qth percentile. survival_function: Series or single-column DataFrame. cdf: boolean, optional When doing left-censored data, cdf=True is used. Returns ------- float See Also -------- qth_survival_times, median_survival_times
[ "Returns", "the", "time", "when", "a", "single", "survival", "function", "reaches", "the", "qth", "percentile", "." ]
python
train
wandb/client
wandb/vendor/prompt_toolkit/contrib/telnet/server.py
https://github.com/wandb/client/blob/7d08954ed5674fee223cd85ed0d8518fe47266b2/wandb/vendor/prompt_toolkit/contrib/telnet/server.py#L240-L246
def erase_screen(self): """ Erase output screen. """ self.vt100_output.erase_screen() self.vt100_output.cursor_goto(0, 0) self.vt100_output.flush()
[ "def", "erase_screen", "(", "self", ")", ":", "self", ".", "vt100_output", ".", "erase_screen", "(", ")", "self", ".", "vt100_output", ".", "cursor_goto", "(", "0", ",", "0", ")", "self", ".", "vt100_output", ".", "flush", "(", ")" ]
Erase output screen.
[ "Erase", "output", "screen", "." ]
python
train
visualfabriq/bquery
bquery/ctable.py
https://github.com/visualfabriq/bquery/blob/3702e974696e22876944a3339affad2f29e1ee06/bquery/ctable.py#L576-L654
def create_agg_ctable(self, groupby_cols, agg_list, expectedlen, rootdir): '''Create a container for the output table, a dictionary describing it's columns and a list of tuples describing aggregation operations to perform. Args: groupby_cols (list): a list of columns to groupby over agg_list (list): the aggregation operations (see groupby for more info) expectedlen (int): expected length of output table rootdir (string): the directory to write the table to Returns: ctable: A table in the correct format for containing the output of the specified aggregation operations. dict: (dtype_dict) dictionary describing columns to create list: (agg_ops) list of tuples of the form: (input_col_name, output_col_name, agg_op) input_col_name (string): name of the column to act on output_col_name (string): name of the column to output to agg_op (int): aggregation operation to perform ''' dtype_dict = {} # include all the groupby columns for col in groupby_cols: dtype_dict[col] = self[col].dtype agg_ops_list = ['sum', 'count', 'count_distinct', 'sorted_count_distinct', 'mean', 'std'] agg_ops = [] for agg_info in agg_list: if not isinstance(agg_info, list): # example: ['m1', 'm2', ...] # default operation (sum) and default output column name (same is input) output_col_name = agg_info input_col_name = agg_info agg_op = 'sum' else: input_col_name = agg_info[0] agg_op = agg_info[1] if len(agg_info) == 2: # example: [['m1', 'sum'], ['m2', 'mean], ...] # default output column name output_col_name = input_col_name else: # example: [['m1', 'sum', 'mnew1'], ['m1, 'mean','mnew2'], ...] # fully specified output_col_name = agg_info[2] if agg_op not in agg_ops_list: raise NotImplementedError( 'Unknown Aggregation Type: ' + str(agg_op)) # choose output column dtype based on aggregation operation and # input column dtype # TODO: check if the aggregation columns is numeric # NB: we could build a concatenation for strings like pandas, but I would really prefer to see that as a # separate operation if agg_op in ('count', 'count_distinct', 'sorted_count_distinct'): output_col_dtype = np.dtype(np.int64) elif agg_op in ('mean', 'std'): output_col_dtype = np.dtype(np.float64) else: output_col_dtype = self[input_col_name].dtype dtype_dict[output_col_name] = output_col_dtype # save output agg_ops.append((input_col_name, output_col_name, agg_op)) # create aggregation table ct_agg = bcolz.ctable( np.zeros(expectedlen, [('tmp_col_bquery__', np.bool)]), expectedlen=expectedlen, rootdir=rootdir) return ct_agg, dtype_dict, agg_ops
[ "def", "create_agg_ctable", "(", "self", ",", "groupby_cols", ",", "agg_list", ",", "expectedlen", ",", "rootdir", ")", ":", "dtype_dict", "=", "{", "}", "# include all the groupby columns", "for", "col", "in", "groupby_cols", ":", "dtype_dict", "[", "col", "]", "=", "self", "[", "col", "]", ".", "dtype", "agg_ops_list", "=", "[", "'sum'", ",", "'count'", ",", "'count_distinct'", ",", "'sorted_count_distinct'", ",", "'mean'", ",", "'std'", "]", "agg_ops", "=", "[", "]", "for", "agg_info", "in", "agg_list", ":", "if", "not", "isinstance", "(", "agg_info", ",", "list", ")", ":", "# example: ['m1', 'm2', ...]", "# default operation (sum) and default output column name (same is input)", "output_col_name", "=", "agg_info", "input_col_name", "=", "agg_info", "agg_op", "=", "'sum'", "else", ":", "input_col_name", "=", "agg_info", "[", "0", "]", "agg_op", "=", "agg_info", "[", "1", "]", "if", "len", "(", "agg_info", ")", "==", "2", ":", "# example: [['m1', 'sum'], ['m2', 'mean], ...]", "# default output column name", "output_col_name", "=", "input_col_name", "else", ":", "# example: [['m1', 'sum', 'mnew1'], ['m1, 'mean','mnew2'], ...]", "# fully specified", "output_col_name", "=", "agg_info", "[", "2", "]", "if", "agg_op", "not", "in", "agg_ops_list", ":", "raise", "NotImplementedError", "(", "'Unknown Aggregation Type: '", "+", "str", "(", "agg_op", ")", ")", "# choose output column dtype based on aggregation operation and", "# input column dtype", "# TODO: check if the aggregation columns is numeric", "# NB: we could build a concatenation for strings like pandas, but I would really prefer to see that as a", "# separate operation", "if", "agg_op", "in", "(", "'count'", ",", "'count_distinct'", ",", "'sorted_count_distinct'", ")", ":", "output_col_dtype", "=", "np", ".", "dtype", "(", "np", ".", "int64", ")", "elif", "agg_op", "in", "(", "'mean'", ",", "'std'", ")", ":", "output_col_dtype", "=", "np", ".", "dtype", "(", "np", ".", "float64", ")", "else", ":", "output_col_dtype", "=", "self", "[", "input_col_name", "]", ".", "dtype", "dtype_dict", "[", "output_col_name", "]", "=", "output_col_dtype", "# save output", "agg_ops", ".", "append", "(", "(", "input_col_name", ",", "output_col_name", ",", "agg_op", ")", ")", "# create aggregation table", "ct_agg", "=", "bcolz", ".", "ctable", "(", "np", ".", "zeros", "(", "expectedlen", ",", "[", "(", "'tmp_col_bquery__'", ",", "np", ".", "bool", ")", "]", ")", ",", "expectedlen", "=", "expectedlen", ",", "rootdir", "=", "rootdir", ")", "return", "ct_agg", ",", "dtype_dict", ",", "agg_ops" ]
Create a container for the output table, a dictionary describing it's columns and a list of tuples describing aggregation operations to perform. Args: groupby_cols (list): a list of columns to groupby over agg_list (list): the aggregation operations (see groupby for more info) expectedlen (int): expected length of output table rootdir (string): the directory to write the table to Returns: ctable: A table in the correct format for containing the output of the specified aggregation operations. dict: (dtype_dict) dictionary describing columns to create list: (agg_ops) list of tuples of the form: (input_col_name, output_col_name, agg_op) input_col_name (string): name of the column to act on output_col_name (string): name of the column to output to agg_op (int): aggregation operation to perform
[ "Create", "a", "container", "for", "the", "output", "table", "a", "dictionary", "describing", "it", "s", "columns", "and", "a", "list", "of", "tuples", "describing", "aggregation", "operations", "to", "perform", "." ]
python
train
LonamiWebs/Telethon
telethon/client/updates.py
https://github.com/LonamiWebs/Telethon/blob/1ead9757d366b58c1e0567cddb0196e20f1a445f/telethon/client/updates.py#L70-L101
def add_event_handler(self, callback, event=None): """ Registers the given callback to be called on the specified event. Args: callback (`callable`): The callable function accepting one parameter to be used. Note that if you have used `telethon.events.register` in the callback, ``event`` will be ignored, and instead the events you previously registered will be used. event (`_EventBuilder` | `type`, optional): The event builder class or instance to be used, for instance ``events.NewMessage``. If left unspecified, `telethon.events.raw.Raw` (the :tl:`Update` objects with no further processing) will be passed instead. """ builders = events._get_handlers(callback) if builders is not None: for event in builders: self._event_builders.append((event, callback)) return if isinstance(event, type): event = event() elif not event: event = events.Raw() self._event_builders.append((event, callback))
[ "def", "add_event_handler", "(", "self", ",", "callback", ",", "event", "=", "None", ")", ":", "builders", "=", "events", ".", "_get_handlers", "(", "callback", ")", "if", "builders", "is", "not", "None", ":", "for", "event", "in", "builders", ":", "self", ".", "_event_builders", ".", "append", "(", "(", "event", ",", "callback", ")", ")", "return", "if", "isinstance", "(", "event", ",", "type", ")", ":", "event", "=", "event", "(", ")", "elif", "not", "event", ":", "event", "=", "events", ".", "Raw", "(", ")", "self", ".", "_event_builders", ".", "append", "(", "(", "event", ",", "callback", ")", ")" ]
Registers the given callback to be called on the specified event. Args: callback (`callable`): The callable function accepting one parameter to be used. Note that if you have used `telethon.events.register` in the callback, ``event`` will be ignored, and instead the events you previously registered will be used. event (`_EventBuilder` | `type`, optional): The event builder class or instance to be used, for instance ``events.NewMessage``. If left unspecified, `telethon.events.raw.Raw` (the :tl:`Update` objects with no further processing) will be passed instead.
[ "Registers", "the", "given", "callback", "to", "be", "called", "on", "the", "specified", "event", "." ]
python
train
fumitoh/modelx
modelx/core/model.py
https://github.com/fumitoh/modelx/blob/0180da34d052c44fb94dab9e115e218bbebfc9c3/modelx/core/model.py#L191-L195
def clear_descendants(self, source, clear_source=True): """Clear values and nodes calculated from `source`.""" removed = self.cellgraph.clear_descendants(source, clear_source) for node in removed: del node[OBJ].data[node[KEY]]
[ "def", "clear_descendants", "(", "self", ",", "source", ",", "clear_source", "=", "True", ")", ":", "removed", "=", "self", ".", "cellgraph", ".", "clear_descendants", "(", "source", ",", "clear_source", ")", "for", "node", "in", "removed", ":", "del", "node", "[", "OBJ", "]", ".", "data", "[", "node", "[", "KEY", "]", "]" ]
Clear values and nodes calculated from `source`.
[ "Clear", "values", "and", "nodes", "calculated", "from", "source", "." ]
python
valid
saltstack/salt
salt/client/ssh/__init__.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/client/ssh/__init__.py#L1258-L1304
def shim_cmd(self, cmd_str, extension='py'): ''' Run a shim command. If tty is enabled, we must scp the shim to the target system and execute it there ''' if not self.tty and not self.winrm: return self.shell.exec_cmd(cmd_str) # Write the shim to a temporary file in the default temp directory with tempfile.NamedTemporaryFile(mode='w+b', prefix='shim_', delete=False) as shim_tmp_file: shim_tmp_file.write(salt.utils.stringutils.to_bytes(cmd_str)) # Copy shim to target system, under $HOME/.<randomized name> target_shim_file = '.{0}.{1}'.format( binascii.hexlify(os.urandom(6)).decode('ascii'), extension ) if self.winrm: target_shim_file = saltwinshell.get_target_shim_file(self, target_shim_file) self.shell.send(shim_tmp_file.name, target_shim_file, makedirs=True) # Remove our shim file try: os.remove(shim_tmp_file.name) except IOError: pass # Execute shim if extension == 'ps1': ret = self.shell.exec_cmd('"powershell {0}"'.format(target_shim_file)) else: if not self.winrm: ret = self.shell.exec_cmd('/bin/sh \'$HOME/{0}\''.format(target_shim_file)) else: ret = saltwinshell.call_python(self, target_shim_file) # Remove shim from target system if not self.winrm: self.shell.exec_cmd('rm \'$HOME/{0}\''.format(target_shim_file)) else: self.shell.exec_cmd('del {0}'.format(target_shim_file)) return ret
[ "def", "shim_cmd", "(", "self", ",", "cmd_str", ",", "extension", "=", "'py'", ")", ":", "if", "not", "self", ".", "tty", "and", "not", "self", ".", "winrm", ":", "return", "self", ".", "shell", ".", "exec_cmd", "(", "cmd_str", ")", "# Write the shim to a temporary file in the default temp directory", "with", "tempfile", ".", "NamedTemporaryFile", "(", "mode", "=", "'w+b'", ",", "prefix", "=", "'shim_'", ",", "delete", "=", "False", ")", "as", "shim_tmp_file", ":", "shim_tmp_file", ".", "write", "(", "salt", ".", "utils", ".", "stringutils", ".", "to_bytes", "(", "cmd_str", ")", ")", "# Copy shim to target system, under $HOME/.<randomized name>", "target_shim_file", "=", "'.{0}.{1}'", ".", "format", "(", "binascii", ".", "hexlify", "(", "os", ".", "urandom", "(", "6", ")", ")", ".", "decode", "(", "'ascii'", ")", ",", "extension", ")", "if", "self", ".", "winrm", ":", "target_shim_file", "=", "saltwinshell", ".", "get_target_shim_file", "(", "self", ",", "target_shim_file", ")", "self", ".", "shell", ".", "send", "(", "shim_tmp_file", ".", "name", ",", "target_shim_file", ",", "makedirs", "=", "True", ")", "# Remove our shim file", "try", ":", "os", ".", "remove", "(", "shim_tmp_file", ".", "name", ")", "except", "IOError", ":", "pass", "# Execute shim", "if", "extension", "==", "'ps1'", ":", "ret", "=", "self", ".", "shell", ".", "exec_cmd", "(", "'\"powershell {0}\"'", ".", "format", "(", "target_shim_file", ")", ")", "else", ":", "if", "not", "self", ".", "winrm", ":", "ret", "=", "self", ".", "shell", ".", "exec_cmd", "(", "'/bin/sh \\'$HOME/{0}\\''", ".", "format", "(", "target_shim_file", ")", ")", "else", ":", "ret", "=", "saltwinshell", ".", "call_python", "(", "self", ",", "target_shim_file", ")", "# Remove shim from target system", "if", "not", "self", ".", "winrm", ":", "self", ".", "shell", ".", "exec_cmd", "(", "'rm \\'$HOME/{0}\\''", ".", "format", "(", "target_shim_file", ")", ")", "else", ":", "self", ".", "shell", ".", "exec_cmd", "(", "'del {0}'", ".", "format", "(", "target_shim_file", ")", ")", "return", "ret" ]
Run a shim command. If tty is enabled, we must scp the shim to the target system and execute it there
[ "Run", "a", "shim", "command", "." ]
python
train
tBuLi/symfit
symfit/contrib/interactive_guess/interactive_guess.py
https://github.com/tBuLi/symfit/blob/759dd3d1d4270510d651f40b23dd26b1b10eee83/symfit/contrib/interactive_guess/interactive_guess.py#L117-L156
def _set_up_figure(self, x_mins, x_maxs, y_mins, y_maxs): """ Prepare the matplotlib figure: make all the subplots; adjust their x and y range; plot the data; and plot an putative function. """ self.fig = plt.figure() # Make room for the sliders: bot = 0.1 + 0.05*len(self.model.params) self.fig.subplots_adjust(bottom=bot) # If these are not ints, matplotlib will crash and burn with an utterly # vague error. nrows = int(np.ceil(len(self._projections)**0.5)) ncols = int(np.ceil(len(self._projections)/nrows)) # Make all the subplots: set the x and y limits, scatter the data, and # plot the putative function. self._plots = {} for plotnr, proj in enumerate(self._projections, 1): x, y = proj if Derivative(y, x) in self.model: title_format = '$\\frac{{\\partial {dependant}}}{{\\partial {independant}}} = {expression}$' else: title_format = '${dependant}({independant}) = {expression}$' plotlabel = title_format.format( dependant=latex(y, mode='plain'), independant=latex(x, mode='plain'), expression=latex(self.model[y], mode='plain')) ax = self.fig.add_subplot(ncols, nrows, plotnr, label=plotlabel) ax.set_title(ax.get_label()) ax.set_ylim(y_mins[y], y_maxs[y]) ax.set_xlim(x_mins[x], x_maxs[x]) ax.set_xlabel('${}$'.format(x)) ax.set_ylabel('${}$'.format(y)) self._plot_data(proj, ax) plot = self._plot_model(proj, ax) self._plots[proj] = plot
[ "def", "_set_up_figure", "(", "self", ",", "x_mins", ",", "x_maxs", ",", "y_mins", ",", "y_maxs", ")", ":", "self", ".", "fig", "=", "plt", ".", "figure", "(", ")", "# Make room for the sliders:", "bot", "=", "0.1", "+", "0.05", "*", "len", "(", "self", ".", "model", ".", "params", ")", "self", ".", "fig", ".", "subplots_adjust", "(", "bottom", "=", "bot", ")", "# If these are not ints, matplotlib will crash and burn with an utterly", "# vague error.", "nrows", "=", "int", "(", "np", ".", "ceil", "(", "len", "(", "self", ".", "_projections", ")", "**", "0.5", ")", ")", "ncols", "=", "int", "(", "np", ".", "ceil", "(", "len", "(", "self", ".", "_projections", ")", "/", "nrows", ")", ")", "# Make all the subplots: set the x and y limits, scatter the data, and", "# plot the putative function.", "self", ".", "_plots", "=", "{", "}", "for", "plotnr", ",", "proj", "in", "enumerate", "(", "self", ".", "_projections", ",", "1", ")", ":", "x", ",", "y", "=", "proj", "if", "Derivative", "(", "y", ",", "x", ")", "in", "self", ".", "model", ":", "title_format", "=", "'$\\\\frac{{\\\\partial {dependant}}}{{\\\\partial {independant}}} = {expression}$'", "else", ":", "title_format", "=", "'${dependant}({independant}) = {expression}$'", "plotlabel", "=", "title_format", ".", "format", "(", "dependant", "=", "latex", "(", "y", ",", "mode", "=", "'plain'", ")", ",", "independant", "=", "latex", "(", "x", ",", "mode", "=", "'plain'", ")", ",", "expression", "=", "latex", "(", "self", ".", "model", "[", "y", "]", ",", "mode", "=", "'plain'", ")", ")", "ax", "=", "self", ".", "fig", ".", "add_subplot", "(", "ncols", ",", "nrows", ",", "plotnr", ",", "label", "=", "plotlabel", ")", "ax", ".", "set_title", "(", "ax", ".", "get_label", "(", ")", ")", "ax", ".", "set_ylim", "(", "y_mins", "[", "y", "]", ",", "y_maxs", "[", "y", "]", ")", "ax", ".", "set_xlim", "(", "x_mins", "[", "x", "]", ",", "x_maxs", "[", "x", "]", ")", "ax", ".", "set_xlabel", "(", "'${}$'", ".", "format", "(", "x", ")", ")", "ax", ".", "set_ylabel", "(", "'${}$'", ".", "format", "(", "y", ")", ")", "self", ".", "_plot_data", "(", "proj", ",", "ax", ")", "plot", "=", "self", ".", "_plot_model", "(", "proj", ",", "ax", ")", "self", ".", "_plots", "[", "proj", "]", "=", "plot" ]
Prepare the matplotlib figure: make all the subplots; adjust their x and y range; plot the data; and plot an putative function.
[ "Prepare", "the", "matplotlib", "figure", ":", "make", "all", "the", "subplots", ";", "adjust", "their", "x", "and", "y", "range", ";", "plot", "the", "data", ";", "and", "plot", "an", "putative", "function", "." ]
python
train
ibis-project/ibis
ibis/sql/sqlite/client.py
https://github.com/ibis-project/ibis/blob/1e39a5fd9ef088b45c155e8a5f541767ee8ef2e7/ibis/sql/sqlite/client.py#L302-L311
def _register_aggregate(agg, con): """Register a Python class that performs aggregation in SQLite. Parameters ---------- agg : type con : sqlalchemy.Connection """ nargs = number_of_arguments(agg.step) - 1 # because self con.connection.connection.create_aggregate(agg.__name__, nargs, agg)
[ "def", "_register_aggregate", "(", "agg", ",", "con", ")", ":", "nargs", "=", "number_of_arguments", "(", "agg", ".", "step", ")", "-", "1", "# because self", "con", ".", "connection", ".", "connection", ".", "create_aggregate", "(", "agg", ".", "__name__", ",", "nargs", ",", "agg", ")" ]
Register a Python class that performs aggregation in SQLite. Parameters ---------- agg : type con : sqlalchemy.Connection
[ "Register", "a", "Python", "class", "that", "performs", "aggregation", "in", "SQLite", "." ]
python
train
LuminosoInsight/wordfreq
wordfreq/__init__.py
https://github.com/LuminosoInsight/wordfreq/blob/170e3c6536854b06dc63da8d873e8cc4f9ef6180/wordfreq/__init__.py#L357-L369
def random_ascii_words(lang='en', wordlist='best', nwords=5, bits_per_word=12): """ Returns a string of random, space separated, ASCII words. These words are of the given language and from the given wordlist. There will be `nwords` words in the string. `bits_per_word` determines the amount of entropy provided by each word; when it's higher, this function will choose from a larger list of words, some of which are more rare. """ return random_words(lang, wordlist, nwords, bits_per_word, ascii_only=True)
[ "def", "random_ascii_words", "(", "lang", "=", "'en'", ",", "wordlist", "=", "'best'", ",", "nwords", "=", "5", ",", "bits_per_word", "=", "12", ")", ":", "return", "random_words", "(", "lang", ",", "wordlist", ",", "nwords", ",", "bits_per_word", ",", "ascii_only", "=", "True", ")" ]
Returns a string of random, space separated, ASCII words. These words are of the given language and from the given wordlist. There will be `nwords` words in the string. `bits_per_word` determines the amount of entropy provided by each word; when it's higher, this function will choose from a larger list of words, some of which are more rare.
[ "Returns", "a", "string", "of", "random", "space", "separated", "ASCII", "words", "." ]
python
train
simonvh/norns
norns/cfg.py
https://github.com/simonvh/norns/blob/81db0004c558f91479176daf1918b8c9473b5ee2/norns/cfg.py#L60-L73
def load(self, path): """ Load yaml-formatted config file. Parameters ---------- path : str path to config file """ with open(path) as f: self.config = full_load(f) if self.config is None: sys.stderr.write("Warning: config file is empty!\n") self.config = {}
[ "def", "load", "(", "self", ",", "path", ")", ":", "with", "open", "(", "path", ")", "as", "f", ":", "self", ".", "config", "=", "full_load", "(", "f", ")", "if", "self", ".", "config", "is", "None", ":", "sys", ".", "stderr", ".", "write", "(", "\"Warning: config file is empty!\\n\"", ")", "self", ".", "config", "=", "{", "}" ]
Load yaml-formatted config file. Parameters ---------- path : str path to config file
[ "Load", "yaml", "-", "formatted", "config", "file", "." ]
python
train
cihai/cihai
cihai/log.py
https://github.com/cihai/cihai/blob/43b0c2931da18c1ef1ff1cdd71e4b1c5eca24a41/cihai/log.py#L24-L63
def default_log_template(self, record): """Return the prefix for the log message. Template for Formatter. :param: record: :py:class:`logging.LogRecord` object. this is passed in from inside the :py:meth:`logging.Formatter.format` record. """ reset = Style.RESET_ALL levelname = [ LEVEL_COLORS.get(record.levelname), Style.BRIGHT, '(%(levelname)s)', Style.RESET_ALL, ' ', ] asctime = [ '[', Fore.BLACK, Style.DIM, Style.BRIGHT, '%(asctime)s', Fore.RESET, Style.RESET_ALL, ']', ] name = [ ' ', Fore.WHITE, Style.DIM, Style.BRIGHT, '%(name)s', Fore.RESET, Style.RESET_ALL, ' ', ] tpl = "".join(reset + levelname + asctime + name + reset) return tpl
[ "def", "default_log_template", "(", "self", ",", "record", ")", ":", "reset", "=", "Style", ".", "RESET_ALL", "levelname", "=", "[", "LEVEL_COLORS", ".", "get", "(", "record", ".", "levelname", ")", ",", "Style", ".", "BRIGHT", ",", "'(%(levelname)s)'", ",", "Style", ".", "RESET_ALL", ",", "' '", ",", "]", "asctime", "=", "[", "'['", ",", "Fore", ".", "BLACK", ",", "Style", ".", "DIM", ",", "Style", ".", "BRIGHT", ",", "'%(asctime)s'", ",", "Fore", ".", "RESET", ",", "Style", ".", "RESET_ALL", ",", "']'", ",", "]", "name", "=", "[", "' '", ",", "Fore", ".", "WHITE", ",", "Style", ".", "DIM", ",", "Style", ".", "BRIGHT", ",", "'%(name)s'", ",", "Fore", ".", "RESET", ",", "Style", ".", "RESET_ALL", ",", "' '", ",", "]", "tpl", "=", "\"\"", ".", "join", "(", "reset", "+", "levelname", "+", "asctime", "+", "name", "+", "reset", ")", "return", "tpl" ]
Return the prefix for the log message. Template for Formatter. :param: record: :py:class:`logging.LogRecord` object. this is passed in from inside the :py:meth:`logging.Formatter.format` record.
[ "Return", "the", "prefix", "for", "the", "log", "message", ".", "Template", "for", "Formatter", "." ]
python
train
cimm-kzn/CGRtools
CGRtools/algorithms/standardize.py
https://github.com/cimm-kzn/CGRtools/blob/15a19b04f6e4e1d0dab8e0d32a0877c7f7d70f34/CGRtools/algorithms/standardize.py#L26-L60
def standardize(self): """ standardize functional groups :return: number of found groups """ self.reset_query_marks() seen = set() total = 0 for n, atom in self.atoms(): if n in seen: continue for k, center in central.items(): if center != atom: continue shell = tuple((bond, self._node[m]) for m, bond in self._adj[n].items()) for shell_query, shell_patch, atom_patch in query_patch[k]: if shell_query != shell: continue total += 1 for attr_name, attr_value in atom_patch.items(): setattr(atom, attr_name, attr_value) for (bond_patch, atom_patch), (bond, atom) in zip(shell_patch, shell): bond.update(bond_patch) for attr_name, attr_value in atom_patch.items(): setattr(atom, attr_name, attr_value) seen.add(n) seen.update(self._adj[n]) break else: continue break if total: self.flush_cache() return total
[ "def", "standardize", "(", "self", ")", ":", "self", ".", "reset_query_marks", "(", ")", "seen", "=", "set", "(", ")", "total", "=", "0", "for", "n", ",", "atom", "in", "self", ".", "atoms", "(", ")", ":", "if", "n", "in", "seen", ":", "continue", "for", "k", ",", "center", "in", "central", ".", "items", "(", ")", ":", "if", "center", "!=", "atom", ":", "continue", "shell", "=", "tuple", "(", "(", "bond", ",", "self", ".", "_node", "[", "m", "]", ")", "for", "m", ",", "bond", "in", "self", ".", "_adj", "[", "n", "]", ".", "items", "(", ")", ")", "for", "shell_query", ",", "shell_patch", ",", "atom_patch", "in", "query_patch", "[", "k", "]", ":", "if", "shell_query", "!=", "shell", ":", "continue", "total", "+=", "1", "for", "attr_name", ",", "attr_value", "in", "atom_patch", ".", "items", "(", ")", ":", "setattr", "(", "atom", ",", "attr_name", ",", "attr_value", ")", "for", "(", "bond_patch", ",", "atom_patch", ")", ",", "(", "bond", ",", "atom", ")", "in", "zip", "(", "shell_patch", ",", "shell", ")", ":", "bond", ".", "update", "(", "bond_patch", ")", "for", "attr_name", ",", "attr_value", "in", "atom_patch", ".", "items", "(", ")", ":", "setattr", "(", "atom", ",", "attr_name", ",", "attr_value", ")", "seen", ".", "add", "(", "n", ")", "seen", ".", "update", "(", "self", ".", "_adj", "[", "n", "]", ")", "break", "else", ":", "continue", "break", "if", "total", ":", "self", ".", "flush_cache", "(", ")", "return", "total" ]
standardize functional groups :return: number of found groups
[ "standardize", "functional", "groups" ]
python
train
aliyun/aliyun-odps-python-sdk
odps/df/tools/lib/hll.py
https://github.com/aliyun/aliyun-odps-python-sdk/blob/4b0de18f5864386df6068f26f026e62f932c41e4/odps/df/tools/lib/hll.py#L135-L144
def merge(self, buffer, other_hyper_log_log): """ Merge the HyperLogLog :param other_hyper_log_log: :return: """ for i in range(len(buffer)): buffer[i] = max(buffer[i], other_hyper_log_log[i])
[ "def", "merge", "(", "self", ",", "buffer", ",", "other_hyper_log_log", ")", ":", "for", "i", "in", "range", "(", "len", "(", "buffer", ")", ")", ":", "buffer", "[", "i", "]", "=", "max", "(", "buffer", "[", "i", "]", ",", "other_hyper_log_log", "[", "i", "]", ")" ]
Merge the HyperLogLog :param other_hyper_log_log: :return:
[ "Merge", "the", "HyperLogLog" ]
python
train
TAPPGuild/tapp-config
tapp_config.py
https://github.com/TAPPGuild/tapp-config/blob/20fdbe00e4763f38a90845ad2cfb63c94e13ca81/tapp_config.py#L20-L41
def get_config(name=__name__): """ Get a configuration parser for a given TAPP name. Reads config.ini files only, not in-database configuration records. :param name: The tapp name to get a configuration for. :rtype: ConfigParser :return: A config parser matching the given name """ cfg = ConfigParser() path = os.environ.get('%s_CONFIG_FILE' % name.upper()) if path is None or path == "": fname = '/etc/tapp/%s.ini' % name if isfile(fname): path = fname elif isfile('cfg.ini'): path = 'cfg.ini' else: raise ValueError("Unable to get configuration for tapp %s" % name) cfg.read(path) return cfg
[ "def", "get_config", "(", "name", "=", "__name__", ")", ":", "cfg", "=", "ConfigParser", "(", ")", "path", "=", "os", ".", "environ", ".", "get", "(", "'%s_CONFIG_FILE'", "%", "name", ".", "upper", "(", ")", ")", "if", "path", "is", "None", "or", "path", "==", "\"\"", ":", "fname", "=", "'/etc/tapp/%s.ini'", "%", "name", "if", "isfile", "(", "fname", ")", ":", "path", "=", "fname", "elif", "isfile", "(", "'cfg.ini'", ")", ":", "path", "=", "'cfg.ini'", "else", ":", "raise", "ValueError", "(", "\"Unable to get configuration for tapp %s\"", "%", "name", ")", "cfg", ".", "read", "(", "path", ")", "return", "cfg" ]
Get a configuration parser for a given TAPP name. Reads config.ini files only, not in-database configuration records. :param name: The tapp name to get a configuration for. :rtype: ConfigParser :return: A config parser matching the given name
[ "Get", "a", "configuration", "parser", "for", "a", "given", "TAPP", "name", ".", "Reads", "config", ".", "ini", "files", "only", "not", "in", "-", "database", "configuration", "records", "." ]
python
train
jingw/pyhdfs
pyhdfs.py
https://github.com/jingw/pyhdfs/blob/b382b34f7cb28b41559f5be73102beb1732cd933/pyhdfs.py#L713-L719
def exists(self, path, **kwargs): """Return true if the given path exists""" try: self.get_file_status(path, **kwargs) return True except HdfsFileNotFoundException: return False
[ "def", "exists", "(", "self", ",", "path", ",", "*", "*", "kwargs", ")", ":", "try", ":", "self", ".", "get_file_status", "(", "path", ",", "*", "*", "kwargs", ")", "return", "True", "except", "HdfsFileNotFoundException", ":", "return", "False" ]
Return true if the given path exists
[ "Return", "true", "if", "the", "given", "path", "exists" ]
python
train
ozgur/python-firebase
firebase/firebase.py
https://github.com/ozgur/python-firebase/blob/6b96b326f6d8f477503ca42fdfbd81bcbe1f9e0d/firebase/firebase.py#L188-L195
def get_user(self): """ Method that gets the authenticated user. The returning user has the token, email and the provider data. """ token = self.authenticator.create_token(self.extra) user_id = self.extra.get('id') return FirebaseUser(self.email, token, self.provider, user_id)
[ "def", "get_user", "(", "self", ")", ":", "token", "=", "self", ".", "authenticator", ".", "create_token", "(", "self", ".", "extra", ")", "user_id", "=", "self", ".", "extra", ".", "get", "(", "'id'", ")", "return", "FirebaseUser", "(", "self", ".", "email", ",", "token", ",", "self", ".", "provider", ",", "user_id", ")" ]
Method that gets the authenticated user. The returning user has the token, email and the provider data.
[ "Method", "that", "gets", "the", "authenticated", "user", ".", "The", "returning", "user", "has", "the", "token", "email", "and", "the", "provider", "data", "." ]
python
valid
gwastro/pycbc
pycbc/events/veto.py
https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/events/veto.py#L70-L90
def indices_outside_times(times, start, end): """ Return an index array into times that like outside the durations defined by start end arrays Parameters ---------- times: numpy.ndarray Array of times start: numpy.ndarray Array of duration start times end: numpy.ndarray Array of duration end times Returns ------- indices: numpy.ndarray Array of indices into times """ exclude = indices_within_times(times, start, end) indices = numpy.arange(0, len(times)) return numpy.delete(indices, exclude)
[ "def", "indices_outside_times", "(", "times", ",", "start", ",", "end", ")", ":", "exclude", "=", "indices_within_times", "(", "times", ",", "start", ",", "end", ")", "indices", "=", "numpy", ".", "arange", "(", "0", ",", "len", "(", "times", ")", ")", "return", "numpy", ".", "delete", "(", "indices", ",", "exclude", ")" ]
Return an index array into times that like outside the durations defined by start end arrays Parameters ---------- times: numpy.ndarray Array of times start: numpy.ndarray Array of duration start times end: numpy.ndarray Array of duration end times Returns ------- indices: numpy.ndarray Array of indices into times
[ "Return", "an", "index", "array", "into", "times", "that", "like", "outside", "the", "durations", "defined", "by", "start", "end", "arrays" ]
python
train
briancappello/flask-unchained
flask_unchained/bundles/security/decorators/auth_required.py
https://github.com/briancappello/flask-unchained/blob/4d536cb90e2cc4829c1c05f2c74d3e22901a1399/flask_unchained/bundles/security/decorators/auth_required.py#L13-L54
def auth_required(decorated_fn=None, **role_rules): """ Decorator for requiring an authenticated user, optionally with roles. Roles are passed as keyword arguments, like so:: @auth_required(role='REQUIRE_THIS_ONE_ROLE') @auth_required(roles=['REQUIRE', 'ALL', 'OF', 'THESE', 'ROLES']) @auth_required(one_of=['EITHER_THIS_ROLE', 'OR_THIS_ONE']) One of role or roles kwargs can also be combined with one_of:: @auth_required(role='REQUIRED', one_of=['THIS', 'OR_THIS']) Aborts with ``HTTP 401: Unauthorized`` if no user is logged in, or ``HTTP 403: Forbidden`` if any of the specified role checks fail. """ required_roles = [] one_of_roles = [] if not (decorated_fn and callable(decorated_fn)): if 'role' in role_rules and 'roles' in role_rules: raise RuntimeError('specify only one of `role` or `roles` kwargs') elif 'role' in role_rules: required_roles = [role_rules['role']] elif 'roles' in role_rules: required_roles = role_rules['roles'] if 'one_of' in role_rules: one_of_roles = role_rules['one_of'] def wrapper(fn): @wraps(fn) @_auth_required() @roles_required(*required_roles) @roles_accepted(*one_of_roles) def decorated(*args, **kwargs): return fn(*args, **kwargs) return decorated if decorated_fn and callable(decorated_fn): return wrapper(decorated_fn) return wrapper
[ "def", "auth_required", "(", "decorated_fn", "=", "None", ",", "*", "*", "role_rules", ")", ":", "required_roles", "=", "[", "]", "one_of_roles", "=", "[", "]", "if", "not", "(", "decorated_fn", "and", "callable", "(", "decorated_fn", ")", ")", ":", "if", "'role'", "in", "role_rules", "and", "'roles'", "in", "role_rules", ":", "raise", "RuntimeError", "(", "'specify only one of `role` or `roles` kwargs'", ")", "elif", "'role'", "in", "role_rules", ":", "required_roles", "=", "[", "role_rules", "[", "'role'", "]", "]", "elif", "'roles'", "in", "role_rules", ":", "required_roles", "=", "role_rules", "[", "'roles'", "]", "if", "'one_of'", "in", "role_rules", ":", "one_of_roles", "=", "role_rules", "[", "'one_of'", "]", "def", "wrapper", "(", "fn", ")", ":", "@", "wraps", "(", "fn", ")", "@", "_auth_required", "(", ")", "@", "roles_required", "(", "*", "required_roles", ")", "@", "roles_accepted", "(", "*", "one_of_roles", ")", "def", "decorated", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "fn", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "decorated", "if", "decorated_fn", "and", "callable", "(", "decorated_fn", ")", ":", "return", "wrapper", "(", "decorated_fn", ")", "return", "wrapper" ]
Decorator for requiring an authenticated user, optionally with roles. Roles are passed as keyword arguments, like so:: @auth_required(role='REQUIRE_THIS_ONE_ROLE') @auth_required(roles=['REQUIRE', 'ALL', 'OF', 'THESE', 'ROLES']) @auth_required(one_of=['EITHER_THIS_ROLE', 'OR_THIS_ONE']) One of role or roles kwargs can also be combined with one_of:: @auth_required(role='REQUIRED', one_of=['THIS', 'OR_THIS']) Aborts with ``HTTP 401: Unauthorized`` if no user is logged in, or ``HTTP 403: Forbidden`` if any of the specified role checks fail.
[ "Decorator", "for", "requiring", "an", "authenticated", "user", "optionally", "with", "roles", "." ]
python
train
daviddrysdale/python-phonenumbers
python/phonenumbers/phonenumbermatcher.py
https://github.com/daviddrysdale/python-phonenumbers/blob/9cc5bb4ab5e661e70789b4c64bf7a9383c7bdc20/python/phonenumbers/phonenumbermatcher.py#L556-L582
def _extract_match(self, candidate, offset): """Attempts to extract a match from a candidate string. Arguments: candidate -- The candidate text that might contain a phone number. offset -- The offset of candidate within self.text Returns the match found, None if none can be found """ # Skip a match that is more likely a publication page reference or a # date. if (_SLASH_SEPARATED_DATES.search(candidate)): return None # Skip potential time-stamps. if _TIME_STAMPS.search(candidate): following_text = self.text[offset + len(candidate):] if _TIME_STAMPS_SUFFIX.match(following_text): return None # Try to come up with a valid match given the entire candidate. match = self._parse_and_verify(candidate, offset) if match is not None: return match # If that failed, try to find an "inner match" -- there might be a # phone number within this candidate. return self._extract_inner_match(candidate, offset)
[ "def", "_extract_match", "(", "self", ",", "candidate", ",", "offset", ")", ":", "# Skip a match that is more likely a publication page reference or a", "# date.", "if", "(", "_SLASH_SEPARATED_DATES", ".", "search", "(", "candidate", ")", ")", ":", "return", "None", "# Skip potential time-stamps.", "if", "_TIME_STAMPS", ".", "search", "(", "candidate", ")", ":", "following_text", "=", "self", ".", "text", "[", "offset", "+", "len", "(", "candidate", ")", ":", "]", "if", "_TIME_STAMPS_SUFFIX", ".", "match", "(", "following_text", ")", ":", "return", "None", "# Try to come up with a valid match given the entire candidate.", "match", "=", "self", ".", "_parse_and_verify", "(", "candidate", ",", "offset", ")", "if", "match", "is", "not", "None", ":", "return", "match", "# If that failed, try to find an \"inner match\" -- there might be a", "# phone number within this candidate.", "return", "self", ".", "_extract_inner_match", "(", "candidate", ",", "offset", ")" ]
Attempts to extract a match from a candidate string. Arguments: candidate -- The candidate text that might contain a phone number. offset -- The offset of candidate within self.text Returns the match found, None if none can be found
[ "Attempts", "to", "extract", "a", "match", "from", "a", "candidate", "string", "." ]
python
train
maartenbreddels/ipyvolume
ipyvolume/pylab.py
https://github.com/maartenbreddels/ipyvolume/blob/e68b72852b61276f8e6793bc8811f5b2432a155f/ipyvolume/pylab.py#L1350-L1440
def selector_default(output_widget=None): """Capture selection events from the current figure, and apply the selections to Scatter objects. Example: >>> import ipyvolume as ipv >>> ipv.figure() >>> ipv.examples.gaussian() >>> ipv.selector_default() >>> ipv.show() Now hold the control key to do selections, type * 'C' for circle * 'R' for rectangle * 'L' for lasso * '=' for replace mode * '&' for logically and mode * '|' for logically or mode * '-' for subtract mode """ fig = gcf() if output_widget is None: output_widget = ipywidgets.Output() display(output_widget) def lasso(data, other=None, fig=fig): with output_widget: inside = None if data['device'] and data['type'] == 'lasso': region = shapely.geometry.Polygon(data['device']) @np.vectorize def inside_polygon(x, y): return region.contains(shapely.geometry.Point([x, y])) inside = inside_polygon if data['device'] and data['type'] == 'circle': x1, y1 = data['device']['begin'] x2, y2 = data['device']['end'] dx = x2 - x1 dy = y2 - y1 r = (dx ** 2 + dy ** 2) ** 0.5 def inside_circle(x, y): return ((x - x1) ** 2 + (y - y1) ** 2) < r ** 2 inside = inside_circle if data['device'] and data['type'] == 'rectangle': x1, y1 = data['device']['begin'] x2, y2 = data['device']['end'] x = [x1, x2] y = [y1, y2] xmin, xmax = min(x), max(x) ymin, ymax = min(y), max(y) def inside_rectangle(x, y): return (x > xmin) & (x < xmax) & (y > ymin) & (y < ymax) inside = inside_rectangle def join(x, y, mode): Nx = 0 if (x is None or len(x[0]) == 0) else np.max(x) Ny = 0 if len(y[0]) == 0 else np.max(y) N = max(Nx, Ny) xmask = np.zeros(N + 1, np.bool) ymask = np.zeros(N + 1, np.bool) if x is not None: xmask[x] = True ymask[y] = True if mode == "replace": return np.where(ymask) if mode == "and": mask = xmask & ymask return np.where(ymask if x is None else mask) if mode == "or": mask = xmask | ymask return np.where(ymask if x is None else mask) if mode == "subtract": mask = xmask & ~ymask return np.where(ymask if x is None else mask) for scatter in fig.scatters: x, y = fig.project(scatter.x, scatter.y, scatter.z) mask = inside(x, y) scatter.selected = join(scatter.selected, np.where(mask), fig.selection_mode) fig.on_selection(lasso)
[ "def", "selector_default", "(", "output_widget", "=", "None", ")", ":", "fig", "=", "gcf", "(", ")", "if", "output_widget", "is", "None", ":", "output_widget", "=", "ipywidgets", ".", "Output", "(", ")", "display", "(", "output_widget", ")", "def", "lasso", "(", "data", ",", "other", "=", "None", ",", "fig", "=", "fig", ")", ":", "with", "output_widget", ":", "inside", "=", "None", "if", "data", "[", "'device'", "]", "and", "data", "[", "'type'", "]", "==", "'lasso'", ":", "region", "=", "shapely", ".", "geometry", ".", "Polygon", "(", "data", "[", "'device'", "]", ")", "@", "np", ".", "vectorize", "def", "inside_polygon", "(", "x", ",", "y", ")", ":", "return", "region", ".", "contains", "(", "shapely", ".", "geometry", ".", "Point", "(", "[", "x", ",", "y", "]", ")", ")", "inside", "=", "inside_polygon", "if", "data", "[", "'device'", "]", "and", "data", "[", "'type'", "]", "==", "'circle'", ":", "x1", ",", "y1", "=", "data", "[", "'device'", "]", "[", "'begin'", "]", "x2", ",", "y2", "=", "data", "[", "'device'", "]", "[", "'end'", "]", "dx", "=", "x2", "-", "x1", "dy", "=", "y2", "-", "y1", "r", "=", "(", "dx", "**", "2", "+", "dy", "**", "2", ")", "**", "0.5", "def", "inside_circle", "(", "x", ",", "y", ")", ":", "return", "(", "(", "x", "-", "x1", ")", "**", "2", "+", "(", "y", "-", "y1", ")", "**", "2", ")", "<", "r", "**", "2", "inside", "=", "inside_circle", "if", "data", "[", "'device'", "]", "and", "data", "[", "'type'", "]", "==", "'rectangle'", ":", "x1", ",", "y1", "=", "data", "[", "'device'", "]", "[", "'begin'", "]", "x2", ",", "y2", "=", "data", "[", "'device'", "]", "[", "'end'", "]", "x", "=", "[", "x1", ",", "x2", "]", "y", "=", "[", "y1", ",", "y2", "]", "xmin", ",", "xmax", "=", "min", "(", "x", ")", ",", "max", "(", "x", ")", "ymin", ",", "ymax", "=", "min", "(", "y", ")", ",", "max", "(", "y", ")", "def", "inside_rectangle", "(", "x", ",", "y", ")", ":", "return", "(", "x", ">", "xmin", ")", "&", "(", "x", "<", "xmax", ")", "&", "(", "y", ">", "ymin", ")", "&", "(", "y", "<", "ymax", ")", "inside", "=", "inside_rectangle", "def", "join", "(", "x", ",", "y", ",", "mode", ")", ":", "Nx", "=", "0", "if", "(", "x", "is", "None", "or", "len", "(", "x", "[", "0", "]", ")", "==", "0", ")", "else", "np", ".", "max", "(", "x", ")", "Ny", "=", "0", "if", "len", "(", "y", "[", "0", "]", ")", "==", "0", "else", "np", ".", "max", "(", "y", ")", "N", "=", "max", "(", "Nx", ",", "Ny", ")", "xmask", "=", "np", ".", "zeros", "(", "N", "+", "1", ",", "np", ".", "bool", ")", "ymask", "=", "np", ".", "zeros", "(", "N", "+", "1", ",", "np", ".", "bool", ")", "if", "x", "is", "not", "None", ":", "xmask", "[", "x", "]", "=", "True", "ymask", "[", "y", "]", "=", "True", "if", "mode", "==", "\"replace\"", ":", "return", "np", ".", "where", "(", "ymask", ")", "if", "mode", "==", "\"and\"", ":", "mask", "=", "xmask", "&", "ymask", "return", "np", ".", "where", "(", "ymask", "if", "x", "is", "None", "else", "mask", ")", "if", "mode", "==", "\"or\"", ":", "mask", "=", "xmask", "|", "ymask", "return", "np", ".", "where", "(", "ymask", "if", "x", "is", "None", "else", "mask", ")", "if", "mode", "==", "\"subtract\"", ":", "mask", "=", "xmask", "&", "~", "ymask", "return", "np", ".", "where", "(", "ymask", "if", "x", "is", "None", "else", "mask", ")", "for", "scatter", "in", "fig", ".", "scatters", ":", "x", ",", "y", "=", "fig", ".", "project", "(", "scatter", ".", "x", ",", "scatter", ".", "y", ",", "scatter", ".", "z", ")", "mask", "=", "inside", "(", "x", ",", "y", ")", "scatter", ".", "selected", "=", "join", "(", "scatter", ".", "selected", ",", "np", ".", "where", "(", "mask", ")", ",", "fig", ".", "selection_mode", ")", "fig", ".", "on_selection", "(", "lasso", ")" ]
Capture selection events from the current figure, and apply the selections to Scatter objects. Example: >>> import ipyvolume as ipv >>> ipv.figure() >>> ipv.examples.gaussian() >>> ipv.selector_default() >>> ipv.show() Now hold the control key to do selections, type * 'C' for circle * 'R' for rectangle * 'L' for lasso * '=' for replace mode * '&' for logically and mode * '|' for logically or mode * '-' for subtract mode
[ "Capture", "selection", "events", "from", "the", "current", "figure", "and", "apply", "the", "selections", "to", "Scatter", "objects", "." ]
python
train
singularityhub/singularity-cli
spython/main/parse/docker.py
https://github.com/singularityhub/singularity-cli/blob/cb36b4504812ca87e29c6a40b222a545d1865799/spython/main/parse/docker.py#L156-L185
def _add(self, lines): '''Add can also handle https, and compressed files. Parameters ========== line: the line from the recipe file to parse for ADD ''' lines = self._setup('ADD', lines) for line in lines: values = line.split(" ") frompath = values.pop(0) # Custom parsing for frompath # If it's a web address, add to install routine to get if frompath.startswith('http'): for topath in values: self._parse_http(frompath, topath) # Add the file, and decompress in install elif re.search("[.](gz|gzip|bz2|xz)$", frompath.strip()): for topath in values: self._parse_archive(frompath, topath) # Just add the files else: for topath in values: self._add_files(frompath, topath)
[ "def", "_add", "(", "self", ",", "lines", ")", ":", "lines", "=", "self", ".", "_setup", "(", "'ADD'", ",", "lines", ")", "for", "line", "in", "lines", ":", "values", "=", "line", ".", "split", "(", "\" \"", ")", "frompath", "=", "values", ".", "pop", "(", "0", ")", "# Custom parsing for frompath", "# If it's a web address, add to install routine to get", "if", "frompath", ".", "startswith", "(", "'http'", ")", ":", "for", "topath", "in", "values", ":", "self", ".", "_parse_http", "(", "frompath", ",", "topath", ")", "# Add the file, and decompress in install", "elif", "re", ".", "search", "(", "\"[.](gz|gzip|bz2|xz)$\"", ",", "frompath", ".", "strip", "(", ")", ")", ":", "for", "topath", "in", "values", ":", "self", ".", "_parse_archive", "(", "frompath", ",", "topath", ")", "# Just add the files", "else", ":", "for", "topath", "in", "values", ":", "self", ".", "_add_files", "(", "frompath", ",", "topath", ")" ]
Add can also handle https, and compressed files. Parameters ========== line: the line from the recipe file to parse for ADD
[ "Add", "can", "also", "handle", "https", "and", "compressed", "files", "." ]
python
train
tanghaibao/jcvi
jcvi/variation/str.py
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/variation/str.py#L947-L996
def compilevcf(args): """ %prog compilevcf samples.csv Compile vcf results into master spreadsheet. """ p = OptionParser(compilevcf.__doc__) p.add_option("--db", default="hg38", help="Use these lobSTR db") p.add_option("--nofilter", default=False, action="store_true", help="Do not filter the variants") p.set_home("lobstr") p.set_cpus() p.set_aws_opts(store="hli-mv-data-science/htang/str-data") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) samples, = args workdir = opts.workdir store = opts.output_path cleanup = not opts.nocleanup filtered = not opts.nofilter dbs = opts.db.split(",") cwd = os.getcwd() mkdir(workdir) os.chdir(workdir) samples = op.join(cwd, samples) stridsfile = "STR.ids" if samples.endswith((".vcf", ".vcf.gz")): vcffiles = [samples] else: vcffiles = [x.strip() for x in must_open(samples)] if not op.exists(stridsfile): ids = [] for db in dbs: ids.extend(STRFile(opts.lobstr_home, db=db).ids) uids = uniqify(ids) logging.debug("Combined: {} Unique: {}".format(len(ids), len(uids))) fw = open(stridsfile, "w") print("\n".join(uids), file=fw) fw.close() run_args = [(x, filtered, cleanup, store) for x in vcffiles] cpus = min(opts.cpus, len(run_args)) p = Pool(processes=cpus) for res in p.map_async(run_compile, run_args).get(): continue
[ "def", "compilevcf", "(", "args", ")", ":", "p", "=", "OptionParser", "(", "compilevcf", ".", "__doc__", ")", "p", ".", "add_option", "(", "\"--db\"", ",", "default", "=", "\"hg38\"", ",", "help", "=", "\"Use these lobSTR db\"", ")", "p", ".", "add_option", "(", "\"--nofilter\"", ",", "default", "=", "False", ",", "action", "=", "\"store_true\"", ",", "help", "=", "\"Do not filter the variants\"", ")", "p", ".", "set_home", "(", "\"lobstr\"", ")", "p", ".", "set_cpus", "(", ")", "p", ".", "set_aws_opts", "(", "store", "=", "\"hli-mv-data-science/htang/str-data\"", ")", "opts", ",", "args", "=", "p", ".", "parse_args", "(", "args", ")", "if", "len", "(", "args", ")", "!=", "1", ":", "sys", ".", "exit", "(", "not", "p", ".", "print_help", "(", ")", ")", "samples", ",", "=", "args", "workdir", "=", "opts", ".", "workdir", "store", "=", "opts", ".", "output_path", "cleanup", "=", "not", "opts", ".", "nocleanup", "filtered", "=", "not", "opts", ".", "nofilter", "dbs", "=", "opts", ".", "db", ".", "split", "(", "\",\"", ")", "cwd", "=", "os", ".", "getcwd", "(", ")", "mkdir", "(", "workdir", ")", "os", ".", "chdir", "(", "workdir", ")", "samples", "=", "op", ".", "join", "(", "cwd", ",", "samples", ")", "stridsfile", "=", "\"STR.ids\"", "if", "samples", ".", "endswith", "(", "(", "\".vcf\"", ",", "\".vcf.gz\"", ")", ")", ":", "vcffiles", "=", "[", "samples", "]", "else", ":", "vcffiles", "=", "[", "x", ".", "strip", "(", ")", "for", "x", "in", "must_open", "(", "samples", ")", "]", "if", "not", "op", ".", "exists", "(", "stridsfile", ")", ":", "ids", "=", "[", "]", "for", "db", "in", "dbs", ":", "ids", ".", "extend", "(", "STRFile", "(", "opts", ".", "lobstr_home", ",", "db", "=", "db", ")", ".", "ids", ")", "uids", "=", "uniqify", "(", "ids", ")", "logging", ".", "debug", "(", "\"Combined: {} Unique: {}\"", ".", "format", "(", "len", "(", "ids", ")", ",", "len", "(", "uids", ")", ")", ")", "fw", "=", "open", "(", "stridsfile", ",", "\"w\"", ")", "print", "(", "\"\\n\"", ".", "join", "(", "uids", ")", ",", "file", "=", "fw", ")", "fw", ".", "close", "(", ")", "run_args", "=", "[", "(", "x", ",", "filtered", ",", "cleanup", ",", "store", ")", "for", "x", "in", "vcffiles", "]", "cpus", "=", "min", "(", "opts", ".", "cpus", ",", "len", "(", "run_args", ")", ")", "p", "=", "Pool", "(", "processes", "=", "cpus", ")", "for", "res", "in", "p", ".", "map_async", "(", "run_compile", ",", "run_args", ")", ".", "get", "(", ")", ":", "continue" ]
%prog compilevcf samples.csv Compile vcf results into master spreadsheet.
[ "%prog", "compilevcf", "samples", ".", "csv" ]
python
train
blockstack/blockstack-core
blockstack/lib/client.py
https://github.com/blockstack/blockstack-core/blob/1dcfdd39b152d29ce13e736a6a1a0981401a0505/blockstack/lib/client.py#L3100-L3138
def get_name_history(name, hostport=None, proxy=None, history_page=None): """ Get the full history of a name Returns {'status': True, 'history': ...} on success, where history is grouped by block Returns {'error': ...} on error """ assert hostport or proxy, 'Need hostport or proxy' if proxy is None: proxy = connect_hostport(hostport) hist = {} indexing = None lastblock = None if history_page != None: resp = get_name_history_page(name, history_page, proxy=proxy) if 'error' in resp: return resp indexing = resp['indexing'] lastblock = resp['lastblock'] return {'status': True, 'history': resp['history'], 'indexing': indexing, 'lastblock': lastblock} for i in range(0, 100000000): # this is obviously too big resp = get_name_history_page(name, i, proxy=proxy) if 'error' in resp: return resp indexing = resp['indexing'] lastblock = resp['lastblock'] if len(resp['history']) == 0: # caught up break hist = name_history_merge(hist, resp['history']) return {'status': True, 'history': hist, 'indexing': indexing, 'lastblock': lastblock}
[ "def", "get_name_history", "(", "name", ",", "hostport", "=", "None", ",", "proxy", "=", "None", ",", "history_page", "=", "None", ")", ":", "assert", "hostport", "or", "proxy", ",", "'Need hostport or proxy'", "if", "proxy", "is", "None", ":", "proxy", "=", "connect_hostport", "(", "hostport", ")", "hist", "=", "{", "}", "indexing", "=", "None", "lastblock", "=", "None", "if", "history_page", "!=", "None", ":", "resp", "=", "get_name_history_page", "(", "name", ",", "history_page", ",", "proxy", "=", "proxy", ")", "if", "'error'", "in", "resp", ":", "return", "resp", "indexing", "=", "resp", "[", "'indexing'", "]", "lastblock", "=", "resp", "[", "'lastblock'", "]", "return", "{", "'status'", ":", "True", ",", "'history'", ":", "resp", "[", "'history'", "]", ",", "'indexing'", ":", "indexing", ",", "'lastblock'", ":", "lastblock", "}", "for", "i", "in", "range", "(", "0", ",", "100000000", ")", ":", "# this is obviously too big", "resp", "=", "get_name_history_page", "(", "name", ",", "i", ",", "proxy", "=", "proxy", ")", "if", "'error'", "in", "resp", ":", "return", "resp", "indexing", "=", "resp", "[", "'indexing'", "]", "lastblock", "=", "resp", "[", "'lastblock'", "]", "if", "len", "(", "resp", "[", "'history'", "]", ")", "==", "0", ":", "# caught up ", "break", "hist", "=", "name_history_merge", "(", "hist", ",", "resp", "[", "'history'", "]", ")", "return", "{", "'status'", ":", "True", ",", "'history'", ":", "hist", ",", "'indexing'", ":", "indexing", ",", "'lastblock'", ":", "lastblock", "}" ]
Get the full history of a name Returns {'status': True, 'history': ...} on success, where history is grouped by block Returns {'error': ...} on error
[ "Get", "the", "full", "history", "of", "a", "name", "Returns", "{", "status", ":", "True", "history", ":", "...", "}", "on", "success", "where", "history", "is", "grouped", "by", "block", "Returns", "{", "error", ":", "...", "}", "on", "error" ]
python
train
IdentityPython/oidcendpoint
src/oidcendpoint/token_handler.py
https://github.com/IdentityPython/oidcendpoint/blob/6c1d729d51bfb6332816117fe476073df7a1d823/src/oidcendpoint/token_handler.py#L279-L300
def factory(ec, code=None, token=None, refresh=None, **kwargs): """ Create a token handler :param code: :param token: :param refresh: :return: TokenHandler instance """ TTYPE = {'code': 'A', 'token': 'T', 'refresh': 'R'} args = {} if code: args['code_handler'] = init_token_handler(ec, code, TTYPE['code']) if token: args['access_token_handler'] = init_token_handler(ec, token, TTYPE['token']) if refresh: args['refresh_token_handler'] = init_token_handler(ec, token, TTYPE['refresh']) return TokenHandler(**args)
[ "def", "factory", "(", "ec", ",", "code", "=", "None", ",", "token", "=", "None", ",", "refresh", "=", "None", ",", "*", "*", "kwargs", ")", ":", "TTYPE", "=", "{", "'code'", ":", "'A'", ",", "'token'", ":", "'T'", ",", "'refresh'", ":", "'R'", "}", "args", "=", "{", "}", "if", "code", ":", "args", "[", "'code_handler'", "]", "=", "init_token_handler", "(", "ec", ",", "code", ",", "TTYPE", "[", "'code'", "]", ")", "if", "token", ":", "args", "[", "'access_token_handler'", "]", "=", "init_token_handler", "(", "ec", ",", "token", ",", "TTYPE", "[", "'token'", "]", ")", "if", "refresh", ":", "args", "[", "'refresh_token_handler'", "]", "=", "init_token_handler", "(", "ec", ",", "token", ",", "TTYPE", "[", "'refresh'", "]", ")", "return", "TokenHandler", "(", "*", "*", "args", ")" ]
Create a token handler :param code: :param token: :param refresh: :return: TokenHandler instance
[ "Create", "a", "token", "handler" ]
python
train
openstack/python-monascaclient
monascaclient/common/monasca_manager.py
https://github.com/openstack/python-monascaclient/blob/03b07534145928eb2debad938da033c232dda105/monascaclient/common/monasca_manager.py#L37-L51
def _list(self, path, dim_key=None, **kwargs): """Get a list of metrics.""" url_str = self.base_url + path if dim_key and dim_key in kwargs: dim_str = self.get_dimensions_url_string(kwargs[dim_key]) kwargs[dim_key] = dim_str if kwargs: url_str += '?%s' % parse.urlencode(kwargs, True) body = self.client.list( path=url_str ) return self._parse_body(body)
[ "def", "_list", "(", "self", ",", "path", ",", "dim_key", "=", "None", ",", "*", "*", "kwargs", ")", ":", "url_str", "=", "self", ".", "base_url", "+", "path", "if", "dim_key", "and", "dim_key", "in", "kwargs", ":", "dim_str", "=", "self", ".", "get_dimensions_url_string", "(", "kwargs", "[", "dim_key", "]", ")", "kwargs", "[", "dim_key", "]", "=", "dim_str", "if", "kwargs", ":", "url_str", "+=", "'?%s'", "%", "parse", ".", "urlencode", "(", "kwargs", ",", "True", ")", "body", "=", "self", ".", "client", ".", "list", "(", "path", "=", "url_str", ")", "return", "self", ".", "_parse_body", "(", "body", ")" ]
Get a list of metrics.
[ "Get", "a", "list", "of", "metrics", "." ]
python
train
user-cont/conu
conu/backend/k8s/backend.py
https://github.com/user-cont/conu/blob/08caae7bb6bdd265b55bb106c3da6a7946a5a352/conu/backend/k8s/backend.py#L169-L177
def delete_namespace(self, name): """ Delete namespace with specific name :param name: str, namespace to delete :return: None """ self.core_api.delete_namespace(name, client.V1DeleteOptions()) logger.info("Deleting namespace: %s", name)
[ "def", "delete_namespace", "(", "self", ",", "name", ")", ":", "self", ".", "core_api", ".", "delete_namespace", "(", "name", ",", "client", ".", "V1DeleteOptions", "(", ")", ")", "logger", ".", "info", "(", "\"Deleting namespace: %s\"", ",", "name", ")" ]
Delete namespace with specific name :param name: str, namespace to delete :return: None
[ "Delete", "namespace", "with", "specific", "name", ":", "param", "name", ":", "str", "namespace", "to", "delete", ":", "return", ":", "None" ]
python
train
tanghaibao/goatools
goatools/gosubdag/go_tasks.py
https://github.com/tanghaibao/goatools/blob/407682e573a108864a79031f8ca19ee3bf377626/goatools/gosubdag/go_tasks.py#L91-L96
def get_go2children_go2obj(go2obj): """Return go2children (set of child GO IDs) for all GO ID keys in go2obj.""" goobjs, altgo2goobj = get_goobjs_altgo2goobj(go2obj) go2children = get_id2children(goobjs) add_alt_goids(go2children, altgo2goobj) return go2children
[ "def", "get_go2children_go2obj", "(", "go2obj", ")", ":", "goobjs", ",", "altgo2goobj", "=", "get_goobjs_altgo2goobj", "(", "go2obj", ")", "go2children", "=", "get_id2children", "(", "goobjs", ")", "add_alt_goids", "(", "go2children", ",", "altgo2goobj", ")", "return", "go2children" ]
Return go2children (set of child GO IDs) for all GO ID keys in go2obj.
[ "Return", "go2children", "(", "set", "of", "child", "GO", "IDs", ")", "for", "all", "GO", "ID", "keys", "in", "go2obj", "." ]
python
train
waqasbhatti/astrobase
astrobase/lcfit/transits.py
https://github.com/waqasbhatti/astrobase/blob/2922a14619d183fb28005fa7d02027ac436f2265/astrobase/lcfit/transits.py#L85-L401
def traptransit_fit_magseries(times, mags, errs, transitparams, sigclip=10.0, plotfit=False, magsarefluxes=False, verbose=True): '''This fits a trapezoid transit model to a magnitude time series. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit a trapezoid planet-transit model to. period : float The period to use for the model fit. transitparams : list of floats These are initial parameters for the transit model fit. A list of the following form is required:: transitparams = [transitperiod (time), transitepoch (time), transitdepth (flux or mags), transitduration (phase), ingressduration (phase)] - for magnitudes -> `transitdepth` should be < 0 - for fluxes -> `transitdepth` should be > 0 If `transitepoch` is None, this function will do an initial spline fit to find an approximate minimum of the phased light curve using the given period. The `transitdepth` provided is checked against the value of `magsarefluxes`. if `magsarefluxes = True`, the `transitdepth` is forced to be > 0; if `magsarefluxes` = False, the `transitdepth` is forced to be < 0. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':the initial transit params provided, 'finalparams':the final model fit transit params , 'finalparamerrs':formal errors in the params, 'leastsqfit':the full tuple returned by scipy.leastsq, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, 'ntransitpoints': the number of LC points in transit phase }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } } ''' stimes, smags, serrs = sigclip_magseries(times, mags, errs, sigclip=sigclip, magsarefluxes=magsarefluxes) # get rid of zero errs nzind = np.nonzero(serrs) stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind] # check the transitparams transitperiod, transitepoch, transitdepth = transitparams[0:3] # check if we have a transitepoch to use if transitepoch is None: if verbose: LOGWARNING('no transitepoch given in transitparams, ' 'trying to figure it out automatically...') # do a spline fit to figure out the approximate min of the LC try: spfit = spline_fit_magseries(times, mags, errs, transitperiod, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) transitepoch = spfit['fitinfo']['fitepoch'] # if the spline-fit fails, try a savgol fit instead except Exception as e: sgfit = savgol_fit_magseries(times, mags, errs, transitperiod, sigclip=sigclip, magsarefluxes=magsarefluxes, verbose=verbose) transitepoch = sgfit['fitinfo']['fitepoch'] # if everything failed, then bail out and ask for the transitepoch finally: if transitepoch is None: LOGERROR("couldn't automatically figure out the transit epoch, " "can't continue. please provide it in transitparams.") # assemble the returndict returndict = { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':transitparams, 'finalparams':None, 'leastsqfit':None, 'fitmags':None, 'fitepoch':None, }, 'fitchisq':np.nan, 'fitredchisq':np.nan, 'fitplotfile':None, 'magseries':{ 'phase':None, 'times':None, 'mags':None, 'errs':None, 'magsarefluxes':magsarefluxes, }, } return returndict else: # check the case when there are more than one transitepochs # returned if transitepoch.size > 1: if verbose: LOGWARNING( "could not auto-find a single minimum in LC for " "transitepoch, using the first one returned" ) transitparams[1] = transitepoch[0] else: if verbose: LOGWARNING( 'using automatically determined transitepoch = %.5f' % transitepoch ) transitparams[1] = transitepoch.item() # next, check the transitdepth and fix it to the form required if magsarefluxes: if transitdepth < 0.0: transitparams[2] = -transitdepth else: if transitdepth > 0.0: transitparams[2] = -transitdepth # finally, do the fit try: leastsqfit = spleastsq(transits.trapezoid_transit_residual, transitparams, args=(stimes, smags, serrs), full_output=True) except Exception as e: leastsqfit = None # if the fit succeeded, then we can return the final parameters if leastsqfit and leastsqfit[-1] in (1,2,3,4): finalparams = leastsqfit[0] covxmatrix = leastsqfit[1] # calculate the chisq and reduced chisq fitmags, phase, ptimes, pmags, perrs, n_transitpoints = ( transits.trapezoid_transit_func( finalparams, stimes, smags, serrs, get_ntransitpoints=True ) ) fitchisq = np.sum( ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs) ) fitredchisq = fitchisq/(len(pmags) - len(finalparams) - 1) # get the residual variance and calculate the formal 1-sigma errs on the # final parameters residuals = leastsqfit[2]['fvec'] residualvariance = ( np.sum(residuals*residuals)/(pmags.size - finalparams.size) ) if covxmatrix is not None: covmatrix = residualvariance*covxmatrix stderrs = np.sqrt(np.diag(covmatrix)) else: LOGERROR('covxmatrix not available, fit probably failed!') stderrs = None if verbose: LOGINFO( 'final fit done. chisq = %.5f, reduced chisq = %.5f' % (fitchisq, fitredchisq) ) # get the fit epoch fperiod, fepoch = finalparams[:2] # assemble the returndict returndict = { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':transitparams, 'finalparams':finalparams, 'finalparamerrs':stderrs, 'leastsqfit':leastsqfit, 'fitmags':fitmags, 'fitepoch':fepoch, 'ntransitpoints':n_transitpoints }, 'fitchisq':fitchisq, 'fitredchisq':fitredchisq, 'fitplotfile':None, 'magseries':{ 'phase':phase, 'times':ptimes, 'mags':pmags, 'errs':perrs, 'magsarefluxes':magsarefluxes, }, } # make the fit plot if required if plotfit and isinstance(plotfit, str): make_fit_plot(phase, pmags, perrs, fitmags, fperiod, ptimes.min(), fepoch, plotfit, magsarefluxes=magsarefluxes) returndict['fitplotfile'] = plotfit return returndict # if the leastsq fit failed, return nothing else: LOGERROR('trapezoid-fit: least-squared fit to the light curve failed!') # assemble the returndict returndict = { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':transitparams, 'finalparams':None, 'finalparamerrs':None, 'leastsqfit':leastsqfit, 'fitmags':None, 'fitepoch':None, 'ntransitpoints':0 }, 'fitchisq':np.nan, 'fitredchisq':np.nan, 'fitplotfile':None, 'magseries':{ 'phase':None, 'times':None, 'mags':None, 'errs':None, 'magsarefluxes':magsarefluxes, }, } return returndict
[ "def", "traptransit_fit_magseries", "(", "times", ",", "mags", ",", "errs", ",", "transitparams", ",", "sigclip", "=", "10.0", ",", "plotfit", "=", "False", ",", "magsarefluxes", "=", "False", ",", "verbose", "=", "True", ")", ":", "stimes", ",", "smags", ",", "serrs", "=", "sigclip_magseries", "(", "times", ",", "mags", ",", "errs", ",", "sigclip", "=", "sigclip", ",", "magsarefluxes", "=", "magsarefluxes", ")", "# get rid of zero errs", "nzind", "=", "np", ".", "nonzero", "(", "serrs", ")", "stimes", ",", "smags", ",", "serrs", "=", "stimes", "[", "nzind", "]", ",", "smags", "[", "nzind", "]", ",", "serrs", "[", "nzind", "]", "# check the transitparams", "transitperiod", ",", "transitepoch", ",", "transitdepth", "=", "transitparams", "[", "0", ":", "3", "]", "# check if we have a transitepoch to use", "if", "transitepoch", "is", "None", ":", "if", "verbose", ":", "LOGWARNING", "(", "'no transitepoch given in transitparams, '", "'trying to figure it out automatically...'", ")", "# do a spline fit to figure out the approximate min of the LC", "try", ":", "spfit", "=", "spline_fit_magseries", "(", "times", ",", "mags", ",", "errs", ",", "transitperiod", ",", "sigclip", "=", "sigclip", ",", "magsarefluxes", "=", "magsarefluxes", ",", "verbose", "=", "verbose", ")", "transitepoch", "=", "spfit", "[", "'fitinfo'", "]", "[", "'fitepoch'", "]", "# if the spline-fit fails, try a savgol fit instead", "except", "Exception", "as", "e", ":", "sgfit", "=", "savgol_fit_magseries", "(", "times", ",", "mags", ",", "errs", ",", "transitperiod", ",", "sigclip", "=", "sigclip", ",", "magsarefluxes", "=", "magsarefluxes", ",", "verbose", "=", "verbose", ")", "transitepoch", "=", "sgfit", "[", "'fitinfo'", "]", "[", "'fitepoch'", "]", "# if everything failed, then bail out and ask for the transitepoch", "finally", ":", "if", "transitepoch", "is", "None", ":", "LOGERROR", "(", "\"couldn't automatically figure out the transit epoch, \"", "\"can't continue. please provide it in transitparams.\"", ")", "# assemble the returndict", "returndict", "=", "{", "'fittype'", ":", "'traptransit'", ",", "'fitinfo'", ":", "{", "'initialparams'", ":", "transitparams", ",", "'finalparams'", ":", "None", ",", "'leastsqfit'", ":", "None", ",", "'fitmags'", ":", "None", ",", "'fitepoch'", ":", "None", ",", "}", ",", "'fitchisq'", ":", "np", ".", "nan", ",", "'fitredchisq'", ":", "np", ".", "nan", ",", "'fitplotfile'", ":", "None", ",", "'magseries'", ":", "{", "'phase'", ":", "None", ",", "'times'", ":", "None", ",", "'mags'", ":", "None", ",", "'errs'", ":", "None", ",", "'magsarefluxes'", ":", "magsarefluxes", ",", "}", ",", "}", "return", "returndict", "else", ":", "# check the case when there are more than one transitepochs", "# returned", "if", "transitepoch", ".", "size", ">", "1", ":", "if", "verbose", ":", "LOGWARNING", "(", "\"could not auto-find a single minimum in LC for \"", "\"transitepoch, using the first one returned\"", ")", "transitparams", "[", "1", "]", "=", "transitepoch", "[", "0", "]", "else", ":", "if", "verbose", ":", "LOGWARNING", "(", "'using automatically determined transitepoch = %.5f'", "%", "transitepoch", ")", "transitparams", "[", "1", "]", "=", "transitepoch", ".", "item", "(", ")", "# next, check the transitdepth and fix it to the form required", "if", "magsarefluxes", ":", "if", "transitdepth", "<", "0.0", ":", "transitparams", "[", "2", "]", "=", "-", "transitdepth", "else", ":", "if", "transitdepth", ">", "0.0", ":", "transitparams", "[", "2", "]", "=", "-", "transitdepth", "# finally, do the fit", "try", ":", "leastsqfit", "=", "spleastsq", "(", "transits", ".", "trapezoid_transit_residual", ",", "transitparams", ",", "args", "=", "(", "stimes", ",", "smags", ",", "serrs", ")", ",", "full_output", "=", "True", ")", "except", "Exception", "as", "e", ":", "leastsqfit", "=", "None", "# if the fit succeeded, then we can return the final parameters", "if", "leastsqfit", "and", "leastsqfit", "[", "-", "1", "]", "in", "(", "1", ",", "2", ",", "3", ",", "4", ")", ":", "finalparams", "=", "leastsqfit", "[", "0", "]", "covxmatrix", "=", "leastsqfit", "[", "1", "]", "# calculate the chisq and reduced chisq", "fitmags", ",", "phase", ",", "ptimes", ",", "pmags", ",", "perrs", ",", "n_transitpoints", "=", "(", "transits", ".", "trapezoid_transit_func", "(", "finalparams", ",", "stimes", ",", "smags", ",", "serrs", ",", "get_ntransitpoints", "=", "True", ")", ")", "fitchisq", "=", "np", ".", "sum", "(", "(", "(", "fitmags", "-", "pmags", ")", "*", "(", "fitmags", "-", "pmags", ")", ")", "/", "(", "perrs", "*", "perrs", ")", ")", "fitredchisq", "=", "fitchisq", "/", "(", "len", "(", "pmags", ")", "-", "len", "(", "finalparams", ")", "-", "1", ")", "# get the residual variance and calculate the formal 1-sigma errs on the", "# final parameters", "residuals", "=", "leastsqfit", "[", "2", "]", "[", "'fvec'", "]", "residualvariance", "=", "(", "np", ".", "sum", "(", "residuals", "*", "residuals", ")", "/", "(", "pmags", ".", "size", "-", "finalparams", ".", "size", ")", ")", "if", "covxmatrix", "is", "not", "None", ":", "covmatrix", "=", "residualvariance", "*", "covxmatrix", "stderrs", "=", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "covmatrix", ")", ")", "else", ":", "LOGERROR", "(", "'covxmatrix not available, fit probably failed!'", ")", "stderrs", "=", "None", "if", "verbose", ":", "LOGINFO", "(", "'final fit done. chisq = %.5f, reduced chisq = %.5f'", "%", "(", "fitchisq", ",", "fitredchisq", ")", ")", "# get the fit epoch", "fperiod", ",", "fepoch", "=", "finalparams", "[", ":", "2", "]", "# assemble the returndict", "returndict", "=", "{", "'fittype'", ":", "'traptransit'", ",", "'fitinfo'", ":", "{", "'initialparams'", ":", "transitparams", ",", "'finalparams'", ":", "finalparams", ",", "'finalparamerrs'", ":", "stderrs", ",", "'leastsqfit'", ":", "leastsqfit", ",", "'fitmags'", ":", "fitmags", ",", "'fitepoch'", ":", "fepoch", ",", "'ntransitpoints'", ":", "n_transitpoints", "}", ",", "'fitchisq'", ":", "fitchisq", ",", "'fitredchisq'", ":", "fitredchisq", ",", "'fitplotfile'", ":", "None", ",", "'magseries'", ":", "{", "'phase'", ":", "phase", ",", "'times'", ":", "ptimes", ",", "'mags'", ":", "pmags", ",", "'errs'", ":", "perrs", ",", "'magsarefluxes'", ":", "magsarefluxes", ",", "}", ",", "}", "# make the fit plot if required", "if", "plotfit", "and", "isinstance", "(", "plotfit", ",", "str", ")", ":", "make_fit_plot", "(", "phase", ",", "pmags", ",", "perrs", ",", "fitmags", ",", "fperiod", ",", "ptimes", ".", "min", "(", ")", ",", "fepoch", ",", "plotfit", ",", "magsarefluxes", "=", "magsarefluxes", ")", "returndict", "[", "'fitplotfile'", "]", "=", "plotfit", "return", "returndict", "# if the leastsq fit failed, return nothing", "else", ":", "LOGERROR", "(", "'trapezoid-fit: least-squared fit to the light curve failed!'", ")", "# assemble the returndict", "returndict", "=", "{", "'fittype'", ":", "'traptransit'", ",", "'fitinfo'", ":", "{", "'initialparams'", ":", "transitparams", ",", "'finalparams'", ":", "None", ",", "'finalparamerrs'", ":", "None", ",", "'leastsqfit'", ":", "leastsqfit", ",", "'fitmags'", ":", "None", ",", "'fitepoch'", ":", "None", ",", "'ntransitpoints'", ":", "0", "}", ",", "'fitchisq'", ":", "np", ".", "nan", ",", "'fitredchisq'", ":", "np", ".", "nan", ",", "'fitplotfile'", ":", "None", ",", "'magseries'", ":", "{", "'phase'", ":", "None", ",", "'times'", ":", "None", ",", "'mags'", ":", "None", ",", "'errs'", ":", "None", ",", "'magsarefluxes'", ":", "magsarefluxes", ",", "}", ",", "}", "return", "returndict" ]
This fits a trapezoid transit model to a magnitude time series. Parameters ---------- times,mags,errs : np.array The input mag/flux time-series to fit a trapezoid planet-transit model to. period : float The period to use for the model fit. transitparams : list of floats These are initial parameters for the transit model fit. A list of the following form is required:: transitparams = [transitperiod (time), transitepoch (time), transitdepth (flux or mags), transitduration (phase), ingressduration (phase)] - for magnitudes -> `transitdepth` should be < 0 - for fluxes -> `transitdepth` should be > 0 If `transitepoch` is None, this function will do an initial spline fit to find an approximate minimum of the phased light curve using the given period. The `transitdepth` provided is checked against the value of `magsarefluxes`. if `magsarefluxes = True`, the `transitdepth` is forced to be > 0; if `magsarefluxes` = False, the `transitdepth` is forced to be < 0. sigclip : float or int or sequence of two floats/ints or None If a single float or int, a symmetric sigma-clip will be performed using the number provided as the sigma-multiplier to cut out from the input time-series. If a list of two ints/floats is provided, the function will perform an 'asymmetric' sigma-clip. The first element in this list is the sigma value to use for fainter flux/mag values; the second element in this list is the sigma value to use for brighter flux/mag values. For example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma dimmings and greater than 3-sigma brightenings. Here the meaning of "dimming" and "brightening" is set by *physics* (not the magnitude system), which is why the `magsarefluxes` kwarg must be correctly set. If `sigclip` is None, no sigma-clipping will be performed, and the time-series (with non-finite elems removed) will be passed through to the output. magsarefluxes : bool If True, will treat the input values of `mags` as fluxes for purposes of plotting the fit and sig-clipping. plotfit : str or False If this is a string, this function will make a plot for the fit to the mag/flux time-series and writes the plot to the path specified here. ignoreinitfail : bool If this is True, ignores the initial failure to find a set of optimized Fourier parameters using the global optimization function and proceeds to do a least-squares fit anyway. verbose : bool If True, will indicate progress and warn of any problems. Returns ------- dict This function returns a dict containing the model fit parameters, the minimized chi-sq value and the reduced chi-sq value. The form of this dict is mostly standardized across all functions in this module:: { 'fittype':'traptransit', 'fitinfo':{ 'initialparams':the initial transit params provided, 'finalparams':the final model fit transit params , 'finalparamerrs':formal errors in the params, 'leastsqfit':the full tuple returned by scipy.leastsq, 'fitmags': the model fit mags, 'fitepoch': the epoch of minimum light for the fit, 'ntransitpoints': the number of LC points in transit phase }, 'fitchisq': the minimized value of the fit's chi-sq, 'fitredchisq':the reduced chi-sq value, 'fitplotfile': the output fit plot if fitplot is not None, 'magseries':{ 'times':input times in phase order of the model, 'phase':the phases of the model mags, 'mags':input mags/fluxes in the phase order of the model, 'errs':errs in the phase order of the model, 'magsarefluxes':input value of magsarefluxes kwarg } }
[ "This", "fits", "a", "trapezoid", "transit", "model", "to", "a", "magnitude", "time", "series", "." ]
python
valid
PmagPy/PmagPy
dialogs/pmag_er_magic_dialogs.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/pmag_er_magic_dialogs.py#L981-L993
def on_helpButton(self, event, page=None): """shows html help page""" # for use on the command line: path = find_pmag_dir.get_pmag_dir() # for use with pyinstaller #path = self.main_frame.resource_dir help_page = os.path.join(path, 'dialogs', 'help_files', page) # if using with py2app, the directory structure is flat, # so check to see where the resource actually is if not os.path.exists(help_page): help_page = os.path.join(path, 'help_files', page) html_frame = pw.HtmlFrame(self, page=help_page) html_frame.Show()
[ "def", "on_helpButton", "(", "self", ",", "event", ",", "page", "=", "None", ")", ":", "# for use on the command line:", "path", "=", "find_pmag_dir", ".", "get_pmag_dir", "(", ")", "# for use with pyinstaller", "#path = self.main_frame.resource_dir", "help_page", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'dialogs'", ",", "'help_files'", ",", "page", ")", "# if using with py2app, the directory structure is flat,", "# so check to see where the resource actually is", "if", "not", "os", ".", "path", ".", "exists", "(", "help_page", ")", ":", "help_page", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'help_files'", ",", "page", ")", "html_frame", "=", "pw", ".", "HtmlFrame", "(", "self", ",", "page", "=", "help_page", ")", "html_frame", ".", "Show", "(", ")" ]
shows html help page
[ "shows", "html", "help", "page" ]
python
train
palantir/typedjsonrpc
typedjsonrpc/server.py
https://github.com/palantir/typedjsonrpc/blob/274218fcd236ff9643506caa629029c9ba25a0fb/typedjsonrpc/server.py#L177-L194
def debug_application(self, environ, start_response): """Run the application and preserve the traceback frames. :param environ: The environment which is passed into the wsgi application :type environ: dict[str, object] :param start_response: The start_response function of the wsgi application :type start_response: (str, list[(str, str)]) -> None :rtype: generator[str] .. versionadded:: 0.1.0 """ adapter = self._debug_map.bind_to_environ(environ) if adapter.test(): _, args = adapter.match() return self.handle_debug(environ, start_response, args["traceback_id"]) else: return super(DebuggedJsonRpcApplication, self).debug_application(environ, start_response)
[ "def", "debug_application", "(", "self", ",", "environ", ",", "start_response", ")", ":", "adapter", "=", "self", ".", "_debug_map", ".", "bind_to_environ", "(", "environ", ")", "if", "adapter", ".", "test", "(", ")", ":", "_", ",", "args", "=", "adapter", ".", "match", "(", ")", "return", "self", ".", "handle_debug", "(", "environ", ",", "start_response", ",", "args", "[", "\"traceback_id\"", "]", ")", "else", ":", "return", "super", "(", "DebuggedJsonRpcApplication", ",", "self", ")", ".", "debug_application", "(", "environ", ",", "start_response", ")" ]
Run the application and preserve the traceback frames. :param environ: The environment which is passed into the wsgi application :type environ: dict[str, object] :param start_response: The start_response function of the wsgi application :type start_response: (str, list[(str, str)]) -> None :rtype: generator[str] .. versionadded:: 0.1.0
[ "Run", "the", "application", "and", "preserve", "the", "traceback", "frames", "." ]
python
train
coin-or/GiMPy
src/gimpy/graph.py
https://github.com/coin-or/GiMPy/blob/51853122a50eb6019d06bbdedbfc396a833b5a22/src/gimpy/graph.py#L2349-L2403
def simplex_determine_leaving_arc(self, t, k, l): ''' API: simplex_determine_leaving_arc(self, t, k, l) Description: Determines and returns the leaving arc. Input: t: current spanning tree solution. k: tail of the entering arc. l: head of the entering arc. Return: Returns the tuple that represents leaving arc, capacity of the cycle and cycle. ''' # k,l are the first two elements of the cycle cycle = self.simplex_identify_cycle(t, k, l) flow_kl = self.get_edge_attr(k, l, 'flow') capacity_kl = self.get_edge_attr(k, l, 'capacity') min_capacity = capacity_kl # check if k,l is in U or L if flow_kl==capacity_kl: # l,k will be the last two elements cycle.reverse() n = len(cycle) index = 0 # determine last blocking arc t.add_edge(k, l) tel = t.get_edge_list() while index < (n-1): if (cycle[index], cycle[index+1]) in tel: flow = self.edge_attr[(cycle[index], cycle[index+1])]['flow'] capacity = \ self.edge_attr[(cycle[index],cycle[index+1])]['capacity'] if min_capacity >= (capacity-flow): candidate = (cycle[index], cycle[index+1]) min_capacity = capacity-flow else: flow = self.edge_attr[(cycle[index+1], cycle[index])]['flow'] if min_capacity >= flow: candidate = (cycle[index+1], cycle[index]) min_capacity = flow index += 1 # check arc (cycle[n-1], cycle[0]) if (cycle[n-1], cycle[0]) in tel: flow = self.edge_attr[(cycle[n-1], cycle[0])]['flow'] capacity = self.edge_attr[(cycle[n-1], cycle[0])]['capacity'] if min_capacity >= (capacity-flow): candidate = (cycle[n-1], cycle[0]) min_capacity = capacity-flow else: flow = self.edge_attr[(cycle[0], cycle[n-1])]['flow'] if min_capacity >= flow: candidate = (cycle[0], cycle[n-1]) min_capacity = flow return (candidate, min_capacity, cycle)
[ "def", "simplex_determine_leaving_arc", "(", "self", ",", "t", ",", "k", ",", "l", ")", ":", "# k,l are the first two elements of the cycle", "cycle", "=", "self", ".", "simplex_identify_cycle", "(", "t", ",", "k", ",", "l", ")", "flow_kl", "=", "self", ".", "get_edge_attr", "(", "k", ",", "l", ",", "'flow'", ")", "capacity_kl", "=", "self", ".", "get_edge_attr", "(", "k", ",", "l", ",", "'capacity'", ")", "min_capacity", "=", "capacity_kl", "# check if k,l is in U or L", "if", "flow_kl", "==", "capacity_kl", ":", "# l,k will be the last two elements", "cycle", ".", "reverse", "(", ")", "n", "=", "len", "(", "cycle", ")", "index", "=", "0", "# determine last blocking arc", "t", ".", "add_edge", "(", "k", ",", "l", ")", "tel", "=", "t", ".", "get_edge_list", "(", ")", "while", "index", "<", "(", "n", "-", "1", ")", ":", "if", "(", "cycle", "[", "index", "]", ",", "cycle", "[", "index", "+", "1", "]", ")", "in", "tel", ":", "flow", "=", "self", ".", "edge_attr", "[", "(", "cycle", "[", "index", "]", ",", "cycle", "[", "index", "+", "1", "]", ")", "]", "[", "'flow'", "]", "capacity", "=", "self", ".", "edge_attr", "[", "(", "cycle", "[", "index", "]", ",", "cycle", "[", "index", "+", "1", "]", ")", "]", "[", "'capacity'", "]", "if", "min_capacity", ">=", "(", "capacity", "-", "flow", ")", ":", "candidate", "=", "(", "cycle", "[", "index", "]", ",", "cycle", "[", "index", "+", "1", "]", ")", "min_capacity", "=", "capacity", "-", "flow", "else", ":", "flow", "=", "self", ".", "edge_attr", "[", "(", "cycle", "[", "index", "+", "1", "]", ",", "cycle", "[", "index", "]", ")", "]", "[", "'flow'", "]", "if", "min_capacity", ">=", "flow", ":", "candidate", "=", "(", "cycle", "[", "index", "+", "1", "]", ",", "cycle", "[", "index", "]", ")", "min_capacity", "=", "flow", "index", "+=", "1", "# check arc (cycle[n-1], cycle[0])", "if", "(", "cycle", "[", "n", "-", "1", "]", ",", "cycle", "[", "0", "]", ")", "in", "tel", ":", "flow", "=", "self", ".", "edge_attr", "[", "(", "cycle", "[", "n", "-", "1", "]", ",", "cycle", "[", "0", "]", ")", "]", "[", "'flow'", "]", "capacity", "=", "self", ".", "edge_attr", "[", "(", "cycle", "[", "n", "-", "1", "]", ",", "cycle", "[", "0", "]", ")", "]", "[", "'capacity'", "]", "if", "min_capacity", ">=", "(", "capacity", "-", "flow", ")", ":", "candidate", "=", "(", "cycle", "[", "n", "-", "1", "]", ",", "cycle", "[", "0", "]", ")", "min_capacity", "=", "capacity", "-", "flow", "else", ":", "flow", "=", "self", ".", "edge_attr", "[", "(", "cycle", "[", "0", "]", ",", "cycle", "[", "n", "-", "1", "]", ")", "]", "[", "'flow'", "]", "if", "min_capacity", ">=", "flow", ":", "candidate", "=", "(", "cycle", "[", "0", "]", ",", "cycle", "[", "n", "-", "1", "]", ")", "min_capacity", "=", "flow", "return", "(", "candidate", ",", "min_capacity", ",", "cycle", ")" ]
API: simplex_determine_leaving_arc(self, t, k, l) Description: Determines and returns the leaving arc. Input: t: current spanning tree solution. k: tail of the entering arc. l: head of the entering arc. Return: Returns the tuple that represents leaving arc, capacity of the cycle and cycle.
[ "API", ":", "simplex_determine_leaving_arc", "(", "self", "t", "k", "l", ")", "Description", ":", "Determines", "and", "returns", "the", "leaving", "arc", ".", "Input", ":", "t", ":", "current", "spanning", "tree", "solution", ".", "k", ":", "tail", "of", "the", "entering", "arc", ".", "l", ":", "head", "of", "the", "entering", "arc", ".", "Return", ":", "Returns", "the", "tuple", "that", "represents", "leaving", "arc", "capacity", "of", "the", "cycle", "and", "cycle", "." ]
python
train
ska-sa/katcp-python
katcp/client.py
https://github.com/ska-sa/katcp-python/blob/9127c826a1d030c53b84d0e95743e20e5c5ea153/katcp/client.py#L821-L843
def start(self, timeout=None): """Start the client in a new thread. Parameters ---------- timeout : float in seconds Seconds to wait for client thread to start. Do not specify a timeout if start() is being called from the same ioloop that this client will be installed on, since it will block the ioloop without progressing. """ if self._running.isSet(): raise RuntimeError("Device client already started.") # Make sure we have an ioloop self.ioloop = self._ioloop_manager.get_ioloop() if timeout: t0 = self.ioloop.time() self._ioloop_manager.start(timeout) self.ioloop.add_callback(self._install) if timeout: remaining_timeout = timeout - (self.ioloop.time() - t0) self.wait_running(remaining_timeout)
[ "def", "start", "(", "self", ",", "timeout", "=", "None", ")", ":", "if", "self", ".", "_running", ".", "isSet", "(", ")", ":", "raise", "RuntimeError", "(", "\"Device client already started.\"", ")", "# Make sure we have an ioloop", "self", ".", "ioloop", "=", "self", ".", "_ioloop_manager", ".", "get_ioloop", "(", ")", "if", "timeout", ":", "t0", "=", "self", ".", "ioloop", ".", "time", "(", ")", "self", ".", "_ioloop_manager", ".", "start", "(", "timeout", ")", "self", ".", "ioloop", ".", "add_callback", "(", "self", ".", "_install", ")", "if", "timeout", ":", "remaining_timeout", "=", "timeout", "-", "(", "self", ".", "ioloop", ".", "time", "(", ")", "-", "t0", ")", "self", ".", "wait_running", "(", "remaining_timeout", ")" ]
Start the client in a new thread. Parameters ---------- timeout : float in seconds Seconds to wait for client thread to start. Do not specify a timeout if start() is being called from the same ioloop that this client will be installed on, since it will block the ioloop without progressing.
[ "Start", "the", "client", "in", "a", "new", "thread", "." ]
python
train