repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
rm-hull/luma.emulator
luma/emulator/render.py
https://github.com/rm-hull/luma.emulator/blob/ca3db028b33d17cda9247ea5189873ff0408d013/luma/emulator/render.py#L51-L65
def led_matrix(self, surface): """ Transforms the input surface into an LED matrix (1 pixel = 1 LED) """ scale = self._led_on.get_width() w, h = self._input_size pix = self._pygame.PixelArray(surface) img = self._pygame.Surface((w * scale, h * scale)) for y in range(h): for x in range(w): led = self._led_on if pix[x, y] & 0xFFFFFF > 0 else self._led_off img.blit(led, (x * scale, y * scale)) return img
[ "def", "led_matrix", "(", "self", ",", "surface", ")", ":", "scale", "=", "self", ".", "_led_on", ".", "get_width", "(", ")", "w", ",", "h", "=", "self", ".", "_input_size", "pix", "=", "self", ".", "_pygame", ".", "PixelArray", "(", "surface", ")", "img", "=", "self", ".", "_pygame", ".", "Surface", "(", "(", "w", "*", "scale", ",", "h", "*", "scale", ")", ")", "for", "y", "in", "range", "(", "h", ")", ":", "for", "x", "in", "range", "(", "w", ")", ":", "led", "=", "self", ".", "_led_on", "if", "pix", "[", "x", ",", "y", "]", "&", "0xFFFFFF", ">", "0", "else", "self", ".", "_led_off", "img", ".", "blit", "(", "led", ",", "(", "x", "*", "scale", ",", "y", "*", "scale", ")", ")", "return", "img" ]
Transforms the input surface into an LED matrix (1 pixel = 1 LED)
[ "Transforms", "the", "input", "surface", "into", "an", "LED", "matrix", "(", "1", "pixel", "=", "1", "LED", ")" ]
python
train
inasafe/inasafe
safe/gui/tools/batch/batch_dialog.py
https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/gui/tools/batch/batch_dialog.py#L798-L801
def on_output_directory_chooser_clicked(self): """Auto connect slot activated when tbOutputDiris clicked.""" title = self.tr('Set the output directory for pdf report files') self.choose_directory(self.output_directory, title)
[ "def", "on_output_directory_chooser_clicked", "(", "self", ")", ":", "title", "=", "self", ".", "tr", "(", "'Set the output directory for pdf report files'", ")", "self", ".", "choose_directory", "(", "self", ".", "output_directory", ",", "title", ")" ]
Auto connect slot activated when tbOutputDiris clicked.
[ "Auto", "connect", "slot", "activated", "when", "tbOutputDiris", "clicked", "." ]
python
train
robertpeteuil/multi-cloud-control
mcc/uimode.py
https://github.com/robertpeteuil/multi-cloud-control/blob/f1565af1c0b6ed465ff312d3ccc592ba0609f4a2/mcc/uimode.py#L40-L62
def ui_main(fmt_table, node_dict): """Create the base UI in command mode.""" cmd_funct = {"quit": False, "run": node_cmd, "stop": node_cmd, "connect": node_cmd, "details": node_cmd, "update": True} ui_print("\033[?25l") # cursor off print("{}\n".format(fmt_table)) sys.stdout.flush() # refresh_main values: # None = loop main-cmd, True = refresh-list, False = exit-program refresh_main = None while refresh_main is None: cmd_name = get_user_cmd(node_dict) if callable(cmd_funct[cmd_name]): refresh_main = cmd_funct[cmd_name](cmd_name, node_dict) else: refresh_main = cmd_funct[cmd_name] if cmd_name != "connect" and refresh_main: ui_clear(len(node_dict) + 2) return refresh_main
[ "def", "ui_main", "(", "fmt_table", ",", "node_dict", ")", ":", "cmd_funct", "=", "{", "\"quit\"", ":", "False", ",", "\"run\"", ":", "node_cmd", ",", "\"stop\"", ":", "node_cmd", ",", "\"connect\"", ":", "node_cmd", ",", "\"details\"", ":", "node_cmd", ",", "\"update\"", ":", "True", "}", "ui_print", "(", "\"\\033[?25l\"", ")", "# cursor off", "print", "(", "\"{}\\n\"", ".", "format", "(", "fmt_table", ")", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "# refresh_main values:", "# None = loop main-cmd, True = refresh-list, False = exit-program", "refresh_main", "=", "None", "while", "refresh_main", "is", "None", ":", "cmd_name", "=", "get_user_cmd", "(", "node_dict", ")", "if", "callable", "(", "cmd_funct", "[", "cmd_name", "]", ")", ":", "refresh_main", "=", "cmd_funct", "[", "cmd_name", "]", "(", "cmd_name", ",", "node_dict", ")", "else", ":", "refresh_main", "=", "cmd_funct", "[", "cmd_name", "]", "if", "cmd_name", "!=", "\"connect\"", "and", "refresh_main", ":", "ui_clear", "(", "len", "(", "node_dict", ")", "+", "2", ")", "return", "refresh_main" ]
Create the base UI in command mode.
[ "Create", "the", "base", "UI", "in", "command", "mode", "." ]
python
train
proycon/pynlpl
pynlpl/formats/folia.py
https://github.com/proycon/pynlpl/blob/7707f69a91caaa6cde037f0d0379f1d42500a68b/pynlpl/formats/folia.py#L5783-L5798
def correctwords(self, originalwords, newwords, **kwargs): """Generic correction method for words. You most likely want to use the helper functions :meth:`Sentence.splitword` , :meth:`Sentence.mergewords`, :meth:`deleteword`, :meth:`insertword` instead""" for w in originalwords: if not isinstance(w, Word): raise Exception("Original word is not a Word instance: " + str(type(w))) elif w.sentence() != self: raise Exception("Original not found as member of sentence!") for w in newwords: if not isinstance(w, Word): raise Exception("New word is not a Word instance: " + str(type(w))) if 'suggest' in kwargs and kwargs['suggest']: del kwargs['suggest'] return self.correct(suggestion=newwords,current=originalwords, **kwargs) else: return self.correct(original=originalwords, new=newwords, **kwargs)
[ "def", "correctwords", "(", "self", ",", "originalwords", ",", "newwords", ",", "*", "*", "kwargs", ")", ":", "for", "w", "in", "originalwords", ":", "if", "not", "isinstance", "(", "w", ",", "Word", ")", ":", "raise", "Exception", "(", "\"Original word is not a Word instance: \"", "+", "str", "(", "type", "(", "w", ")", ")", ")", "elif", "w", ".", "sentence", "(", ")", "!=", "self", ":", "raise", "Exception", "(", "\"Original not found as member of sentence!\"", ")", "for", "w", "in", "newwords", ":", "if", "not", "isinstance", "(", "w", ",", "Word", ")", ":", "raise", "Exception", "(", "\"New word is not a Word instance: \"", "+", "str", "(", "type", "(", "w", ")", ")", ")", "if", "'suggest'", "in", "kwargs", "and", "kwargs", "[", "'suggest'", "]", ":", "del", "kwargs", "[", "'suggest'", "]", "return", "self", ".", "correct", "(", "suggestion", "=", "newwords", ",", "current", "=", "originalwords", ",", "*", "*", "kwargs", ")", "else", ":", "return", "self", ".", "correct", "(", "original", "=", "originalwords", ",", "new", "=", "newwords", ",", "*", "*", "kwargs", ")" ]
Generic correction method for words. You most likely want to use the helper functions :meth:`Sentence.splitword` , :meth:`Sentence.mergewords`, :meth:`deleteword`, :meth:`insertword` instead
[ "Generic", "correction", "method", "for", "words", ".", "You", "most", "likely", "want", "to", "use", "the", "helper", "functions", ":", "meth", ":", "Sentence", ".", "splitword", ":", "meth", ":", "Sentence", ".", "mergewords", ":", "meth", ":", "deleteword", ":", "meth", ":", "insertword", "instead" ]
python
train
pypyr/pypyr-cli
pypyr/steps/env.py
https://github.com/pypyr/pypyr-cli/blob/4003f999cd5eb030b4c7407317de728f5115a80f/pypyr/steps/env.py#L46-L85
def env_get(context): """Get $ENVs into the pypyr context. Context is a dictionary or dictionary-like. context is mandatory. context['env']['get'] must exist. It's a dictionary. Values are the names of the $ENVs to write to the pypyr context. Keys are the pypyr context item to which to write the $ENV values. For example, say input context is: key1: value1 key2: value2 pypyrCurrentDir: value3 env: get: pypyrUser: USER pypyrCurrentDir: PWD This will result in context: key1: value1 key2: value2 key3: value3 pypyrUser: <<value of $USER here>> pypyrCurrentDir: <<value of $PWD here, not value3>> """ get = context['env'].get('get', None) exists = False if get: logger.debug("start") for k, v in get.items(): logger.debug(f"setting context {k} to $ENV {v}") context[k] = os.environ[v] logger.info(f"saved {len(get)} $ENVs to context.") exists = True logger.debug("done") return exists
[ "def", "env_get", "(", "context", ")", ":", "get", "=", "context", "[", "'env'", "]", ".", "get", "(", "'get'", ",", "None", ")", "exists", "=", "False", "if", "get", ":", "logger", ".", "debug", "(", "\"start\"", ")", "for", "k", ",", "v", "in", "get", ".", "items", "(", ")", ":", "logger", ".", "debug", "(", "f\"setting context {k} to $ENV {v}\"", ")", "context", "[", "k", "]", "=", "os", ".", "environ", "[", "v", "]", "logger", ".", "info", "(", "f\"saved {len(get)} $ENVs to context.\"", ")", "exists", "=", "True", "logger", ".", "debug", "(", "\"done\"", ")", "return", "exists" ]
Get $ENVs into the pypyr context. Context is a dictionary or dictionary-like. context is mandatory. context['env']['get'] must exist. It's a dictionary. Values are the names of the $ENVs to write to the pypyr context. Keys are the pypyr context item to which to write the $ENV values. For example, say input context is: key1: value1 key2: value2 pypyrCurrentDir: value3 env: get: pypyrUser: USER pypyrCurrentDir: PWD This will result in context: key1: value1 key2: value2 key3: value3 pypyrUser: <<value of $USER here>> pypyrCurrentDir: <<value of $PWD here, not value3>>
[ "Get", "$ENVs", "into", "the", "pypyr", "context", "." ]
python
train
cloud9ers/gurumate
environment/lib/python2.7/site-packages/pip-1.2.1-py2.7.egg/pip/req.py
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/pip-1.2.1-py2.7.egg/pip/req.py#L1147-L1178
def install(self, install_options, global_options=()): """Install everything in this set (after having downloaded and unpacked the packages)""" to_install = [r for r in self.requirements.values() if not r.satisfied_by] if to_install: logger.notify('Installing collected packages: %s' % ', '.join([req.name for req in to_install])) logger.indent += 2 try: for requirement in to_install: if requirement.conflicts_with: logger.notify('Found existing installation: %s' % requirement.conflicts_with) logger.indent += 2 try: requirement.uninstall(auto_confirm=True) finally: logger.indent -= 2 try: requirement.install(install_options, global_options) except: # if install did not succeed, rollback previous uninstall if requirement.conflicts_with and not requirement.install_succeeded: requirement.rollback_uninstall() raise else: if requirement.conflicts_with and requirement.install_succeeded: requirement.commit_uninstall() requirement.remove_temporary_source() finally: logger.indent -= 2 self.successfully_installed = to_install
[ "def", "install", "(", "self", ",", "install_options", ",", "global_options", "=", "(", ")", ")", ":", "to_install", "=", "[", "r", "for", "r", "in", "self", ".", "requirements", ".", "values", "(", ")", "if", "not", "r", ".", "satisfied_by", "]", "if", "to_install", ":", "logger", ".", "notify", "(", "'Installing collected packages: %s'", "%", "', '", ".", "join", "(", "[", "req", ".", "name", "for", "req", "in", "to_install", "]", ")", ")", "logger", ".", "indent", "+=", "2", "try", ":", "for", "requirement", "in", "to_install", ":", "if", "requirement", ".", "conflicts_with", ":", "logger", ".", "notify", "(", "'Found existing installation: %s'", "%", "requirement", ".", "conflicts_with", ")", "logger", ".", "indent", "+=", "2", "try", ":", "requirement", ".", "uninstall", "(", "auto_confirm", "=", "True", ")", "finally", ":", "logger", ".", "indent", "-=", "2", "try", ":", "requirement", ".", "install", "(", "install_options", ",", "global_options", ")", "except", ":", "# if install did not succeed, rollback previous uninstall", "if", "requirement", ".", "conflicts_with", "and", "not", "requirement", ".", "install_succeeded", ":", "requirement", ".", "rollback_uninstall", "(", ")", "raise", "else", ":", "if", "requirement", ".", "conflicts_with", "and", "requirement", ".", "install_succeeded", ":", "requirement", ".", "commit_uninstall", "(", ")", "requirement", ".", "remove_temporary_source", "(", ")", "finally", ":", "logger", ".", "indent", "-=", "2", "self", ".", "successfully_installed", "=", "to_install" ]
Install everything in this set (after having downloaded and unpacked the packages)
[ "Install", "everything", "in", "this", "set", "(", "after", "having", "downloaded", "and", "unpacked", "the", "packages", ")" ]
python
test
ligyxy/DictMySQL
dictmysql.py
https://github.com/ligyxy/DictMySQL/blob/f40d649193ccf58d1c7933189be1042b37afbe31/dictmysql.py#L49-L68
def _backtick_columns(cols): """ Quote the column names """ def bt(s): b = '' if s == '*' or not s else '`' return [_ for _ in [b + (s or '') + b] if _] formatted = [] for c in cols: if c[0] == '#': formatted.append(c[1:]) elif c.startswith('(') and c.endswith(')'): # WHERE (column_a, column_b) IN ((1,10), (1,20)) formatted.append(c) else: # backtick the former part when it meets the first dot, and then all the rest formatted.append('.'.join(bt(c.split('.')[0]) + bt('.'.join(c.split('.')[1:])))) return ', '.join(formatted)
[ "def", "_backtick_columns", "(", "cols", ")", ":", "def", "bt", "(", "s", ")", ":", "b", "=", "''", "if", "s", "==", "'*'", "or", "not", "s", "else", "'`'", "return", "[", "_", "for", "_", "in", "[", "b", "+", "(", "s", "or", "''", ")", "+", "b", "]", "if", "_", "]", "formatted", "=", "[", "]", "for", "c", "in", "cols", ":", "if", "c", "[", "0", "]", "==", "'#'", ":", "formatted", ".", "append", "(", "c", "[", "1", ":", "]", ")", "elif", "c", ".", "startswith", "(", "'('", ")", "and", "c", ".", "endswith", "(", "')'", ")", ":", "# WHERE (column_a, column_b) IN ((1,10), (1,20))", "formatted", ".", "append", "(", "c", ")", "else", ":", "# backtick the former part when it meets the first dot, and then all the rest", "formatted", ".", "append", "(", "'.'", ".", "join", "(", "bt", "(", "c", ".", "split", "(", "'.'", ")", "[", "0", "]", ")", "+", "bt", "(", "'.'", ".", "join", "(", "c", ".", "split", "(", "'.'", ")", "[", "1", ":", "]", ")", ")", ")", ")", "return", "', '", ".", "join", "(", "formatted", ")" ]
Quote the column names
[ "Quote", "the", "column", "names" ]
python
train
knipknap/SpiffWorkflow
SpiffWorkflow/util/event.py
https://github.com/knipknap/SpiffWorkflow/blob/f0af7f59a332e0619e4f3c00a7d4a3d230760e00/SpiffWorkflow/util/event.py#L161-L201
def emit(self, *args, **kwargs): """ Emits the signal, passing the given arguments to the callbacks. If one of the callbacks returns a value other than None, no further callbacks are invoked and the return value of the callback is returned to the caller of emit(). :type args: tuple :param args: Optional arguments passed to the callbacks. :type kwargs: dict :param kwargs: Optional keyword arguments passed to the callbacks. :rtype: object :returns: Returns None if all callbacks returned None. Returns the return value of the last invoked callback otherwise. """ if self.hard_subscribers is not None: for callback, user_args, user_kwargs in self.hard_subscribers: kwargs.update(user_kwargs) result = callback(*args + user_args, **kwargs) if result is not None: return result if self.weak_subscribers is not None: for callback, user_args, user_kwargs in self.weak_subscribers: kwargs.update(user_kwargs) # Even though WeakMethod notifies us when the underlying # function is destroyed, and we remove the item from the # the list of subscribers, there is no guarantee that # this notification has already happened because the garbage # collector may run while this loop is executed. # Disabling the garbage collector temporarily also does # not work, because other threads may be trying to do # the same, causing yet another race condition. # So the only solution is to skip such functions. function = callback.get_function() if function is None: continue result = function(*args + user_args, **kwargs) if result is not None: return result
[ "def", "emit", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "hard_subscribers", "is", "not", "None", ":", "for", "callback", ",", "user_args", ",", "user_kwargs", "in", "self", ".", "hard_subscribers", ":", "kwargs", ".", "update", "(", "user_kwargs", ")", "result", "=", "callback", "(", "*", "args", "+", "user_args", ",", "*", "*", "kwargs", ")", "if", "result", "is", "not", "None", ":", "return", "result", "if", "self", ".", "weak_subscribers", "is", "not", "None", ":", "for", "callback", ",", "user_args", ",", "user_kwargs", "in", "self", ".", "weak_subscribers", ":", "kwargs", ".", "update", "(", "user_kwargs", ")", "# Even though WeakMethod notifies us when the underlying", "# function is destroyed, and we remove the item from the", "# the list of subscribers, there is no guarantee that", "# this notification has already happened because the garbage", "# collector may run while this loop is executed.", "# Disabling the garbage collector temporarily also does", "# not work, because other threads may be trying to do", "# the same, causing yet another race condition.", "# So the only solution is to skip such functions.", "function", "=", "callback", ".", "get_function", "(", ")", "if", "function", "is", "None", ":", "continue", "result", "=", "function", "(", "*", "args", "+", "user_args", ",", "*", "*", "kwargs", ")", "if", "result", "is", "not", "None", ":", "return", "result" ]
Emits the signal, passing the given arguments to the callbacks. If one of the callbacks returns a value other than None, no further callbacks are invoked and the return value of the callback is returned to the caller of emit(). :type args: tuple :param args: Optional arguments passed to the callbacks. :type kwargs: dict :param kwargs: Optional keyword arguments passed to the callbacks. :rtype: object :returns: Returns None if all callbacks returned None. Returns the return value of the last invoked callback otherwise.
[ "Emits", "the", "signal", "passing", "the", "given", "arguments", "to", "the", "callbacks", ".", "If", "one", "of", "the", "callbacks", "returns", "a", "value", "other", "than", "None", "no", "further", "callbacks", "are", "invoked", "and", "the", "return", "value", "of", "the", "callback", "is", "returned", "to", "the", "caller", "of", "emit", "()", "." ]
python
valid
ungarj/mapchete
mapchete/formats/base.py
https://github.com/ungarj/mapchete/blob/d482918d0e66a5b414dff6aa7cc854e01fc60ee4/mapchete/formats/base.py#L318-L336
def output_is_valid(self, process_data): """ Check whether process output is allowed with output driver. Parameters ---------- process_data : raw process output Returns ------- True or False """ if self.METADATA["data_type"] == "raster": return ( is_numpy_or_masked_array(process_data) or is_numpy_or_masked_array_with_tags(process_data) ) elif self.METADATA["data_type"] == "vector": return is_feature_list(process_data)
[ "def", "output_is_valid", "(", "self", ",", "process_data", ")", ":", "if", "self", ".", "METADATA", "[", "\"data_type\"", "]", "==", "\"raster\"", ":", "return", "(", "is_numpy_or_masked_array", "(", "process_data", ")", "or", "is_numpy_or_masked_array_with_tags", "(", "process_data", ")", ")", "elif", "self", ".", "METADATA", "[", "\"data_type\"", "]", "==", "\"vector\"", ":", "return", "is_feature_list", "(", "process_data", ")" ]
Check whether process output is allowed with output driver. Parameters ---------- process_data : raw process output Returns ------- True or False
[ "Check", "whether", "process", "output", "is", "allowed", "with", "output", "driver", "." ]
python
valid
kajala/django-jutil
jutil/request.py
https://github.com/kajala/django-jutil/blob/2abd93ebad51042744eaeb1ee1074ed0eb55ad0c/jutil/request.py#L8-L36
def get_geo_ip(ip: str, exceptions: bool=False, timeout: int=10) -> dict: """ Returns geo IP info or empty dict if geoip query fails at http://ipstack.com. requires settings.IPSTACK_TOKEN set as valid access token to the API. Example replies: {'country_name': 'United States', 'country_code': 'US', 'region_code': 'TX', 'region_name': 'Texas', 'ip': '76.184.236.184', 'latitude': 33.1507, 'time_zone': 'America/Chicago', 'metro_code': 623, 'city': 'Frisco', 'longitude': -96.8236, 'zip_code': '75033'} {'latitude': 60.1641, 'country_name': 'Finland', 'zip_code': '02920', 'region_name': 'Uusimaa', 'city': 'Espoo', 'metro_code': 0, 'ip': '194.100.27.41', 'time_zone': 'Europe/Helsinki', 'country_code': 'FI', 'longitude': 24.7136, 'region_code': '18'} :param ip: str :param exceptions: if True raises Exception on failure :param timeout: timeout in seconds :return: dict """ import requests import traceback try: res = requests.get('http://api.ipstack.com/{}?access_key={}&format=1'.format(ip, settings.IPSTACK_TOKEN), timeout=timeout) if res.status_code != 200: if exceptions: raise Exception('api.ipstack.com HTTP {}'.format(res.status_code)) return {} return res.json() except Exception as e: msg = 'geoip({}) failed: {}'.format(ip, traceback.format_exc()) logger.error(msg) if exceptions: raise return {}
[ "def", "get_geo_ip", "(", "ip", ":", "str", ",", "exceptions", ":", "bool", "=", "False", ",", "timeout", ":", "int", "=", "10", ")", "->", "dict", ":", "import", "requests", "import", "traceback", "try", ":", "res", "=", "requests", ".", "get", "(", "'http://api.ipstack.com/{}?access_key={}&format=1'", ".", "format", "(", "ip", ",", "settings", ".", "IPSTACK_TOKEN", ")", ",", "timeout", "=", "timeout", ")", "if", "res", ".", "status_code", "!=", "200", ":", "if", "exceptions", ":", "raise", "Exception", "(", "'api.ipstack.com HTTP {}'", ".", "format", "(", "res", ".", "status_code", ")", ")", "return", "{", "}", "return", "res", ".", "json", "(", ")", "except", "Exception", "as", "e", ":", "msg", "=", "'geoip({}) failed: {}'", ".", "format", "(", "ip", ",", "traceback", ".", "format_exc", "(", ")", ")", "logger", ".", "error", "(", "msg", ")", "if", "exceptions", ":", "raise", "return", "{", "}" ]
Returns geo IP info or empty dict if geoip query fails at http://ipstack.com. requires settings.IPSTACK_TOKEN set as valid access token to the API. Example replies: {'country_name': 'United States', 'country_code': 'US', 'region_code': 'TX', 'region_name': 'Texas', 'ip': '76.184.236.184', 'latitude': 33.1507, 'time_zone': 'America/Chicago', 'metro_code': 623, 'city': 'Frisco', 'longitude': -96.8236, 'zip_code': '75033'} {'latitude': 60.1641, 'country_name': 'Finland', 'zip_code': '02920', 'region_name': 'Uusimaa', 'city': 'Espoo', 'metro_code': 0, 'ip': '194.100.27.41', 'time_zone': 'Europe/Helsinki', 'country_code': 'FI', 'longitude': 24.7136, 'region_code': '18'} :param ip: str :param exceptions: if True raises Exception on failure :param timeout: timeout in seconds :return: dict
[ "Returns", "geo", "IP", "info", "or", "empty", "dict", "if", "geoip", "query", "fails", "at", "http", ":", "//", "ipstack", ".", "com", ".", "requires", "settings", ".", "IPSTACK_TOKEN", "set", "as", "valid", "access", "token", "to", "the", "API", "." ]
python
train
numenta/nupic
src/nupic/data/generators/data_generator.py
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/data/generators/data_generator.py#L59-L67
def setSeed(self, seed): """Set the random seed and the numpy seed Parameters: -------------------------------------------------------------------- seed: random seed """ rand.seed(seed) np.random.seed(seed)
[ "def", "setSeed", "(", "self", ",", "seed", ")", ":", "rand", ".", "seed", "(", "seed", ")", "np", ".", "random", ".", "seed", "(", "seed", ")" ]
Set the random seed and the numpy seed Parameters: -------------------------------------------------------------------- seed: random seed
[ "Set", "the", "random", "seed", "and", "the", "numpy", "seed", "Parameters", ":", "--------------------------------------------------------------------", "seed", ":", "random", "seed" ]
python
valid
ensime/ensime-vim
ensime_shared/client.py
https://github.com/ensime/ensime-vim/blob/caa734e84f002b25446c615706283a74edd4ecfe/ensime_shared/client.py#L433-L436
def doc_uri(self, args, range=None): """Request doc of whatever at cursor.""" self.log.debug('doc_uri: in') self.send_at_position("DocUri", False, "point")
[ "def", "doc_uri", "(", "self", ",", "args", ",", "range", "=", "None", ")", ":", "self", ".", "log", ".", "debug", "(", "'doc_uri: in'", ")", "self", ".", "send_at_position", "(", "\"DocUri\"", ",", "False", ",", "\"point\"", ")" ]
Request doc of whatever at cursor.
[ "Request", "doc", "of", "whatever", "at", "cursor", "." ]
python
train
jtwhite79/pyemu
pyemu/utils/helpers.py
https://github.com/jtwhite79/pyemu/blob/c504d8e7a4097cec07655a6318d275739bd8148a/pyemu/utils/helpers.py#L1832-L1842
def setup_hfb_pars(self): """setup non-mult parameters for hfb (yuck!) """ if self.m.hfb6 is None: self.logger.lraise("couldn't find hfb pak") tpl_file,df = pyemu.gw_utils.write_hfb_template(self.m) self.in_files.append(os.path.split(tpl_file.replace(".tpl",""))[-1]) self.tpl_files.append(os.path.split(tpl_file)[-1]) self.par_dfs["hfb"] = df
[ "def", "setup_hfb_pars", "(", "self", ")", ":", "if", "self", ".", "m", ".", "hfb6", "is", "None", ":", "self", ".", "logger", ".", "lraise", "(", "\"couldn't find hfb pak\"", ")", "tpl_file", ",", "df", "=", "pyemu", ".", "gw_utils", ".", "write_hfb_template", "(", "self", ".", "m", ")", "self", ".", "in_files", ".", "append", "(", "os", ".", "path", ".", "split", "(", "tpl_file", ".", "replace", "(", "\".tpl\"", ",", "\"\"", ")", ")", "[", "-", "1", "]", ")", "self", ".", "tpl_files", ".", "append", "(", "os", ".", "path", ".", "split", "(", "tpl_file", ")", "[", "-", "1", "]", ")", "self", ".", "par_dfs", "[", "\"hfb\"", "]", "=", "df" ]
setup non-mult parameters for hfb (yuck!)
[ "setup", "non", "-", "mult", "parameters", "for", "hfb", "(", "yuck!", ")" ]
python
train
scivision/lowtran
lowtran/scenarios.py
https://github.com/scivision/lowtran/blob/9954d859e53437436103f9ab54a7e2602ecaa1b7/lowtran/scenarios.py#L50-L85
def horizrad(infn: Path, outfn: Path, c1: dict) -> xarray.Dataset: """ read CSV, simulate, write, plot """ if infn is not None: infn = Path(infn).expanduser() if infn.suffix == '.h5': TR = xarray.open_dataset(infn) return TR c1.update({'model': 0, # 0: user meterological data 'itype': 1, # 1: horizontal path 'iemsct': 1, # 1: radiance model 'im': 1, # 1: for horizontal path (see Lowtran manual p.42) 'ird1': 1, # 1: use card 2C2) }) # %% read csv file if not infn: # demo mode c1['p'] = [949., 959.] c1['t'] = [283.8, 285.] c1['wmol'] = [[93.96, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [93.96, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]] c1['time'] = [parse('2017-04-05T12'), parse('2017-04-05T18')] else: # read csv, normal case PTdata = read_csv(infn) c1['p'] = PTdata['p'] c1['t'] = PTdata['Ta'] c1['wmol'] = np.zeros((PTdata.shape[0], 12)) c1['wmol'][:, 0] = PTdata['RH'] c1['time'] = [parse(t) for t in PTdata['time']] # %% TR is 3-D array with axes: time, wavelength, and [transmission,radiance] TR = loopuserdef(c1) return TR
[ "def", "horizrad", "(", "infn", ":", "Path", ",", "outfn", ":", "Path", ",", "c1", ":", "dict", ")", "->", "xarray", ".", "Dataset", ":", "if", "infn", "is", "not", "None", ":", "infn", "=", "Path", "(", "infn", ")", ".", "expanduser", "(", ")", "if", "infn", ".", "suffix", "==", "'.h5'", ":", "TR", "=", "xarray", ".", "open_dataset", "(", "infn", ")", "return", "TR", "c1", ".", "update", "(", "{", "'model'", ":", "0", ",", "# 0: user meterological data", "'itype'", ":", "1", ",", "# 1: horizontal path", "'iemsct'", ":", "1", ",", "# 1: radiance model", "'im'", ":", "1", ",", "# 1: for horizontal path (see Lowtran manual p.42)", "'ird1'", ":", "1", ",", "# 1: use card 2C2)", "}", ")", "# %% read csv file", "if", "not", "infn", ":", "# demo mode", "c1", "[", "'p'", "]", "=", "[", "949.", ",", "959.", "]", "c1", "[", "'t'", "]", "=", "[", "283.8", ",", "285.", "]", "c1", "[", "'wmol'", "]", "=", "[", "[", "93.96", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", "]", ",", "[", "93.96", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", ",", "0.", "]", "]", "c1", "[", "'time'", "]", "=", "[", "parse", "(", "'2017-04-05T12'", ")", ",", "parse", "(", "'2017-04-05T18'", ")", "]", "else", ":", "# read csv, normal case", "PTdata", "=", "read_csv", "(", "infn", ")", "c1", "[", "'p'", "]", "=", "PTdata", "[", "'p'", "]", "c1", "[", "'t'", "]", "=", "PTdata", "[", "'Ta'", "]", "c1", "[", "'wmol'", "]", "=", "np", ".", "zeros", "(", "(", "PTdata", ".", "shape", "[", "0", "]", ",", "12", ")", ")", "c1", "[", "'wmol'", "]", "[", ":", ",", "0", "]", "=", "PTdata", "[", "'RH'", "]", "c1", "[", "'time'", "]", "=", "[", "parse", "(", "t", ")", "for", "t", "in", "PTdata", "[", "'time'", "]", "]", "# %% TR is 3-D array with axes: time, wavelength, and [transmission,radiance]", "TR", "=", "loopuserdef", "(", "c1", ")", "return", "TR" ]
read CSV, simulate, write, plot
[ "read", "CSV", "simulate", "write", "plot" ]
python
train
wavefrontHQ/python-client
wavefront_api_client/api/dashboard_api.py
https://github.com/wavefrontHQ/python-client/blob/b0f1046a8f68c2c7d69e395f7167241f224c738a/wavefront_api_client/api/dashboard_api.py#L1003-L1024
def get_dashboard_version(self, id, version, **kwargs): # noqa: E501 """Get a specific version of a specific dashboard # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_dashboard_version(id, version, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param int version: (required) :return: ResponseContainerDashboard If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_dashboard_version_with_http_info(id, version, **kwargs) # noqa: E501 else: (data) = self.get_dashboard_version_with_http_info(id, version, **kwargs) # noqa: E501 return data
[ "def", "get_dashboard_version", "(", "self", ",", "id", ",", "version", ",", "*", "*", "kwargs", ")", ":", "# noqa: E501", "kwargs", "[", "'_return_http_data_only'", "]", "=", "True", "if", "kwargs", ".", "get", "(", "'async_req'", ")", ":", "return", "self", ".", "get_dashboard_version_with_http_info", "(", "id", ",", "version", ",", "*", "*", "kwargs", ")", "# noqa: E501", "else", ":", "(", "data", ")", "=", "self", ".", "get_dashboard_version_with_http_info", "(", "id", ",", "version", ",", "*", "*", "kwargs", ")", "# noqa: E501", "return", "data" ]
Get a specific version of a specific dashboard # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_dashboard_version(id, version, async_req=True) >>> result = thread.get() :param async_req bool :param str id: (required) :param int version: (required) :return: ResponseContainerDashboard If the method is called asynchronously, returns the request thread.
[ "Get", "a", "specific", "version", "of", "a", "specific", "dashboard", "#", "noqa", ":", "E501" ]
python
train
luckydonald/pytgbot
pytgbot/api_types/receivable/updates.py
https://github.com/luckydonald/pytgbot/blob/67f4b5a1510d4583d40b5477e876b1ef0eb8971b/pytgbot/api_types/receivable/updates.py#L149-L176
def to_array(self): """ Serializes this Update to a dictionary. :return: dictionary representation of this object. :rtype: dict """ array = super(Update, self).to_array() array['update_id'] = int(self.update_id) # type int if self.message is not None: array['message'] = self.message.to_array() # type Message if self.edited_message is not None: array['edited_message'] = self.edited_message.to_array() # type Message if self.channel_post is not None: array['channel_post'] = self.channel_post.to_array() # type Message if self.edited_channel_post is not None: array['edited_channel_post'] = self.edited_channel_post.to_array() # type Message if self.inline_query is not None: array['inline_query'] = self.inline_query.to_array() # type InlineQuery if self.chosen_inline_result is not None: array['chosen_inline_result'] = self.chosen_inline_result.to_array() # type ChosenInlineResult if self.callback_query is not None: array['callback_query'] = self.callback_query.to_array() # type CallbackQuery if self.shipping_query is not None: array['shipping_query'] = self.shipping_query.to_array() # type ShippingQuery if self.pre_checkout_query is not None: array['pre_checkout_query'] = self.pre_checkout_query.to_array() # type PreCheckoutQuery return array
[ "def", "to_array", "(", "self", ")", ":", "array", "=", "super", "(", "Update", ",", "self", ")", ".", "to_array", "(", ")", "array", "[", "'update_id'", "]", "=", "int", "(", "self", ".", "update_id", ")", "# type int", "if", "self", ".", "message", "is", "not", "None", ":", "array", "[", "'message'", "]", "=", "self", ".", "message", ".", "to_array", "(", ")", "# type Message", "if", "self", ".", "edited_message", "is", "not", "None", ":", "array", "[", "'edited_message'", "]", "=", "self", ".", "edited_message", ".", "to_array", "(", ")", "# type Message", "if", "self", ".", "channel_post", "is", "not", "None", ":", "array", "[", "'channel_post'", "]", "=", "self", ".", "channel_post", ".", "to_array", "(", ")", "# type Message", "if", "self", ".", "edited_channel_post", "is", "not", "None", ":", "array", "[", "'edited_channel_post'", "]", "=", "self", ".", "edited_channel_post", ".", "to_array", "(", ")", "# type Message", "if", "self", ".", "inline_query", "is", "not", "None", ":", "array", "[", "'inline_query'", "]", "=", "self", ".", "inline_query", ".", "to_array", "(", ")", "# type InlineQuery", "if", "self", ".", "chosen_inline_result", "is", "not", "None", ":", "array", "[", "'chosen_inline_result'", "]", "=", "self", ".", "chosen_inline_result", ".", "to_array", "(", ")", "# type ChosenInlineResult", "if", "self", ".", "callback_query", "is", "not", "None", ":", "array", "[", "'callback_query'", "]", "=", "self", ".", "callback_query", ".", "to_array", "(", ")", "# type CallbackQuery", "if", "self", ".", "shipping_query", "is", "not", "None", ":", "array", "[", "'shipping_query'", "]", "=", "self", ".", "shipping_query", ".", "to_array", "(", ")", "# type ShippingQuery", "if", "self", ".", "pre_checkout_query", "is", "not", "None", ":", "array", "[", "'pre_checkout_query'", "]", "=", "self", ".", "pre_checkout_query", ".", "to_array", "(", ")", "# type PreCheckoutQuery", "return", "array" ]
Serializes this Update to a dictionary. :return: dictionary representation of this object. :rtype: dict
[ "Serializes", "this", "Update", "to", "a", "dictionary", "." ]
python
train
arne-cl/discoursegraphs
src/discoursegraphs/readwrite/mmax2.py
https://github.com/arne-cl/discoursegraphs/blob/842f0068a3190be2c75905754521b176b25a54fb/src/discoursegraphs/readwrite/mmax2.py#L270-L338
def add_annotation_layer(self, annotation_file, layer_name): """ adds all markables from the given annotation layer to the discourse graph. """ assert os.path.isfile(annotation_file), \ "Annotation file doesn't exist: {}".format(annotation_file) tree = etree.parse(annotation_file) root = tree.getroot() default_layers = {self.ns, self.ns+':markable', self.ns+':'+layer_name} # avoids eml.org namespace handling for markable in root.iterchildren(): markable_node_id = markable.attrib['id'] markable_attribs = add_prefix(markable.attrib, self.ns+':') self.add_node(markable_node_id, layers=default_layers, attr_dict=markable_attribs, label=markable_node_id+':'+layer_name) for target_node_id in spanstring2tokens(self, markable.attrib['span']): # manually add to_node if it's not in the graph, yet # cf. issue #39 if target_node_id not in self: self.add_node(target_node_id, # adding 'mmax:layer_name' here could be # misleading (e.g. each token would be part # of the 'mmax:sentence' layer layers={self.ns, self.ns+':markable'}, label=target_node_id) self.add_edge(markable_node_id, target_node_id, layers=default_layers, edge_type=EdgeTypes.spanning_relation, label=self.ns+':'+layer_name) # this is a workaround for Chiarcos-style MMAX files if has_antecedent(markable): antecedent_pointer = markable.attrib['anaphor_antecedent'] # mmax2 supports weird double antecedents, # e.g. "markable_1000131;markable_1000132", cf. Issue #40 # # handling these double antecendents increases the number of # chains, cf. commit edc28abdc4fd36065e8bbf5900eeb4d1326db153 for antecedent in antecedent_pointer.split(';'): ante_split = antecedent.split(":") if len(ante_split) == 2: # mark group:markable_n or secmark:markable_n as such edge_label = '{}:antecedent'.format(ante_split[0]) else: edge_label = ':antecedent' # handles both 'markable_n' and 'layer:markable_n' antecedent_node_id = ante_split[-1] if len(ante_split) == 2: antecedent_layer = ante_split[0] default_layers.add('{0}:{1}'.format(self.ns, antecedent_layer)) # manually add antecedent node if it's not yet in the graph # cf. issue #39 if antecedent_node_id not in self: self.add_node(antecedent_node_id, layers=default_layers) self.add_edge(markable_node_id, antecedent_node_id, layers=default_layers, edge_type=EdgeTypes.pointing_relation, label=self.ns+edge_label)
[ "def", "add_annotation_layer", "(", "self", ",", "annotation_file", ",", "layer_name", ")", ":", "assert", "os", ".", "path", ".", "isfile", "(", "annotation_file", ")", ",", "\"Annotation file doesn't exist: {}\"", ".", "format", "(", "annotation_file", ")", "tree", "=", "etree", ".", "parse", "(", "annotation_file", ")", "root", "=", "tree", ".", "getroot", "(", ")", "default_layers", "=", "{", "self", ".", "ns", ",", "self", ".", "ns", "+", "':markable'", ",", "self", ".", "ns", "+", "':'", "+", "layer_name", "}", "# avoids eml.org namespace handling", "for", "markable", "in", "root", ".", "iterchildren", "(", ")", ":", "markable_node_id", "=", "markable", ".", "attrib", "[", "'id'", "]", "markable_attribs", "=", "add_prefix", "(", "markable", ".", "attrib", ",", "self", ".", "ns", "+", "':'", ")", "self", ".", "add_node", "(", "markable_node_id", ",", "layers", "=", "default_layers", ",", "attr_dict", "=", "markable_attribs", ",", "label", "=", "markable_node_id", "+", "':'", "+", "layer_name", ")", "for", "target_node_id", "in", "spanstring2tokens", "(", "self", ",", "markable", ".", "attrib", "[", "'span'", "]", ")", ":", "# manually add to_node if it's not in the graph, yet", "# cf. issue #39", "if", "target_node_id", "not", "in", "self", ":", "self", ".", "add_node", "(", "target_node_id", ",", "# adding 'mmax:layer_name' here could be", "# misleading (e.g. each token would be part", "# of the 'mmax:sentence' layer", "layers", "=", "{", "self", ".", "ns", ",", "self", ".", "ns", "+", "':markable'", "}", ",", "label", "=", "target_node_id", ")", "self", ".", "add_edge", "(", "markable_node_id", ",", "target_node_id", ",", "layers", "=", "default_layers", ",", "edge_type", "=", "EdgeTypes", ".", "spanning_relation", ",", "label", "=", "self", ".", "ns", "+", "':'", "+", "layer_name", ")", "# this is a workaround for Chiarcos-style MMAX files", "if", "has_antecedent", "(", "markable", ")", ":", "antecedent_pointer", "=", "markable", ".", "attrib", "[", "'anaphor_antecedent'", "]", "# mmax2 supports weird double antecedents,", "# e.g. \"markable_1000131;markable_1000132\", cf. Issue #40", "#", "# handling these double antecendents increases the number of", "# chains, cf. commit edc28abdc4fd36065e8bbf5900eeb4d1326db153", "for", "antecedent", "in", "antecedent_pointer", ".", "split", "(", "';'", ")", ":", "ante_split", "=", "antecedent", ".", "split", "(", "\":\"", ")", "if", "len", "(", "ante_split", ")", "==", "2", ":", "# mark group:markable_n or secmark:markable_n as such", "edge_label", "=", "'{}:antecedent'", ".", "format", "(", "ante_split", "[", "0", "]", ")", "else", ":", "edge_label", "=", "':antecedent'", "# handles both 'markable_n' and 'layer:markable_n'", "antecedent_node_id", "=", "ante_split", "[", "-", "1", "]", "if", "len", "(", "ante_split", ")", "==", "2", ":", "antecedent_layer", "=", "ante_split", "[", "0", "]", "default_layers", ".", "add", "(", "'{0}:{1}'", ".", "format", "(", "self", ".", "ns", ",", "antecedent_layer", ")", ")", "# manually add antecedent node if it's not yet in the graph", "# cf. issue #39", "if", "antecedent_node_id", "not", "in", "self", ":", "self", ".", "add_node", "(", "antecedent_node_id", ",", "layers", "=", "default_layers", ")", "self", ".", "add_edge", "(", "markable_node_id", ",", "antecedent_node_id", ",", "layers", "=", "default_layers", ",", "edge_type", "=", "EdgeTypes", ".", "pointing_relation", ",", "label", "=", "self", ".", "ns", "+", "edge_label", ")" ]
adds all markables from the given annotation layer to the discourse graph.
[ "adds", "all", "markables", "from", "the", "given", "annotation", "layer", "to", "the", "discourse", "graph", "." ]
python
train
tensorflow/tensor2tensor
tensor2tensor/trax/rlax/ppo.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/trax/rlax/ppo.py#L140-L152
def log_params(params, name="params"): """Dumps the params with `logging.error`.""" for i, param in enumerate(params): if not param: # Empty tuple. continue if not isinstance(param, (list, tuple)): logging.error( "%s[%d] : (%s) = [%s]", name, i, param.shape, onp.array(param)) else: for j, p in enumerate(param): logging.error( "\t%s[%d, %d] = [%s]", name, i, j, onp.array(p))
[ "def", "log_params", "(", "params", ",", "name", "=", "\"params\"", ")", ":", "for", "i", ",", "param", "in", "enumerate", "(", "params", ")", ":", "if", "not", "param", ":", "# Empty tuple.", "continue", "if", "not", "isinstance", "(", "param", ",", "(", "list", ",", "tuple", ")", ")", ":", "logging", ".", "error", "(", "\"%s[%d] : (%s) = [%s]\"", ",", "name", ",", "i", ",", "param", ".", "shape", ",", "onp", ".", "array", "(", "param", ")", ")", "else", ":", "for", "j", ",", "p", "in", "enumerate", "(", "param", ")", ":", "logging", ".", "error", "(", "\"\\t%s[%d, %d] = [%s]\"", ",", "name", ",", "i", ",", "j", ",", "onp", ".", "array", "(", "p", ")", ")" ]
Dumps the params with `logging.error`.
[ "Dumps", "the", "params", "with", "logging", ".", "error", "." ]
python
train
brocade/pynos
pynos/versions/ver_6/ver_6_0_1/yang/brocade_fcoe_ext.py
https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_fcoe_ext.py#L513-L527
def fcoe_get_interface_output_fcoe_intf_list_fcoe_intf_time_since_last_change(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") fcoe_get_interface = ET.Element("fcoe_get_interface") config = fcoe_get_interface output = ET.SubElement(fcoe_get_interface, "output") fcoe_intf_list = ET.SubElement(output, "fcoe-intf-list") fcoe_intf_fcoe_port_id_key = ET.SubElement(fcoe_intf_list, "fcoe-intf-fcoe-port-id") fcoe_intf_fcoe_port_id_key.text = kwargs.pop('fcoe_intf_fcoe_port_id') fcoe_intf_time_since_last_change = ET.SubElement(fcoe_intf_list, "fcoe-intf-time-since-last-change") fcoe_intf_time_since_last_change.text = kwargs.pop('fcoe_intf_time_since_last_change') callback = kwargs.pop('callback', self._callback) return callback(config)
[ "def", "fcoe_get_interface_output_fcoe_intf_list_fcoe_intf_time_since_last_change", "(", "self", ",", "*", "*", "kwargs", ")", ":", "config", "=", "ET", ".", "Element", "(", "\"config\"", ")", "fcoe_get_interface", "=", "ET", ".", "Element", "(", "\"fcoe_get_interface\"", ")", "config", "=", "fcoe_get_interface", "output", "=", "ET", ".", "SubElement", "(", "fcoe_get_interface", ",", "\"output\"", ")", "fcoe_intf_list", "=", "ET", ".", "SubElement", "(", "output", ",", "\"fcoe-intf-list\"", ")", "fcoe_intf_fcoe_port_id_key", "=", "ET", ".", "SubElement", "(", "fcoe_intf_list", ",", "\"fcoe-intf-fcoe-port-id\"", ")", "fcoe_intf_fcoe_port_id_key", ".", "text", "=", "kwargs", ".", "pop", "(", "'fcoe_intf_fcoe_port_id'", ")", "fcoe_intf_time_since_last_change", "=", "ET", ".", "SubElement", "(", "fcoe_intf_list", ",", "\"fcoe-intf-time-since-last-change\"", ")", "fcoe_intf_time_since_last_change", ".", "text", "=", "kwargs", ".", "pop", "(", "'fcoe_intf_time_since_last_change'", ")", "callback", "=", "kwargs", ".", "pop", "(", "'callback'", ",", "self", ".", "_callback", ")", "return", "callback", "(", "config", ")" ]
Auto Generated Code
[ "Auto", "Generated", "Code" ]
python
train
base4sistemas/satcomum
satcomum/br.py
https://github.com/base4sistemas/satcomum/blob/b42bec06cb0fb0ad2f6b1a2644a1e8fc8403f2c3/satcomum/br.py#L252-L271
def is_cnpjcpf(numero, estrito=False): """Uma versão conveniente para usar em testes condicionais. Apenas retorna verdadeiro ou falso, conforme o argumento é validado. :param bool estrito: Padrão ``False``, indica se apenas os dígitos do número deverão ser considerados. Se verdadeiro, potenciais caracteres que formam a máscara serão removidos antes da validação ser realizada. """ _numero = digitos(numero) if not estrito else numero try: cnpj(_numero) return True except NumeroCNPJError: try: cpf(_numero) return True except NumeroCPFError: pass return False
[ "def", "is_cnpjcpf", "(", "numero", ",", "estrito", "=", "False", ")", ":", "_numero", "=", "digitos", "(", "numero", ")", "if", "not", "estrito", "else", "numero", "try", ":", "cnpj", "(", "_numero", ")", "return", "True", "except", "NumeroCNPJError", ":", "try", ":", "cpf", "(", "_numero", ")", "return", "True", "except", "NumeroCPFError", ":", "pass", "return", "False" ]
Uma versão conveniente para usar em testes condicionais. Apenas retorna verdadeiro ou falso, conforme o argumento é validado. :param bool estrito: Padrão ``False``, indica se apenas os dígitos do número deverão ser considerados. Se verdadeiro, potenciais caracteres que formam a máscara serão removidos antes da validação ser realizada.
[ "Uma", "versão", "conveniente", "para", "usar", "em", "testes", "condicionais", ".", "Apenas", "retorna", "verdadeiro", "ou", "falso", "conforme", "o", "argumento", "é", "validado", "." ]
python
train
hubo1016/vlcp
vlcp/event/future.py
https://github.com/hubo1016/vlcp/blob/239055229ec93a99cc7e15208075724ccf543bd1/vlcp/event/future.py#L89-L98
def set_result(self, result): ''' Set the result to Future object, wake up all the waiters :param result: result to set ''' if hasattr(self, '_result'): raise ValueError('Cannot set the result twice') self._result = result self._scheduler.emergesend(FutureEvent(self, result = result))
[ "def", "set_result", "(", "self", ",", "result", ")", ":", "if", "hasattr", "(", "self", ",", "'_result'", ")", ":", "raise", "ValueError", "(", "'Cannot set the result twice'", ")", "self", ".", "_result", "=", "result", "self", ".", "_scheduler", ".", "emergesend", "(", "FutureEvent", "(", "self", ",", "result", "=", "result", ")", ")" ]
Set the result to Future object, wake up all the waiters :param result: result to set
[ "Set", "the", "result", "to", "Future", "object", "wake", "up", "all", "the", "waiters", ":", "param", "result", ":", "result", "to", "set" ]
python
train
tensorflow/tensor2tensor
tensor2tensor/layers/common_layers.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_layers.py#L3432-L3445
def should_generate_summaries(): """Is this an appropriate context to generate summaries. Returns: a boolean """ name_scope = tf.contrib.framework.get_name_scope() if name_scope and "while/" in name_scope: # Summaries don't work well within tf.while_loop() return False if tf.get_variable_scope().reuse: # Avoid generating separate summaries for different data shards return False return True
[ "def", "should_generate_summaries", "(", ")", ":", "name_scope", "=", "tf", ".", "contrib", ".", "framework", ".", "get_name_scope", "(", ")", "if", "name_scope", "and", "\"while/\"", "in", "name_scope", ":", "# Summaries don't work well within tf.while_loop()", "return", "False", "if", "tf", ".", "get_variable_scope", "(", ")", ".", "reuse", ":", "# Avoid generating separate summaries for different data shards", "return", "False", "return", "True" ]
Is this an appropriate context to generate summaries. Returns: a boolean
[ "Is", "this", "an", "appropriate", "context", "to", "generate", "summaries", "." ]
python
train
scheibler/khard
khard/actions.py
https://github.com/scheibler/khard/blob/0f69430c2680f1ff5f073a977a3c5b753b96cc17/khard/actions.py#L30-L43
def get_action(cls, alias): """Find the name of the action for the supplied alias. If no action is asociated with the given alias, None is returned. :param alias: the alias to look up :type alias: str :rturns: the name of the corresponding action or None :rtype: str or NoneType """ for action, alias_list in cls.action_map.items(): if alias in alias_list: return action return None
[ "def", "get_action", "(", "cls", ",", "alias", ")", ":", "for", "action", ",", "alias_list", "in", "cls", ".", "action_map", ".", "items", "(", ")", ":", "if", "alias", "in", "alias_list", ":", "return", "action", "return", "None" ]
Find the name of the action for the supplied alias. If no action is asociated with the given alias, None is returned. :param alias: the alias to look up :type alias: str :rturns: the name of the corresponding action or None :rtype: str or NoneType
[ "Find", "the", "name", "of", "the", "action", "for", "the", "supplied", "alias", ".", "If", "no", "action", "is", "asociated", "with", "the", "given", "alias", "None", "is", "returned", "." ]
python
test
robinandeer/puzzle
puzzle/plugins/gemini/mixins/case.py
https://github.com/robinandeer/puzzle/blob/9476f05b416d3a5135d25492cb31411fdf831c58/puzzle/plugins/gemini/mixins/case.py#L48-L68
def case(self, case_id=None): """Return a Case object If no case_id is given return one case Args: case_id (str): A case id Returns: case(Case): A Case object """ cases = self.cases() if case_id: for case in cases: if case.case_id == case_id: return case else: if cases: return cases[0] return None
[ "def", "case", "(", "self", ",", "case_id", "=", "None", ")", ":", "cases", "=", "self", ".", "cases", "(", ")", "if", "case_id", ":", "for", "case", "in", "cases", ":", "if", "case", ".", "case_id", "==", "case_id", ":", "return", "case", "else", ":", "if", "cases", ":", "return", "cases", "[", "0", "]", "return", "None" ]
Return a Case object If no case_id is given return one case Args: case_id (str): A case id Returns: case(Case): A Case object
[ "Return", "a", "Case", "object" ]
python
train
TUNE-Archive/freight_forwarder
freight_forwarder/container/config.py
https://github.com/TUNE-Archive/freight_forwarder/blob/6ea4a49f474ec04abb8bb81b175c774a16b5312f/freight_forwarder/container/config.py#L329-L340
def hostname(self, hostname): """ hostname setter """ if not isinstance(hostname, six.string_types): raise TypeError("hostname must be a string. {0} was passed.".format(type(hostname))) # if a host name is passed and its not valid raise else set hostname empty strings are the docker default. if hostname and not is_valid_hostname(hostname): raise ValueError("{0} isn't a valid hostname").format(hostname) else: self._hostname = hostname
[ "def", "hostname", "(", "self", ",", "hostname", ")", ":", "if", "not", "isinstance", "(", "hostname", ",", "six", ".", "string_types", ")", ":", "raise", "TypeError", "(", "\"hostname must be a string. {0} was passed.\"", ".", "format", "(", "type", "(", "hostname", ")", ")", ")", "# if a host name is passed and its not valid raise else set hostname empty strings are the docker default.", "if", "hostname", "and", "not", "is_valid_hostname", "(", "hostname", ")", ":", "raise", "ValueError", "(", "\"{0} isn't a valid hostname\"", ")", ".", "format", "(", "hostname", ")", "else", ":", "self", ".", "_hostname", "=", "hostname" ]
hostname setter
[ "hostname", "setter" ]
python
train
cloud-custodian/cloud-custodian
tools/c7n_traildb/c7n_traildb/trailes.py
https://github.com/cloud-custodian/cloud-custodian/blob/52ef732eb3d7bc939d1579faf519314814695c08/tools/c7n_traildb/c7n_traildb/trailes.py#L105-L114
def fetch_events(cursor, config, account_name): """Generator that returns the events""" query = config['indexer'].get('query', 'select * from events where user_agent glob \'*CloudCustodian*\'') for event in cursor.execute(query): event['account'] = account_name event['_index'] = config['indexer']['idx_name'] event['_type'] = config['indexer'].get('idx_type', 'traildb') yield event
[ "def", "fetch_events", "(", "cursor", ",", "config", ",", "account_name", ")", ":", "query", "=", "config", "[", "'indexer'", "]", ".", "get", "(", "'query'", ",", "'select * from events where user_agent glob \\'*CloudCustodian*\\''", ")", "for", "event", "in", "cursor", ".", "execute", "(", "query", ")", ":", "event", "[", "'account'", "]", "=", "account_name", "event", "[", "'_index'", "]", "=", "config", "[", "'indexer'", "]", "[", "'idx_name'", "]", "event", "[", "'_type'", "]", "=", "config", "[", "'indexer'", "]", ".", "get", "(", "'idx_type'", ",", "'traildb'", ")", "yield", "event" ]
Generator that returns the events
[ "Generator", "that", "returns", "the", "events" ]
python
train
watson-developer-cloud/python-sdk
ibm_watson/compare_comply_v1.py
https://github.com/watson-developer-cloud/python-sdk/blob/4c2c9df4466fcde88975da9ecd834e6ba95eb353/ibm_watson/compare_comply_v1.py#L1225-L1276
def _from_dict(cls, _dict): """Initialize a BodyCells object from a json dictionary.""" args = {} if 'cell_id' in _dict: args['cell_id'] = _dict.get('cell_id') if 'location' in _dict: args['location'] = Location._from_dict(_dict.get('location')) if 'text' in _dict: args['text'] = _dict.get('text') if 'row_index_begin' in _dict: args['row_index_begin'] = _dict.get('row_index_begin') if 'row_index_end' in _dict: args['row_index_end'] = _dict.get('row_index_end') if 'column_index_begin' in _dict: args['column_index_begin'] = _dict.get('column_index_begin') if 'column_index_end' in _dict: args['column_index_end'] = _dict.get('column_index_end') if 'row_header_ids' in _dict: args['row_header_ids'] = [ RowHeaderIds._from_dict(x) for x in (_dict.get('row_header_ids')) ] if 'row_header_texts' in _dict: args['row_header_texts'] = [ RowHeaderTexts._from_dict(x) for x in (_dict.get('row_header_texts')) ] if 'row_header_texts_normalized' in _dict: args['row_header_texts_normalized'] = [ RowHeaderTextsNormalized._from_dict(x) for x in (_dict.get('row_header_texts_normalized')) ] if 'column_header_ids' in _dict: args['column_header_ids'] = [ ColumnHeaderIds._from_dict(x) for x in (_dict.get('column_header_ids')) ] if 'column_header_texts' in _dict: args['column_header_texts'] = [ ColumnHeaderTexts._from_dict(x) for x in (_dict.get('column_header_texts')) ] if 'column_header_texts_normalized' in _dict: args['column_header_texts_normalized'] = [ ColumnHeaderTextsNormalized._from_dict(x) for x in (_dict.get('column_header_texts_normalized')) ] if 'attributes' in _dict: args['attributes'] = [ Attribute._from_dict(x) for x in (_dict.get('attributes')) ] return cls(**args)
[ "def", "_from_dict", "(", "cls", ",", "_dict", ")", ":", "args", "=", "{", "}", "if", "'cell_id'", "in", "_dict", ":", "args", "[", "'cell_id'", "]", "=", "_dict", ".", "get", "(", "'cell_id'", ")", "if", "'location'", "in", "_dict", ":", "args", "[", "'location'", "]", "=", "Location", ".", "_from_dict", "(", "_dict", ".", "get", "(", "'location'", ")", ")", "if", "'text'", "in", "_dict", ":", "args", "[", "'text'", "]", "=", "_dict", ".", "get", "(", "'text'", ")", "if", "'row_index_begin'", "in", "_dict", ":", "args", "[", "'row_index_begin'", "]", "=", "_dict", ".", "get", "(", "'row_index_begin'", ")", "if", "'row_index_end'", "in", "_dict", ":", "args", "[", "'row_index_end'", "]", "=", "_dict", ".", "get", "(", "'row_index_end'", ")", "if", "'column_index_begin'", "in", "_dict", ":", "args", "[", "'column_index_begin'", "]", "=", "_dict", ".", "get", "(", "'column_index_begin'", ")", "if", "'column_index_end'", "in", "_dict", ":", "args", "[", "'column_index_end'", "]", "=", "_dict", ".", "get", "(", "'column_index_end'", ")", "if", "'row_header_ids'", "in", "_dict", ":", "args", "[", "'row_header_ids'", "]", "=", "[", "RowHeaderIds", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'row_header_ids'", ")", ")", "]", "if", "'row_header_texts'", "in", "_dict", ":", "args", "[", "'row_header_texts'", "]", "=", "[", "RowHeaderTexts", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'row_header_texts'", ")", ")", "]", "if", "'row_header_texts_normalized'", "in", "_dict", ":", "args", "[", "'row_header_texts_normalized'", "]", "=", "[", "RowHeaderTextsNormalized", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'row_header_texts_normalized'", ")", ")", "]", "if", "'column_header_ids'", "in", "_dict", ":", "args", "[", "'column_header_ids'", "]", "=", "[", "ColumnHeaderIds", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'column_header_ids'", ")", ")", "]", "if", "'column_header_texts'", "in", "_dict", ":", "args", "[", "'column_header_texts'", "]", "=", "[", "ColumnHeaderTexts", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'column_header_texts'", ")", ")", "]", "if", "'column_header_texts_normalized'", "in", "_dict", ":", "args", "[", "'column_header_texts_normalized'", "]", "=", "[", "ColumnHeaderTextsNormalized", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'column_header_texts_normalized'", ")", ")", "]", "if", "'attributes'", "in", "_dict", ":", "args", "[", "'attributes'", "]", "=", "[", "Attribute", ".", "_from_dict", "(", "x", ")", "for", "x", "in", "(", "_dict", ".", "get", "(", "'attributes'", ")", ")", "]", "return", "cls", "(", "*", "*", "args", ")" ]
Initialize a BodyCells object from a json dictionary.
[ "Initialize", "a", "BodyCells", "object", "from", "a", "json", "dictionary", "." ]
python
train
tensorflow/tensor2tensor
tensor2tensor/models/research/universal_transformer_util.py
https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/models/research/universal_transformer_util.py#L927-L1037
def universal_transformer_with_lstm_as_transition_function( layer_inputs, step, hparams, ffn_unit, attention_unit, pad_remover=None): """Universal Transformer which uses a lstm as transition function. It's kind of like having a lstm, filliped vertically next to the Universal Transformer that controls the flow of the information in depth, over different steps of the Universal Transformer. Args: layer_inputs: - state: state - inputs: the original embedded inputs (= inputs to the first step) - memory: memory used in lstm. step: indicates number of steps taken so far hparams: model hyper-parameters. ffn_unit: feed-forward unit attention_unit: multi-head attention unit pad_remover: to mask out padding in convolutional layers (efficiency). Returns: layer_output: new_state: new state inputs: the original embedded inputs (= inputs to the first step) memory: contains information of state from all the previous steps. """ state, unused_inputs, memory = tf.unstack( layer_inputs, num=None, axis=0, name="unstack") # NOTE: # state (ut_state): output of the lstm in the previous step # inputs (ut_input): original input --> we don't use it here # memory: lstm memory # Multi_head_attention: assert not hparams.add_step_timing_signal # Let lstm count for us! mh_attention_input = step_preprocess(state, step, hparams) transition_function_input = attention_unit(mh_attention_input) # Transition Function: if hparams.add_ffn_unit_to_the_transition_function: transition_function_input = ffn_unit(transition_function_input) transition_function_input = common_layers.layer_preprocess( transition_function_input, hparams) with tf.variable_scope("lstm"): # lstm input gate: i_t = sigmoid(W_i.x_t + U_i.h_{t-1}) transition_function_input_gate = _ffn_layer_multi_inputs( [transition_function_input, state], hparams, name="input", bias_initializer=tf.zeros_initializer(), activation=tf.sigmoid, pad_remover=pad_remover, preprocess=False, postprocess=False) tf.contrib.summary.scalar("lstm_input_gate", tf.reduce_mean(transition_function_input_gate)) # lstm forget gate: f_t = sigmoid(W_f.x_t + U_f.h_{t-1}) transition_function_forget_gate = _ffn_layer_multi_inputs( [transition_function_input, state], hparams, name="forget", bias_initializer=tf.zeros_initializer(), activation=None, pad_remover=pad_remover, preprocess=False, postprocess=False) forget_bias_tensor = tf.constant(hparams.lstm_forget_bias) transition_function_forget_gate = tf.sigmoid( transition_function_forget_gate + forget_bias_tensor) tf.contrib.summary.scalar("lstm_forget_gate", tf.reduce_mean(transition_function_forget_gate)) # lstm output gate: o_t = sigmoid(W_o.x_t + U_o.h_{t-1}) transition_function_output_gate = _ffn_layer_multi_inputs( [transition_function_input, state], hparams, name="output", bias_initializer=tf.zeros_initializer(), activation=tf.sigmoid, pad_remover=pad_remover, preprocess=False, postprocess=False) tf.contrib.summary.scalar("lstm_output_gate", tf.reduce_mean(transition_function_output_gate)) # lstm input modulation transition_function_input_modulation = _ffn_layer_multi_inputs( [transition_function_input, state], hparams, name="input_modulation", bias_initializer=tf.zeros_initializer(), activation=tf.tanh, pad_remover=pad_remover, preprocess=False, postprocess=False) transition_function_memory = ( memory * transition_function_forget_gate + transition_function_input_gate * transition_function_input_modulation) transition_function_output = ( tf.tanh(transition_function_memory) * transition_function_output_gate) transition_function_output = common_layers.layer_preprocess( transition_function_output, hparams) return transition_function_output, unused_inputs, transition_function_memory
[ "def", "universal_transformer_with_lstm_as_transition_function", "(", "layer_inputs", ",", "step", ",", "hparams", ",", "ffn_unit", ",", "attention_unit", ",", "pad_remover", "=", "None", ")", ":", "state", ",", "unused_inputs", ",", "memory", "=", "tf", ".", "unstack", "(", "layer_inputs", ",", "num", "=", "None", ",", "axis", "=", "0", ",", "name", "=", "\"unstack\"", ")", "# NOTE:", "# state (ut_state): output of the lstm in the previous step", "# inputs (ut_input): original input --> we don't use it here", "# memory: lstm memory", "# Multi_head_attention:", "assert", "not", "hparams", ".", "add_step_timing_signal", "# Let lstm count for us!", "mh_attention_input", "=", "step_preprocess", "(", "state", ",", "step", ",", "hparams", ")", "transition_function_input", "=", "attention_unit", "(", "mh_attention_input", ")", "# Transition Function:", "if", "hparams", ".", "add_ffn_unit_to_the_transition_function", ":", "transition_function_input", "=", "ffn_unit", "(", "transition_function_input", ")", "transition_function_input", "=", "common_layers", ".", "layer_preprocess", "(", "transition_function_input", ",", "hparams", ")", "with", "tf", ".", "variable_scope", "(", "\"lstm\"", ")", ":", "# lstm input gate: i_t = sigmoid(W_i.x_t + U_i.h_{t-1})", "transition_function_input_gate", "=", "_ffn_layer_multi_inputs", "(", "[", "transition_function_input", ",", "state", "]", ",", "hparams", ",", "name", "=", "\"input\"", ",", "bias_initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ",", "activation", "=", "tf", ".", "sigmoid", ",", "pad_remover", "=", "pad_remover", ",", "preprocess", "=", "False", ",", "postprocess", "=", "False", ")", "tf", ".", "contrib", ".", "summary", ".", "scalar", "(", "\"lstm_input_gate\"", ",", "tf", ".", "reduce_mean", "(", "transition_function_input_gate", ")", ")", "# lstm forget gate: f_t = sigmoid(W_f.x_t + U_f.h_{t-1})", "transition_function_forget_gate", "=", "_ffn_layer_multi_inputs", "(", "[", "transition_function_input", ",", "state", "]", ",", "hparams", ",", "name", "=", "\"forget\"", ",", "bias_initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ",", "activation", "=", "None", ",", "pad_remover", "=", "pad_remover", ",", "preprocess", "=", "False", ",", "postprocess", "=", "False", ")", "forget_bias_tensor", "=", "tf", ".", "constant", "(", "hparams", ".", "lstm_forget_bias", ")", "transition_function_forget_gate", "=", "tf", ".", "sigmoid", "(", "transition_function_forget_gate", "+", "forget_bias_tensor", ")", "tf", ".", "contrib", ".", "summary", ".", "scalar", "(", "\"lstm_forget_gate\"", ",", "tf", ".", "reduce_mean", "(", "transition_function_forget_gate", ")", ")", "# lstm output gate: o_t = sigmoid(W_o.x_t + U_o.h_{t-1})", "transition_function_output_gate", "=", "_ffn_layer_multi_inputs", "(", "[", "transition_function_input", ",", "state", "]", ",", "hparams", ",", "name", "=", "\"output\"", ",", "bias_initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ",", "activation", "=", "tf", ".", "sigmoid", ",", "pad_remover", "=", "pad_remover", ",", "preprocess", "=", "False", ",", "postprocess", "=", "False", ")", "tf", ".", "contrib", ".", "summary", ".", "scalar", "(", "\"lstm_output_gate\"", ",", "tf", ".", "reduce_mean", "(", "transition_function_output_gate", ")", ")", "# lstm input modulation", "transition_function_input_modulation", "=", "_ffn_layer_multi_inputs", "(", "[", "transition_function_input", ",", "state", "]", ",", "hparams", ",", "name", "=", "\"input_modulation\"", ",", "bias_initializer", "=", "tf", ".", "zeros_initializer", "(", ")", ",", "activation", "=", "tf", ".", "tanh", ",", "pad_remover", "=", "pad_remover", ",", "preprocess", "=", "False", ",", "postprocess", "=", "False", ")", "transition_function_memory", "=", "(", "memory", "*", "transition_function_forget_gate", "+", "transition_function_input_gate", "*", "transition_function_input_modulation", ")", "transition_function_output", "=", "(", "tf", ".", "tanh", "(", "transition_function_memory", ")", "*", "transition_function_output_gate", ")", "transition_function_output", "=", "common_layers", ".", "layer_preprocess", "(", "transition_function_output", ",", "hparams", ")", "return", "transition_function_output", ",", "unused_inputs", ",", "transition_function_memory" ]
Universal Transformer which uses a lstm as transition function. It's kind of like having a lstm, filliped vertically next to the Universal Transformer that controls the flow of the information in depth, over different steps of the Universal Transformer. Args: layer_inputs: - state: state - inputs: the original embedded inputs (= inputs to the first step) - memory: memory used in lstm. step: indicates number of steps taken so far hparams: model hyper-parameters. ffn_unit: feed-forward unit attention_unit: multi-head attention unit pad_remover: to mask out padding in convolutional layers (efficiency). Returns: layer_output: new_state: new state inputs: the original embedded inputs (= inputs to the first step) memory: contains information of state from all the previous steps.
[ "Universal", "Transformer", "which", "uses", "a", "lstm", "as", "transition", "function", "." ]
python
train
ultrabug/py3status
py3status/parse_config.py
https://github.com/ultrabug/py3status/blob/4c105f1b44f7384ca4f7da5f821a47e468c7dee2/py3status/parse_config.py#L460-L475
def separator(self, separator=",", end_token=None): """ Read through tokens till the required separator is found. We ignore newlines. If an end token is supplied raise a ParseEnd exception if it is found. """ while True: token = self.next() t_value = token["value"] if end_token and t_value == end_token: raise self.ParseEnd() if t_value == separator: return if t_value == "\n": continue self.error("Unexpected character")
[ "def", "separator", "(", "self", ",", "separator", "=", "\",\"", ",", "end_token", "=", "None", ")", ":", "while", "True", ":", "token", "=", "self", ".", "next", "(", ")", "t_value", "=", "token", "[", "\"value\"", "]", "if", "end_token", "and", "t_value", "==", "end_token", ":", "raise", "self", ".", "ParseEnd", "(", ")", "if", "t_value", "==", "separator", ":", "return", "if", "t_value", "==", "\"\\n\"", ":", "continue", "self", ".", "error", "(", "\"Unexpected character\"", ")" ]
Read through tokens till the required separator is found. We ignore newlines. If an end token is supplied raise a ParseEnd exception if it is found.
[ "Read", "through", "tokens", "till", "the", "required", "separator", "is", "found", ".", "We", "ignore", "newlines", ".", "If", "an", "end", "token", "is", "supplied", "raise", "a", "ParseEnd", "exception", "if", "it", "is", "found", "." ]
python
train
jmatt/threepio
threepio/__init__.py
https://github.com/jmatt/threepio/blob/91e2835c85c1618fcc4a1357dbb398353e662d1a/threepio/__init__.py#L32-L93
def initialize(logger_name=LOGGER_NAME, log_filename=LOG_FILENAME, app_logging_level=APP_LOGGING_LEVEL, dep_logging_level=DEP_LOGGING_LEVEL, format=None, logger_class=None, handlers=[], global_logger=True): """ Constructs and initializes a `logging.Logger` object. Returns :class:`logging.Logger` object. :param logger_name: name of the new logger. :param log_filename: The log file location :class:`str` or None. :param app_logging_level: The logging level to use for the application. :param dep_logging_level: The logging level to use for dependencies. :param format: The format string to use :class: `str` or None. :param logger_class: The logger class to use :param handlers: List of handler instances to add. :param global_logger: If true set threepio's global logger variable to this logger. """ # If there is no format, use a default format. if not format: format = "%(asctime)s %(name)s-%(levelname)s "\ + "[%(pathname)s %(lineno)d] %(message)s" formatter = logging.Formatter(format) # Setup the root logging for dependencies, etc. if log_filename: logging.basicConfig( level=dep_logging_level, format=format, filename=log_filename, filemode='a+') else: logging.basicConfig( level=dep_logging_level, format=format) # Setup and add separate application logging. if logger_class: original_class = logging.getLoggerClass() logging.setLoggerClass(logger_class) new_logger = logging.getLogger(logger_name) logging.setLoggerClass(original_class) else: new_logger = logging.getLogger(logger_name) # Set the app logging level. new_logger.setLevel(app_logging_level) # required to get level to apply. # Set the global_logger by default. if global_logger: global logger logger = new_logger for handler in handlers: handler.setFormatter(formatter) handler.setLevel(app_logging_level) new_logger.addHandler(handler) return new_logger
[ "def", "initialize", "(", "logger_name", "=", "LOGGER_NAME", ",", "log_filename", "=", "LOG_FILENAME", ",", "app_logging_level", "=", "APP_LOGGING_LEVEL", ",", "dep_logging_level", "=", "DEP_LOGGING_LEVEL", ",", "format", "=", "None", ",", "logger_class", "=", "None", ",", "handlers", "=", "[", "]", ",", "global_logger", "=", "True", ")", ":", "# If there is no format, use a default format.", "if", "not", "format", ":", "format", "=", "\"%(asctime)s %(name)s-%(levelname)s \"", "+", "\"[%(pathname)s %(lineno)d] %(message)s\"", "formatter", "=", "logging", ".", "Formatter", "(", "format", ")", "# Setup the root logging for dependencies, etc.", "if", "log_filename", ":", "logging", ".", "basicConfig", "(", "level", "=", "dep_logging_level", ",", "format", "=", "format", ",", "filename", "=", "log_filename", ",", "filemode", "=", "'a+'", ")", "else", ":", "logging", ".", "basicConfig", "(", "level", "=", "dep_logging_level", ",", "format", "=", "format", ")", "# Setup and add separate application logging.", "if", "logger_class", ":", "original_class", "=", "logging", ".", "getLoggerClass", "(", ")", "logging", ".", "setLoggerClass", "(", "logger_class", ")", "new_logger", "=", "logging", ".", "getLogger", "(", "logger_name", ")", "logging", ".", "setLoggerClass", "(", "original_class", ")", "else", ":", "new_logger", "=", "logging", ".", "getLogger", "(", "logger_name", ")", "# Set the app logging level.", "new_logger", ".", "setLevel", "(", "app_logging_level", ")", "# required to get level to apply.", "# Set the global_logger by default.", "if", "global_logger", ":", "global", "logger", "logger", "=", "new_logger", "for", "handler", "in", "handlers", ":", "handler", ".", "setFormatter", "(", "formatter", ")", "handler", ".", "setLevel", "(", "app_logging_level", ")", "new_logger", ".", "addHandler", "(", "handler", ")", "return", "new_logger" ]
Constructs and initializes a `logging.Logger` object. Returns :class:`logging.Logger` object. :param logger_name: name of the new logger. :param log_filename: The log file location :class:`str` or None. :param app_logging_level: The logging level to use for the application. :param dep_logging_level: The logging level to use for dependencies. :param format: The format string to use :class: `str` or None. :param logger_class: The logger class to use :param handlers: List of handler instances to add. :param global_logger: If true set threepio's global logger variable to this logger.
[ "Constructs", "and", "initializes", "a", "logging", ".", "Logger", "object", "." ]
python
train
StackStorm/pybind
pybind/slxos/v17s_1_02/__init__.py
https://github.com/StackStorm/pybind/blob/44c467e71b2b425be63867aba6e6fa28b2cfe7fb/pybind/slxos/v17s_1_02/__init__.py#L10317-L10340
def _set_preprovision(self, v, load=False): """ Setter method for preprovision, mapped from YANG variable /preprovision (container) If this variable is read-only (config: false) in the source YANG file, then _set_preprovision is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_preprovision() directly. YANG Description: Preprovision profile """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=preprovision.preprovision, is_container='container', presence=False, yang_name="preprovision", rest_name="preprovision", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Preprovision profile', u'hidden': u'full', u'display-when': u'((/vcsmode/vcs-mode = "true") and (/vcsmode/vcs-cluster-mode = "true"))', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-preprovision', defining_module='brocade-preprovision', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """preprovision must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=preprovision.preprovision, is_container='container', presence=False, yang_name="preprovision", rest_name="preprovision", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Preprovision profile', u'hidden': u'full', u'display-when': u'((/vcsmode/vcs-mode = "true") and (/vcsmode/vcs-cluster-mode = "true"))', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-preprovision', defining_module='brocade-preprovision', yang_type='container', is_config=True)""", }) self.__preprovision = t if hasattr(self, '_set'): self._set()
[ "def", "_set_preprovision", "(", "self", ",", "v", ",", "load", "=", "False", ")", ":", "if", "hasattr", "(", "v", ",", "\"_utype\"", ")", ":", "v", "=", "v", ".", "_utype", "(", "v", ")", "try", ":", "t", "=", "YANGDynClass", "(", "v", ",", "base", "=", "preprovision", ".", "preprovision", ",", "is_container", "=", "'container'", ",", "presence", "=", "False", ",", "yang_name", "=", "\"preprovision\"", ",", "rest_name", "=", "\"preprovision\"", ",", "parent", "=", "self", ",", "path_helper", "=", "self", ".", "_path_helper", ",", "extmethods", "=", "self", ".", "_extmethods", ",", "register_paths", "=", "True", ",", "extensions", "=", "{", "u'tailf-common'", ":", "{", "u'info'", ":", "u'Preprovision profile'", ",", "u'hidden'", ":", "u'full'", ",", "u'display-when'", ":", "u'((/vcsmode/vcs-mode = \"true\") and (/vcsmode/vcs-cluster-mode = \"true\"))'", ",", "u'cli-incomplete-no'", ":", "None", "}", "}", ",", "namespace", "=", "'urn:brocade.com:mgmt:brocade-preprovision'", ",", "defining_module", "=", "'brocade-preprovision'", ",", "yang_type", "=", "'container'", ",", "is_config", "=", "True", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "raise", "ValueError", "(", "{", "'error-string'", ":", "\"\"\"preprovision must be of a type compatible with container\"\"\"", ",", "'defined-type'", ":", "\"container\"", ",", "'generated-type'", ":", "\"\"\"YANGDynClass(base=preprovision.preprovision, is_container='container', presence=False, yang_name=\"preprovision\", rest_name=\"preprovision\", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Preprovision profile', u'hidden': u'full', u'display-when': u'((/vcsmode/vcs-mode = \"true\") and (/vcsmode/vcs-cluster-mode = \"true\"))', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-preprovision', defining_module='brocade-preprovision', yang_type='container', is_config=True)\"\"\"", ",", "}", ")", "self", ".", "__preprovision", "=", "t", "if", "hasattr", "(", "self", ",", "'_set'", ")", ":", "self", ".", "_set", "(", ")" ]
Setter method for preprovision, mapped from YANG variable /preprovision (container) If this variable is read-only (config: false) in the source YANG file, then _set_preprovision is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_preprovision() directly. YANG Description: Preprovision profile
[ "Setter", "method", "for", "preprovision", "mapped", "from", "YANG", "variable", "/", "preprovision", "(", "container", ")", "If", "this", "variable", "is", "read", "-", "only", "(", "config", ":", "false", ")", "in", "the", "source", "YANG", "file", "then", "_set_preprovision", "is", "considered", "as", "a", "private", "method", ".", "Backends", "looking", "to", "populate", "this", "variable", "should", "do", "so", "via", "calling", "thisObj", ".", "_set_preprovision", "()", "directly", "." ]
python
train
QUANTAXIS/QUANTAXIS
QUANTAXIS/QAMarket/QATTSBroker.py
https://github.com/QUANTAXIS/QUANTAXIS/blob/bb1fe424e4108b62a1f712b81a05cf829297a5c0/QUANTAXIS/QAMarket/QATTSBroker.py#L255-L292
def send_order(self, code, price, amount, towards, order_model, market=None): """下单 Arguments: code {[type]} -- [description] price {[type]} -- [description] amount {[type]} -- [description] towards {[type]} -- [description] order_model {[type]} -- [description] market:市场,SZ 深交所,SH 上交所 Returns: [type] -- [description] """ towards = 0 if towards == ORDER_DIRECTION.BUY else 1 if order_model == ORDER_MODEL.MARKET: order_model = 4 elif order_model == ORDER_MODEL.LIMIT: order_model = 0 if market is None: market = QAFetch.base.get_stock_market(code) if not isinstance(market, str): raise Exception('%s不正确,请检查code和market参数' % market) market = market.lower() if market not in ['sh', 'sz']: raise Exception('%s不支持,请检查code和market参数' % market) return self.data_to_df(self.call("send_order", { 'client_id': self.client_id, 'category': towards, 'price_type': order_model, 'gddm': self.gddm_sh if market == 'sh' else self.gddm_sz, 'zqdm': code, 'price': price, 'quantity': amount }))
[ "def", "send_order", "(", "self", ",", "code", ",", "price", ",", "amount", ",", "towards", ",", "order_model", ",", "market", "=", "None", ")", ":", "towards", "=", "0", "if", "towards", "==", "ORDER_DIRECTION", ".", "BUY", "else", "1", "if", "order_model", "==", "ORDER_MODEL", ".", "MARKET", ":", "order_model", "=", "4", "elif", "order_model", "==", "ORDER_MODEL", ".", "LIMIT", ":", "order_model", "=", "0", "if", "market", "is", "None", ":", "market", "=", "QAFetch", ".", "base", ".", "get_stock_market", "(", "code", ")", "if", "not", "isinstance", "(", "market", ",", "str", ")", ":", "raise", "Exception", "(", "'%s不正确,请检查code和market参数' % market)", "", "", "", "market", "=", "market", ".", "lower", "(", ")", "if", "market", "not", "in", "[", "'sh'", ",", "'sz'", "]", ":", "raise", "Exception", "(", "'%s不支持,请检查code和market参数' % market)", "", "", "", "return", "self", ".", "data_to_df", "(", "self", ".", "call", "(", "\"send_order\"", ",", "{", "'client_id'", ":", "self", ".", "client_id", ",", "'category'", ":", "towards", ",", "'price_type'", ":", "order_model", ",", "'gddm'", ":", "self", ".", "gddm_sh", "if", "market", "==", "'sh'", "else", "self", ".", "gddm_sz", ",", "'zqdm'", ":", "code", ",", "'price'", ":", "price", ",", "'quantity'", ":", "amount", "}", ")", ")" ]
下单 Arguments: code {[type]} -- [description] price {[type]} -- [description] amount {[type]} -- [description] towards {[type]} -- [description] order_model {[type]} -- [description] market:市场,SZ 深交所,SH 上交所 Returns: [type] -- [description]
[ "下单" ]
python
train
mrstephenneal/dirutility
dirutility/compare.py
https://github.com/mrstephenneal/dirutility/blob/339378659e2d7e09c53acfc51c5df745bb0cd517/dirutility/compare.py#L6-L13
def unique(list1, list2): """ Get unique items in list1 that are not in list2 :return: Unique items only in list 1 """ set2 = set(list2) list1_unique = [x for x in tqdm(list1, desc='Unique', total=len(list1)) if x not in set2] return list1_unique
[ "def", "unique", "(", "list1", ",", "list2", ")", ":", "set2", "=", "set", "(", "list2", ")", "list1_unique", "=", "[", "x", "for", "x", "in", "tqdm", "(", "list1", ",", "desc", "=", "'Unique'", ",", "total", "=", "len", "(", "list1", ")", ")", "if", "x", "not", "in", "set2", "]", "return", "list1_unique" ]
Get unique items in list1 that are not in list2 :return: Unique items only in list 1
[ "Get", "unique", "items", "in", "list1", "that", "are", "not", "in", "list2", ":", "return", ":", "Unique", "items", "only", "in", "list", "1" ]
python
train
sods/ods
pods/datasets.py
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L373-L413
def to_arff(dataset, **kwargs): """Take a pods data set and write it as an ARFF file""" pods_data = dataset(**kwargs) vals = list(kwargs.values()) for i, v in enumerate(vals): if isinstance(v, list): vals[i] = '|'.join(v) else: vals[i] = str(v) args = '_'.join(vals) n = dataset.__name__ if len(args)>0: n += '_' + args n = n.replace(' ', '-') ks = pods_data.keys() d = None if 'Y' in ks and 'X' in ks: d = pd.DataFrame(pods_data['X']) if 'Xtest' in ks: d = d.append(pd.DataFrame(pods_data['Xtest']), ignore_index=True) if 'covariates' in ks: d.columns = pods_data['covariates'] dy = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: dy = dy.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) if 'response' in ks: dy.columns = pods_data['response'] for c in dy.columns: if c not in d.columns: d[c] = dy[c] else: d['y'+str(c)] = dy[c] elif 'Y' in ks: d = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: d = d.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) elif 'data' in ks: d = pd.DataFrame(pods_data['data']) if d is not None: df2arff(d, n, pods_data)
[ "def", "to_arff", "(", "dataset", ",", "*", "*", "kwargs", ")", ":", "pods_data", "=", "dataset", "(", "*", "*", "kwargs", ")", "vals", "=", "list", "(", "kwargs", ".", "values", "(", ")", ")", "for", "i", ",", "v", "in", "enumerate", "(", "vals", ")", ":", "if", "isinstance", "(", "v", ",", "list", ")", ":", "vals", "[", "i", "]", "=", "'|'", ".", "join", "(", "v", ")", "else", ":", "vals", "[", "i", "]", "=", "str", "(", "v", ")", "args", "=", "'_'", ".", "join", "(", "vals", ")", "n", "=", "dataset", ".", "__name__", "if", "len", "(", "args", ")", ">", "0", ":", "n", "+=", "'_'", "+", "args", "n", "=", "n", ".", "replace", "(", "' '", ",", "'-'", ")", "ks", "=", "pods_data", ".", "keys", "(", ")", "d", "=", "None", "if", "'Y'", "in", "ks", "and", "'X'", "in", "ks", ":", "d", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'X'", "]", ")", "if", "'Xtest'", "in", "ks", ":", "d", "=", "d", ".", "append", "(", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Xtest'", "]", ")", ",", "ignore_index", "=", "True", ")", "if", "'covariates'", "in", "ks", ":", "d", ".", "columns", "=", "pods_data", "[", "'covariates'", "]", "dy", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Y'", "]", ")", "if", "'Ytest'", "in", "ks", ":", "dy", "=", "dy", ".", "append", "(", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Ytest'", "]", ")", ",", "ignore_index", "=", "True", ")", "if", "'response'", "in", "ks", ":", "dy", ".", "columns", "=", "pods_data", "[", "'response'", "]", "for", "c", "in", "dy", ".", "columns", ":", "if", "c", "not", "in", "d", ".", "columns", ":", "d", "[", "c", "]", "=", "dy", "[", "c", "]", "else", ":", "d", "[", "'y'", "+", "str", "(", "c", ")", "]", "=", "dy", "[", "c", "]", "elif", "'Y'", "in", "ks", ":", "d", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Y'", "]", ")", "if", "'Ytest'", "in", "ks", ":", "d", "=", "d", ".", "append", "(", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Ytest'", "]", ")", ",", "ignore_index", "=", "True", ")", "elif", "'data'", "in", "ks", ":", "d", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'data'", "]", ")", "if", "d", "is", "not", "None", ":", "df2arff", "(", "d", ",", "n", ",", "pods_data", ")" ]
Take a pods data set and write it as an ARFF file
[ "Take", "a", "pods", "data", "set", "and", "write", "it", "as", "an", "ARFF", "file" ]
python
train
openthread/openthread
tools/harness-thci/OpenThread.py
https://github.com/openthread/openthread/blob/0208d10563aa21c518092985c78ecf9cd223ab74/tools/harness-thci/OpenThread.py#L362-L376
def __setAddressfilterMode(self, mode): """set address filter mode Returns: True: successful to set address filter mode. False: fail to set address filter mode. """ print 'call setAddressFilterMode() ' + mode try: cmd = 'macfilter addr ' + mode if self.__sendCommand(cmd)[0] == 'Done': return True return False except Exception, e: ModuleHelper.WriteIntoDebugLogger("__setAddressFilterMode() Error: " + str(e))
[ "def", "__setAddressfilterMode", "(", "self", ",", "mode", ")", ":", "print", "'call setAddressFilterMode() '", "+", "mode", "try", ":", "cmd", "=", "'macfilter addr '", "+", "mode", "if", "self", ".", "__sendCommand", "(", "cmd", ")", "[", "0", "]", "==", "'Done'", ":", "return", "True", "return", "False", "except", "Exception", ",", "e", ":", "ModuleHelper", ".", "WriteIntoDebugLogger", "(", "\"__setAddressFilterMode() Error: \"", "+", "str", "(", "e", ")", ")" ]
set address filter mode Returns: True: successful to set address filter mode. False: fail to set address filter mode.
[ "set", "address", "filter", "mode" ]
python
train
OLC-Bioinformatics/sipprverse
cgecore/utility.py
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L471-L484
def file_unzipper(directory): """ This function will unzip all files in the runroot directory and subdirectories """ debug.log("Unzipping directory (%s)..."%directory) #FINDING AND UNZIPPING ZIPPED FILES for root, dirs, files in os.walk(directory, topdown=False): if root != "": orig_dir = os.getcwd() os.chdir(directory) Popen('gunzip -q -f *.gz > /dev/null 2>&1', shell=True).wait() Popen('unzip -qq -o "*.zip" > /dev/null 2>&1', shell=True).wait() Popen('rm -f *.zip > /dev/null 2>&1', shell=True).wait() os.chdir(orig_dir)
[ "def", "file_unzipper", "(", "directory", ")", ":", "debug", ".", "log", "(", "\"Unzipping directory (%s)...\"", "%", "directory", ")", "#FINDING AND UNZIPPING ZIPPED FILES", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "directory", ",", "topdown", "=", "False", ")", ":", "if", "root", "!=", "\"\"", ":", "orig_dir", "=", "os", ".", "getcwd", "(", ")", "os", ".", "chdir", "(", "directory", ")", "Popen", "(", "'gunzip -q -f *.gz > /dev/null 2>&1'", ",", "shell", "=", "True", ")", ".", "wait", "(", ")", "Popen", "(", "'unzip -qq -o \"*.zip\" > /dev/null 2>&1'", ",", "shell", "=", "True", ")", ".", "wait", "(", ")", "Popen", "(", "'rm -f *.zip > /dev/null 2>&1'", ",", "shell", "=", "True", ")", ".", "wait", "(", ")", "os", ".", "chdir", "(", "orig_dir", ")" ]
This function will unzip all files in the runroot directory and subdirectories
[ "This", "function", "will", "unzip", "all", "files", "in", "the", "runroot", "directory", "and", "subdirectories" ]
python
train
rigetti/quantumflow
quantumflow/visualization.py
https://github.com/rigetti/quantumflow/blob/13a66cabbe8aabf6e023cc675f4a4ebe6ccda8fb/quantumflow/visualization.py#L47-L216
def circuit_to_latex(circ: Circuit, qubits: Qubits = None, document: bool = True) -> str: """ Create an image of a quantum circuit in LaTeX. Can currently draw X, Y, Z, H, T, S, T_H, S_H, RX, RY, RZ, TX, TY, TZ, TH, CNOT, CZ, SWAP, ISWAP, CCNOT, CSWAP, XX, YY, ZZ, CAN, P0 and P1 gates, and the RESET operation. Args: circ: A quantum Circuit qubits: Optional qubit list to specify qubit order document: If false, just the qcircuit latex is returned. Else the circuit image is wrapped in a standalone LaTeX document ready for typesetting. Returns: A LaTeX string representation of the circuit. Raises: NotImplementedError: For unsupported gates. Refs: LaTeX Qcircuit package (https://arxiv.org/pdf/quant-ph/0406003). """ if qubits is None: qubits = circ.qubits N = len(qubits) qubit_idx = dict(zip(qubits, range(N))) layers = _display_layers(circ, qubits) layer_code = [] code = [r'\lstick{' + str(q) + r'}' for q in qubits] layer_code.append(code) def _two_qubit_gate(top, bot, label): if bot-top == 1: code_top = r'\multigate{1}{%s}' % label code_bot = r'\ghost{%s}' % label else: code_top = r'\sgate{%s}{%s}' % (label, str(bot - top)) code_bot = r'\gate{%s}' % (label) return code_top, code_bot for layer in layers.elements: code = [r'\qw'] * N assert isinstance(layer, Circuit) for gate in layer: idx = [qubit_idx[q] for q in gate.qubits] name = gate.name if isinstance(gate, I): pass elif(len(idx) == 1) and name in ['X', 'Y', 'Z', 'H', 'T', 'S']: code[idx[0]] = r'\gate{' + gate.name + '}' elif isinstance(gate, S_H): code[idx[0]] = r'\gate{S^\dag}' elif isinstance(gate, T_H): code[idx[0]] = r'\gate{T^\dag}' elif isinstance(gate, RX): theta = _latex_format(gate.params['theta']) code[idx[0]] = r'\gate{R_x(%s)}' % theta elif isinstance(gate, RY): theta = _latex_format(gate.params['theta']) code[idx[0]] = r'\gate{R_y(%s)}' % theta elif isinstance(gate, RZ): theta = _latex_format(gate.params['theta']) code[idx[0]] = r'\gate{R_z(%s)}' % theta elif isinstance(gate, TX): t = _latex_format(gate.params['t']) code[idx[0]] = r'\gate{X^{%s}}' % t elif isinstance(gate, TY): t = _latex_format(gate.params['t']) code[idx[0]] = r'\gate{Y^{%s}}' % t elif isinstance(gate, TZ): t = _latex_format(gate.params['t']) code[idx[0]] = r'\gate{Z^{%s}}' % t elif isinstance(gate, TH): t = _latex_format(gate.params['t']) code[idx[0]] = r'\gate{H^{%s}}' % t elif isinstance(gate, CNOT): code[idx[0]] = r'\ctrl{' + str(idx[1] - idx[0]) + '}' code[idx[1]] = r'\targ' elif isinstance(gate, XX): label = r'X\!X^{%s}' % _latex_format(gate.params['t']) top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, YY): label = r'Y\!Y^{%s}' % _latex_format(gate.params['t']) top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, ZZ): label = r'Z\!Z^{%s}' % _latex_format(gate.params['t']) top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, CPHASE): theta = _latex_format(gate.params['theta']) label = r'\text{CPHASE}({%s})' % theta top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, PSWAP): theta = _latex_format(gate.params['theta']) label = r'\text{PSWAP}({%s})' % theta top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, CZ): code[idx[0]] = r'\ctrl{' + str(idx[1] - idx[0]) + '}' code[idx[1]] = r'\ctrl{' + str(idx[0] - idx[1]) + '}' elif isinstance(gate, SWAP): code[idx[0]] = r'\qswap \qwx[' + str(idx[1] - idx[0]) + ']' code[idx[1]] = r'\qswap' elif isinstance(gate, CAN): tx = _latex_format(gate.params['tx']) ty = _latex_format(gate.params['ty']) tz = _latex_format(gate.params['tz']) label = r'{\text{CAN}(%s, %s, %s)}' % (tx, ty, tz) top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, ISWAP): label = r'{ \text{iSWAP}}' top = min(idx) bot = max(idx) code[top], code[bot] = _two_qubit_gate(top, bot, label) elif isinstance(gate, CCNOT): code[idx[0]] = r'\ctrl{' + str(idx[1]-idx[0]) + '}' code[idx[1]] = r'\ctrl{' + str(idx[2]-idx[1]) + '}' code[idx[2]] = r'\targ' elif isinstance(gate, CSWAP): code[idx[0]] = r'\ctrl{' + str(idx[1]-idx[0]) + '}' code[idx[1]] = r'\qswap \qwx[' + str(idx[2] - idx[1]) + ']' code[idx[2]] = r'\qswap' elif isinstance(gate, P0): code[idx[0]] = r'\push{\ket{0}\!\!\bra{0}} \qw' elif isinstance(gate, P1): code[idx[0]] = r'\push{\ket{1}\!\!\bra{1}} \qw' elif isinstance(gate, Reset): for i in idx: code[i] = r'\push{\rule{0.1em}{0.5em}\, \ket{0}\,} \qw' elif isinstance(gate, Measure): code[idx[0]] = r'\meter' else: raise NotImplementedError(str(gate)) layer_code.append(code) code = [r'\qw'] * N layer_code.append(code) latex_lines = [''] * N for line, wire in enumerate(zip(*layer_code)): latex = '& ' + ' & '.join(wire) if line < N - 1: # Not last line latex += r' \\' latex_lines[line] = latex latex_code = _QCIRCUIT % '\n'.join(latex_lines) if document: latex_code = _DOCUMENT_HEADER + latex_code + _DOCUMENT_FOOTER return latex_code
[ "def", "circuit_to_latex", "(", "circ", ":", "Circuit", ",", "qubits", ":", "Qubits", "=", "None", ",", "document", ":", "bool", "=", "True", ")", "->", "str", ":", "if", "qubits", "is", "None", ":", "qubits", "=", "circ", ".", "qubits", "N", "=", "len", "(", "qubits", ")", "qubit_idx", "=", "dict", "(", "zip", "(", "qubits", ",", "range", "(", "N", ")", ")", ")", "layers", "=", "_display_layers", "(", "circ", ",", "qubits", ")", "layer_code", "=", "[", "]", "code", "=", "[", "r'\\lstick{'", "+", "str", "(", "q", ")", "+", "r'}'", "for", "q", "in", "qubits", "]", "layer_code", ".", "append", "(", "code", ")", "def", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", ":", "if", "bot", "-", "top", "==", "1", ":", "code_top", "=", "r'\\multigate{1}{%s}'", "%", "label", "code_bot", "=", "r'\\ghost{%s}'", "%", "label", "else", ":", "code_top", "=", "r'\\sgate{%s}{%s}'", "%", "(", "label", ",", "str", "(", "bot", "-", "top", ")", ")", "code_bot", "=", "r'\\gate{%s}'", "%", "(", "label", ")", "return", "code_top", ",", "code_bot", "for", "layer", "in", "layers", ".", "elements", ":", "code", "=", "[", "r'\\qw'", "]", "*", "N", "assert", "isinstance", "(", "layer", ",", "Circuit", ")", "for", "gate", "in", "layer", ":", "idx", "=", "[", "qubit_idx", "[", "q", "]", "for", "q", "in", "gate", ".", "qubits", "]", "name", "=", "gate", ".", "name", "if", "isinstance", "(", "gate", ",", "I", ")", ":", "pass", "elif", "(", "len", "(", "idx", ")", "==", "1", ")", "and", "name", "in", "[", "'X'", ",", "'Y'", ",", "'Z'", ",", "'H'", ",", "'T'", ",", "'S'", "]", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{'", "+", "gate", ".", "name", "+", "'}'", "elif", "isinstance", "(", "gate", ",", "S_H", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{S^\\dag}'", "elif", "isinstance", "(", "gate", ",", "T_H", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{T^\\dag}'", "elif", "isinstance", "(", "gate", ",", "RX", ")", ":", "theta", "=", "_latex_format", "(", "gate", ".", "params", "[", "'theta'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{R_x(%s)}'", "%", "theta", "elif", "isinstance", "(", "gate", ",", "RY", ")", ":", "theta", "=", "_latex_format", "(", "gate", ".", "params", "[", "'theta'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{R_y(%s)}'", "%", "theta", "elif", "isinstance", "(", "gate", ",", "RZ", ")", ":", "theta", "=", "_latex_format", "(", "gate", ".", "params", "[", "'theta'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{R_z(%s)}'", "%", "theta", "elif", "isinstance", "(", "gate", ",", "TX", ")", ":", "t", "=", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{X^{%s}}'", "%", "t", "elif", "isinstance", "(", "gate", ",", "TY", ")", ":", "t", "=", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{Y^{%s}}'", "%", "t", "elif", "isinstance", "(", "gate", ",", "TZ", ")", ":", "t", "=", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{Z^{%s}}'", "%", "t", "elif", "isinstance", "(", "gate", ",", "TH", ")", ":", "t", "=", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\gate{H^{%s}}'", "%", "t", "elif", "isinstance", "(", "gate", ",", "CNOT", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\ctrl{'", "+", "str", "(", "idx", "[", "1", "]", "-", "idx", "[", "0", "]", ")", "+", "'}'", "code", "[", "idx", "[", "1", "]", "]", "=", "r'\\targ'", "elif", "isinstance", "(", "gate", ",", "XX", ")", ":", "label", "=", "r'X\\!X^{%s}'", "%", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "YY", ")", ":", "label", "=", "r'Y\\!Y^{%s}'", "%", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "ZZ", ")", ":", "label", "=", "r'Z\\!Z^{%s}'", "%", "_latex_format", "(", "gate", ".", "params", "[", "'t'", "]", ")", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "CPHASE", ")", ":", "theta", "=", "_latex_format", "(", "gate", ".", "params", "[", "'theta'", "]", ")", "label", "=", "r'\\text{CPHASE}({%s})'", "%", "theta", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "PSWAP", ")", ":", "theta", "=", "_latex_format", "(", "gate", ".", "params", "[", "'theta'", "]", ")", "label", "=", "r'\\text{PSWAP}({%s})'", "%", "theta", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "CZ", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\ctrl{'", "+", "str", "(", "idx", "[", "1", "]", "-", "idx", "[", "0", "]", ")", "+", "'}'", "code", "[", "idx", "[", "1", "]", "]", "=", "r'\\ctrl{'", "+", "str", "(", "idx", "[", "0", "]", "-", "idx", "[", "1", "]", ")", "+", "'}'", "elif", "isinstance", "(", "gate", ",", "SWAP", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\qswap \\qwx['", "+", "str", "(", "idx", "[", "1", "]", "-", "idx", "[", "0", "]", ")", "+", "']'", "code", "[", "idx", "[", "1", "]", "]", "=", "r'\\qswap'", "elif", "isinstance", "(", "gate", ",", "CAN", ")", ":", "tx", "=", "_latex_format", "(", "gate", ".", "params", "[", "'tx'", "]", ")", "ty", "=", "_latex_format", "(", "gate", ".", "params", "[", "'ty'", "]", ")", "tz", "=", "_latex_format", "(", "gate", ".", "params", "[", "'tz'", "]", ")", "label", "=", "r'{\\text{CAN}(%s, %s, %s)}'", "%", "(", "tx", ",", "ty", ",", "tz", ")", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "ISWAP", ")", ":", "label", "=", "r'{ \\text{iSWAP}}'", "top", "=", "min", "(", "idx", ")", "bot", "=", "max", "(", "idx", ")", "code", "[", "top", "]", ",", "code", "[", "bot", "]", "=", "_two_qubit_gate", "(", "top", ",", "bot", ",", "label", ")", "elif", "isinstance", "(", "gate", ",", "CCNOT", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\ctrl{'", "+", "str", "(", "idx", "[", "1", "]", "-", "idx", "[", "0", "]", ")", "+", "'}'", "code", "[", "idx", "[", "1", "]", "]", "=", "r'\\ctrl{'", "+", "str", "(", "idx", "[", "2", "]", "-", "idx", "[", "1", "]", ")", "+", "'}'", "code", "[", "idx", "[", "2", "]", "]", "=", "r'\\targ'", "elif", "isinstance", "(", "gate", ",", "CSWAP", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\ctrl{'", "+", "str", "(", "idx", "[", "1", "]", "-", "idx", "[", "0", "]", ")", "+", "'}'", "code", "[", "idx", "[", "1", "]", "]", "=", "r'\\qswap \\qwx['", "+", "str", "(", "idx", "[", "2", "]", "-", "idx", "[", "1", "]", ")", "+", "']'", "code", "[", "idx", "[", "2", "]", "]", "=", "r'\\qswap'", "elif", "isinstance", "(", "gate", ",", "P0", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\push{\\ket{0}\\!\\!\\bra{0}} \\qw'", "elif", "isinstance", "(", "gate", ",", "P1", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\push{\\ket{1}\\!\\!\\bra{1}} \\qw'", "elif", "isinstance", "(", "gate", ",", "Reset", ")", ":", "for", "i", "in", "idx", ":", "code", "[", "i", "]", "=", "r'\\push{\\rule{0.1em}{0.5em}\\, \\ket{0}\\,} \\qw'", "elif", "isinstance", "(", "gate", ",", "Measure", ")", ":", "code", "[", "idx", "[", "0", "]", "]", "=", "r'\\meter'", "else", ":", "raise", "NotImplementedError", "(", "str", "(", "gate", ")", ")", "layer_code", ".", "append", "(", "code", ")", "code", "=", "[", "r'\\qw'", "]", "*", "N", "layer_code", ".", "append", "(", "code", ")", "latex_lines", "=", "[", "''", "]", "*", "N", "for", "line", ",", "wire", "in", "enumerate", "(", "zip", "(", "*", "layer_code", ")", ")", ":", "latex", "=", "'& '", "+", "' & '", ".", "join", "(", "wire", ")", "if", "line", "<", "N", "-", "1", ":", "# Not last line", "latex", "+=", "r' \\\\'", "latex_lines", "[", "line", "]", "=", "latex", "latex_code", "=", "_QCIRCUIT", "%", "'\\n'", ".", "join", "(", "latex_lines", ")", "if", "document", ":", "latex_code", "=", "_DOCUMENT_HEADER", "+", "latex_code", "+", "_DOCUMENT_FOOTER", "return", "latex_code" ]
Create an image of a quantum circuit in LaTeX. Can currently draw X, Y, Z, H, T, S, T_H, S_H, RX, RY, RZ, TX, TY, TZ, TH, CNOT, CZ, SWAP, ISWAP, CCNOT, CSWAP, XX, YY, ZZ, CAN, P0 and P1 gates, and the RESET operation. Args: circ: A quantum Circuit qubits: Optional qubit list to specify qubit order document: If false, just the qcircuit latex is returned. Else the circuit image is wrapped in a standalone LaTeX document ready for typesetting. Returns: A LaTeX string representation of the circuit. Raises: NotImplementedError: For unsupported gates. Refs: LaTeX Qcircuit package (https://arxiv.org/pdf/quant-ph/0406003).
[ "Create", "an", "image", "of", "a", "quantum", "circuit", "in", "LaTeX", "." ]
python
train
juju/charm-helpers
charmhelpers/contrib/amulet/utils.py
https://github.com/juju/charm-helpers/blob/aa785c40c3b7a8c69dbfbc7921d6b9f30142e171/charmhelpers/contrib/amulet/utils.py#L703-L728
def file_contents_safe(self, sentry_unit, file_name, max_wait=60, fatal=False): """Get file contents from a sentry unit. Wrap amulet file_contents with retry logic to address races where a file checks as existing, but no longer exists by the time file_contents is called. Return None if file not found. Optionally raise if fatal is True.""" unit_name = sentry_unit.info['unit_name'] file_contents = False tries = 0 while not file_contents and tries < (max_wait / 4): try: file_contents = sentry_unit.file_contents(file_name) except IOError: self.log.debug('Attempt {} to open file {} from {} ' 'failed'.format(tries, file_name, unit_name)) time.sleep(4) tries += 1 if file_contents: return file_contents elif not fatal: return None elif fatal: msg = 'Failed to get file contents from unit.' amulet.raise_status(amulet.FAIL, msg)
[ "def", "file_contents_safe", "(", "self", ",", "sentry_unit", ",", "file_name", ",", "max_wait", "=", "60", ",", "fatal", "=", "False", ")", ":", "unit_name", "=", "sentry_unit", ".", "info", "[", "'unit_name'", "]", "file_contents", "=", "False", "tries", "=", "0", "while", "not", "file_contents", "and", "tries", "<", "(", "max_wait", "/", "4", ")", ":", "try", ":", "file_contents", "=", "sentry_unit", ".", "file_contents", "(", "file_name", ")", "except", "IOError", ":", "self", ".", "log", ".", "debug", "(", "'Attempt {} to open file {} from {} '", "'failed'", ".", "format", "(", "tries", ",", "file_name", ",", "unit_name", ")", ")", "time", ".", "sleep", "(", "4", ")", "tries", "+=", "1", "if", "file_contents", ":", "return", "file_contents", "elif", "not", "fatal", ":", "return", "None", "elif", "fatal", ":", "msg", "=", "'Failed to get file contents from unit.'", "amulet", ".", "raise_status", "(", "amulet", ".", "FAIL", ",", "msg", ")" ]
Get file contents from a sentry unit. Wrap amulet file_contents with retry logic to address races where a file checks as existing, but no longer exists by the time file_contents is called. Return None if file not found. Optionally raise if fatal is True.
[ "Get", "file", "contents", "from", "a", "sentry", "unit", ".", "Wrap", "amulet", "file_contents", "with", "retry", "logic", "to", "address", "races", "where", "a", "file", "checks", "as", "existing", "but", "no", "longer", "exists", "by", "the", "time", "file_contents", "is", "called", ".", "Return", "None", "if", "file", "not", "found", ".", "Optionally", "raise", "if", "fatal", "is", "True", "." ]
python
train
FactoryBoy/factory_boy
factory/django.py
https://github.com/FactoryBoy/factory_boy/blob/edaa7c7f5a14065b229927903bd7989cc93cd069/factory/django.py#L54-L66
def _lazy_load_get_model(): """Lazy loading of get_model. get_model loads django.conf.settings, which may fail if the settings haven't been configured yet. """ if django is None: def _get_model(app, model): raise import_failure else: from django import apps as django_apps _get_model = django_apps.apps.get_model _LAZY_LOADS['get_model'] = _get_model
[ "def", "_lazy_load_get_model", "(", ")", ":", "if", "django", "is", "None", ":", "def", "_get_model", "(", "app", ",", "model", ")", ":", "raise", "import_failure", "else", ":", "from", "django", "import", "apps", "as", "django_apps", "_get_model", "=", "django_apps", ".", "apps", ".", "get_model", "_LAZY_LOADS", "[", "'get_model'", "]", "=", "_get_model" ]
Lazy loading of get_model. get_model loads django.conf.settings, which may fail if the settings haven't been configured yet.
[ "Lazy", "loading", "of", "get_model", "." ]
python
train
carta/ldap_tools
src/ldap_tools/key.py
https://github.com/carta/ldap_tools/blob/7c039304a5abaf836c7afc35cf068b4471306264/src/ldap_tools/key.py#L66-L75
def install(self): # pragma: no cover """Install/download ssh keys from LDAP for consumption by SSH.""" keys = self.get_keys_from_ldap() for user, ssh_keys in keys.items(): user_dir = API.__authorized_keys_path(user) if not os.path.isdir(user_dir): os.makedirs(user_dir) authorized_keys_file = os.path.join(user_dir, 'authorized_keys') with open(authorized_keys_file, 'w') as FILE: print("\n".join([k.decode() for k in ssh_keys]), file=FILE)
[ "def", "install", "(", "self", ")", ":", "# pragma: no cover", "keys", "=", "self", ".", "get_keys_from_ldap", "(", ")", "for", "user", ",", "ssh_keys", "in", "keys", ".", "items", "(", ")", ":", "user_dir", "=", "API", ".", "__authorized_keys_path", "(", "user", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "user_dir", ")", ":", "os", ".", "makedirs", "(", "user_dir", ")", "authorized_keys_file", "=", "os", ".", "path", ".", "join", "(", "user_dir", ",", "'authorized_keys'", ")", "with", "open", "(", "authorized_keys_file", ",", "'w'", ")", "as", "FILE", ":", "print", "(", "\"\\n\"", ".", "join", "(", "[", "k", ".", "decode", "(", ")", "for", "k", "in", "ssh_keys", "]", ")", ",", "file", "=", "FILE", ")" ]
Install/download ssh keys from LDAP for consumption by SSH.
[ "Install", "/", "download", "ssh", "keys", "from", "LDAP", "for", "consumption", "by", "SSH", "." ]
python
train
pip-services3-python/pip-services3-components-python
pip_services3_components/build/Factory.py
https://github.com/pip-services3-python/pip-services3-components-python/blob/1de9c1bb544cf1891111e9a5f5d67653f62c9b52/pip_services3_components/build/Factory.py#L37-L50
def register(self, locator, factory): """ Registers a component using a factory method. :param locator: a locator to identify component to be created. :param factory: a factory function that receives a locator and returns a created component. """ if locator == None: raise Exception("Locator cannot be null") if factory == None: raise Exception("Factory cannot be null") self._registrations.append(Registration(locator, factory))
[ "def", "register", "(", "self", ",", "locator", ",", "factory", ")", ":", "if", "locator", "==", "None", ":", "raise", "Exception", "(", "\"Locator cannot be null\"", ")", "if", "factory", "==", "None", ":", "raise", "Exception", "(", "\"Factory cannot be null\"", ")", "self", ".", "_registrations", ".", "append", "(", "Registration", "(", "locator", ",", "factory", ")", ")" ]
Registers a component using a factory method. :param locator: a locator to identify component to be created. :param factory: a factory function that receives a locator and returns a created component.
[ "Registers", "a", "component", "using", "a", "factory", "method", "." ]
python
train
lowandrew/OLCTools
metagenomefilter/automateCLARK.py
https://github.com/lowandrew/OLCTools/blob/88aa90ac85f84d0bbeb03e43c29b0a9d36e4ce2a/metagenomefilter/automateCLARK.py#L62-L78
def clean_sequences(self): """Removes reads/contigs that contain plasmids, and masks phage sequences.""" logging.info('Removing plasmids and masking phages') plasmid_db = os.path.join(self.reffilepath, 'plasmidfinder', 'plasmid_database.fa') phage_db = os.path.join(self.reffilepath, 'prophages', 'combinedtargets.tfa') with progressbar(self.runmetadata.samples) as bar: for sample in bar: plasmid_removal = 'bbduk.sh ref={} in={} out={} overwrite'\ .format(plasmid_db, sample.general.combined, sample.general.combined.replace('.f', '_noplasmid.f')) subprocess.call(plasmid_removal, shell=True, stdout=self.devnull, stderr=self.devnull) phage_masking = 'bbduk.sh ref={} in={} out={} kmask=N overwrite'\ .format(phage_db, sample.general.combined.replace('.f', '_noplasmid.f'), sample.general.combined.replace('.f', '_clean.f')) subprocess.call(phage_masking, shell=True, stdout=self.devnull, stderr=self.devnull) os.remove(sample.general.combined) os.rename(sample.general.combined.replace('.f', '_clean.f'), sample.general.combined) os.remove(sample.general.combined.replace('.f', '_noplasmid.f'))
[ "def", "clean_sequences", "(", "self", ")", ":", "logging", ".", "info", "(", "'Removing plasmids and masking phages'", ")", "plasmid_db", "=", "os", ".", "path", ".", "join", "(", "self", ".", "reffilepath", ",", "'plasmidfinder'", ",", "'plasmid_database.fa'", ")", "phage_db", "=", "os", ".", "path", ".", "join", "(", "self", ".", "reffilepath", ",", "'prophages'", ",", "'combinedtargets.tfa'", ")", "with", "progressbar", "(", "self", ".", "runmetadata", ".", "samples", ")", "as", "bar", ":", "for", "sample", "in", "bar", ":", "plasmid_removal", "=", "'bbduk.sh ref={} in={} out={} overwrite'", ".", "format", "(", "plasmid_db", ",", "sample", ".", "general", ".", "combined", ",", "sample", ".", "general", ".", "combined", ".", "replace", "(", "'.f'", ",", "'_noplasmid.f'", ")", ")", "subprocess", ".", "call", "(", "plasmid_removal", ",", "shell", "=", "True", ",", "stdout", "=", "self", ".", "devnull", ",", "stderr", "=", "self", ".", "devnull", ")", "phage_masking", "=", "'bbduk.sh ref={} in={} out={} kmask=N overwrite'", ".", "format", "(", "phage_db", ",", "sample", ".", "general", ".", "combined", ".", "replace", "(", "'.f'", ",", "'_noplasmid.f'", ")", ",", "sample", ".", "general", ".", "combined", ".", "replace", "(", "'.f'", ",", "'_clean.f'", ")", ")", "subprocess", ".", "call", "(", "phage_masking", ",", "shell", "=", "True", ",", "stdout", "=", "self", ".", "devnull", ",", "stderr", "=", "self", ".", "devnull", ")", "os", ".", "remove", "(", "sample", ".", "general", ".", "combined", ")", "os", ".", "rename", "(", "sample", ".", "general", ".", "combined", ".", "replace", "(", "'.f'", ",", "'_clean.f'", ")", ",", "sample", ".", "general", ".", "combined", ")", "os", ".", "remove", "(", "sample", ".", "general", ".", "combined", ".", "replace", "(", "'.f'", ",", "'_noplasmid.f'", ")", ")" ]
Removes reads/contigs that contain plasmids, and masks phage sequences.
[ "Removes", "reads", "/", "contigs", "that", "contain", "plasmids", "and", "masks", "phage", "sequences", "." ]
python
train
codelv/enaml-native
src/enamlnative/widgets/web_view.py
https://github.com/codelv/enaml-native/blob/c33986e9eda468c508806e0a3e73c771401e5718/src/enamlnative/widgets/web_view.py#L105-L115
def _update_proxy(self, change): """ An observer which sends the state change to the proxy. """ if change['type'] == 'event': name = 'do_'+change['name'] if hasattr(self.proxy, name): handler = getattr(self.proxy, name) handler() else: super(WebView, self)._update_proxy(change)
[ "def", "_update_proxy", "(", "self", ",", "change", ")", ":", "if", "change", "[", "'type'", "]", "==", "'event'", ":", "name", "=", "'do_'", "+", "change", "[", "'name'", "]", "if", "hasattr", "(", "self", ".", "proxy", ",", "name", ")", ":", "handler", "=", "getattr", "(", "self", ".", "proxy", ",", "name", ")", "handler", "(", ")", "else", ":", "super", "(", "WebView", ",", "self", ")", ".", "_update_proxy", "(", "change", ")" ]
An observer which sends the state change to the proxy.
[ "An", "observer", "which", "sends", "the", "state", "change", "to", "the", "proxy", "." ]
python
train
tyarkoni/pliers
pliers/graph.py
https://github.com/tyarkoni/pliers/blob/5b3385960ebd8c6ef1e86dd5e1be0080b2cb7f2b/pliers/graph.py#L237-L298
def draw(self, filename, color=True): ''' Render a plot of the graph via pygraphviz. Args: filename (str): Path to save the generated image to. color (bool): If True, will color graph nodes based on their type, otherwise will draw a black-and-white graph. ''' verify_dependencies(['pgv']) if not hasattr(self, '_results'): raise RuntimeError("Graph cannot be drawn before it is executed. " "Try calling run() first.") g = pgv.AGraph(directed=True) g.node_attr['colorscheme'] = 'set312' for elem in self._results: if not hasattr(elem, 'history'): continue log = elem.history while log: # Configure nodes source_from = log.parent[6] if log.parent else '' s_node = hash((source_from, log[2])) s_color = stim_list.index(log[2]) s_color = s_color % 12 + 1 t_node = hash((log[6], log[7])) t_style = 'filled,' if color else '' t_style += 'dotted' if log.implicit else '' if log[6].endswith('Extractor'): t_color = '#0082c8' elif log[6].endswith('Filter'): t_color = '#e6194b' else: t_color = '#3cb44b' r_node = hash((log[6], log[5])) r_color = stim_list.index(log[5]) r_color = r_color % 12 + 1 # Add nodes if color: g.add_node(s_node, label=log[2], shape='ellipse', style='filled', fillcolor=s_color) g.add_node(t_node, label=log[6], shape='box', style=t_style, fillcolor=t_color) g.add_node(r_node, label=log[5], shape='ellipse', style='filled', fillcolor=r_color) else: g.add_node(s_node, label=log[2], shape='ellipse') g.add_node(t_node, label=log[6], shape='box', style=t_style) g.add_node(r_node, label=log[5], shape='ellipse') # Add edges g.add_edge(s_node, t_node, style=t_style) g.add_edge(t_node, r_node, style=t_style) log = log.parent g.draw(filename, prog='dot')
[ "def", "draw", "(", "self", ",", "filename", ",", "color", "=", "True", ")", ":", "verify_dependencies", "(", "[", "'pgv'", "]", ")", "if", "not", "hasattr", "(", "self", ",", "'_results'", ")", ":", "raise", "RuntimeError", "(", "\"Graph cannot be drawn before it is executed. \"", "\"Try calling run() first.\"", ")", "g", "=", "pgv", ".", "AGraph", "(", "directed", "=", "True", ")", "g", ".", "node_attr", "[", "'colorscheme'", "]", "=", "'set312'", "for", "elem", "in", "self", ".", "_results", ":", "if", "not", "hasattr", "(", "elem", ",", "'history'", ")", ":", "continue", "log", "=", "elem", ".", "history", "while", "log", ":", "# Configure nodes", "source_from", "=", "log", ".", "parent", "[", "6", "]", "if", "log", ".", "parent", "else", "''", "s_node", "=", "hash", "(", "(", "source_from", ",", "log", "[", "2", "]", ")", ")", "s_color", "=", "stim_list", ".", "index", "(", "log", "[", "2", "]", ")", "s_color", "=", "s_color", "%", "12", "+", "1", "t_node", "=", "hash", "(", "(", "log", "[", "6", "]", ",", "log", "[", "7", "]", ")", ")", "t_style", "=", "'filled,'", "if", "color", "else", "''", "t_style", "+=", "'dotted'", "if", "log", ".", "implicit", "else", "''", "if", "log", "[", "6", "]", ".", "endswith", "(", "'Extractor'", ")", ":", "t_color", "=", "'#0082c8'", "elif", "log", "[", "6", "]", ".", "endswith", "(", "'Filter'", ")", ":", "t_color", "=", "'#e6194b'", "else", ":", "t_color", "=", "'#3cb44b'", "r_node", "=", "hash", "(", "(", "log", "[", "6", "]", ",", "log", "[", "5", "]", ")", ")", "r_color", "=", "stim_list", ".", "index", "(", "log", "[", "5", "]", ")", "r_color", "=", "r_color", "%", "12", "+", "1", "# Add nodes", "if", "color", ":", "g", ".", "add_node", "(", "s_node", ",", "label", "=", "log", "[", "2", "]", ",", "shape", "=", "'ellipse'", ",", "style", "=", "'filled'", ",", "fillcolor", "=", "s_color", ")", "g", ".", "add_node", "(", "t_node", ",", "label", "=", "log", "[", "6", "]", ",", "shape", "=", "'box'", ",", "style", "=", "t_style", ",", "fillcolor", "=", "t_color", ")", "g", ".", "add_node", "(", "r_node", ",", "label", "=", "log", "[", "5", "]", ",", "shape", "=", "'ellipse'", ",", "style", "=", "'filled'", ",", "fillcolor", "=", "r_color", ")", "else", ":", "g", ".", "add_node", "(", "s_node", ",", "label", "=", "log", "[", "2", "]", ",", "shape", "=", "'ellipse'", ")", "g", ".", "add_node", "(", "t_node", ",", "label", "=", "log", "[", "6", "]", ",", "shape", "=", "'box'", ",", "style", "=", "t_style", ")", "g", ".", "add_node", "(", "r_node", ",", "label", "=", "log", "[", "5", "]", ",", "shape", "=", "'ellipse'", ")", "# Add edges", "g", ".", "add_edge", "(", "s_node", ",", "t_node", ",", "style", "=", "t_style", ")", "g", ".", "add_edge", "(", "t_node", ",", "r_node", ",", "style", "=", "t_style", ")", "log", "=", "log", ".", "parent", "g", ".", "draw", "(", "filename", ",", "prog", "=", "'dot'", ")" ]
Render a plot of the graph via pygraphviz. Args: filename (str): Path to save the generated image to. color (bool): If True, will color graph nodes based on their type, otherwise will draw a black-and-white graph.
[ "Render", "a", "plot", "of", "the", "graph", "via", "pygraphviz", "." ]
python
train
ForensicArtifacts/artifacts
tools/stats.py
https://github.com/ForensicArtifacts/artifacts/blob/044a63bfb4448af33d085c69066c80f9505ae7ca/tools/stats.py#L81-L112
def BuildStats(self): """Builds the statistics.""" artifact_reader = reader.YamlArtifactsReader() self.label_counts = {} self.os_counts = {} self.path_count = 0 self.reg_key_count = 0 self.source_type_counts = {} self.total_count = 0 for artifact_definition in artifact_reader.ReadDirectory('data'): if hasattr(artifact_definition, 'labels'): for label in artifact_definition.labels: self.label_counts[label] = self.label_counts.get(label, 0) + 1 for source in artifact_definition.sources: self.total_count += 1 source_type = source.type_indicator self.source_type_counts[source_type] = self.source_type_counts.get( source_type, 0) + 1 if source_type == definitions.TYPE_INDICATOR_WINDOWS_REGISTRY_KEY: self.reg_key_count += len(source.keys) elif source_type == definitions.TYPE_INDICATOR_WINDOWS_REGISTRY_VALUE: self.reg_key_count += len(source.key_value_pairs) elif source_type in (definitions.TYPE_INDICATOR_FILE, definitions.TYPE_INDICATOR_DIRECTORY): self.path_count += len(source.paths) os_list = source.supported_os for os_str in os_list: self.os_counts[os_str] = self.os_counts.get(os_str, 0) + 1
[ "def", "BuildStats", "(", "self", ")", ":", "artifact_reader", "=", "reader", ".", "YamlArtifactsReader", "(", ")", "self", ".", "label_counts", "=", "{", "}", "self", ".", "os_counts", "=", "{", "}", "self", ".", "path_count", "=", "0", "self", ".", "reg_key_count", "=", "0", "self", ".", "source_type_counts", "=", "{", "}", "self", ".", "total_count", "=", "0", "for", "artifact_definition", "in", "artifact_reader", ".", "ReadDirectory", "(", "'data'", ")", ":", "if", "hasattr", "(", "artifact_definition", ",", "'labels'", ")", ":", "for", "label", "in", "artifact_definition", ".", "labels", ":", "self", ".", "label_counts", "[", "label", "]", "=", "self", ".", "label_counts", ".", "get", "(", "label", ",", "0", ")", "+", "1", "for", "source", "in", "artifact_definition", ".", "sources", ":", "self", ".", "total_count", "+=", "1", "source_type", "=", "source", ".", "type_indicator", "self", ".", "source_type_counts", "[", "source_type", "]", "=", "self", ".", "source_type_counts", ".", "get", "(", "source_type", ",", "0", ")", "+", "1", "if", "source_type", "==", "definitions", ".", "TYPE_INDICATOR_WINDOWS_REGISTRY_KEY", ":", "self", ".", "reg_key_count", "+=", "len", "(", "source", ".", "keys", ")", "elif", "source_type", "==", "definitions", ".", "TYPE_INDICATOR_WINDOWS_REGISTRY_VALUE", ":", "self", ".", "reg_key_count", "+=", "len", "(", "source", ".", "key_value_pairs", ")", "elif", "source_type", "in", "(", "definitions", ".", "TYPE_INDICATOR_FILE", ",", "definitions", ".", "TYPE_INDICATOR_DIRECTORY", ")", ":", "self", ".", "path_count", "+=", "len", "(", "source", ".", "paths", ")", "os_list", "=", "source", ".", "supported_os", "for", "os_str", "in", "os_list", ":", "self", ".", "os_counts", "[", "os_str", "]", "=", "self", ".", "os_counts", ".", "get", "(", "os_str", ",", "0", ")", "+", "1" ]
Builds the statistics.
[ "Builds", "the", "statistics", "." ]
python
train
pypa/pipenv
pipenv/vendor/pathlib2/__init__.py
https://github.com/pypa/pipenv/blob/cae8d76c210b9777e90aab76e9c4b0e53bb19cde/pipenv/vendor/pathlib2/__init__.py#L1138-L1161
def match(self, path_pattern): """ Return True if this path matches the given pattern. """ cf = self._flavour.casefold path_pattern = cf(path_pattern) drv, root, pat_parts = self._flavour.parse_parts((path_pattern,)) if not pat_parts: raise ValueError("empty pattern") if drv and drv != cf(self._drv): return False if root and root != cf(self._root): return False parts = self._cparts if drv or root: if len(pat_parts) != len(parts): return False pat_parts = pat_parts[1:] elif len(pat_parts) > len(parts): return False for part, pat in zip(reversed(parts), reversed(pat_parts)): if not fnmatch.fnmatchcase(part, pat): return False return True
[ "def", "match", "(", "self", ",", "path_pattern", ")", ":", "cf", "=", "self", ".", "_flavour", ".", "casefold", "path_pattern", "=", "cf", "(", "path_pattern", ")", "drv", ",", "root", ",", "pat_parts", "=", "self", ".", "_flavour", ".", "parse_parts", "(", "(", "path_pattern", ",", ")", ")", "if", "not", "pat_parts", ":", "raise", "ValueError", "(", "\"empty pattern\"", ")", "if", "drv", "and", "drv", "!=", "cf", "(", "self", ".", "_drv", ")", ":", "return", "False", "if", "root", "and", "root", "!=", "cf", "(", "self", ".", "_root", ")", ":", "return", "False", "parts", "=", "self", ".", "_cparts", "if", "drv", "or", "root", ":", "if", "len", "(", "pat_parts", ")", "!=", "len", "(", "parts", ")", ":", "return", "False", "pat_parts", "=", "pat_parts", "[", "1", ":", "]", "elif", "len", "(", "pat_parts", ")", ">", "len", "(", "parts", ")", ":", "return", "False", "for", "part", ",", "pat", "in", "zip", "(", "reversed", "(", "parts", ")", ",", "reversed", "(", "pat_parts", ")", ")", ":", "if", "not", "fnmatch", ".", "fnmatchcase", "(", "part", ",", "pat", ")", ":", "return", "False", "return", "True" ]
Return True if this path matches the given pattern.
[ "Return", "True", "if", "this", "path", "matches", "the", "given", "pattern", "." ]
python
train
pyviz/holoviews
holoviews/core/dimension.py
https://github.com/pyviz/holoviews/blob/ae0dd2f3de448b0ca5e9065aabd6ef8d84c7e655/holoviews/core/dimension.py#L1444-L1456
def regroup(self, group): """Deprecated method to apply new group to items. Equivalent functionality possible using: ViewableTree(tree.relabel(group='Group').values()) """ if util.config.future_deprecations: self.param.warning('%s.regroup is deprecated, use relabel ' 'method with a group argument instead.' % type(self).__name__) new_items = [el.relabel(group=group) for el in self.data.values()] return reduce(lambda x,y: x+y, new_items)
[ "def", "regroup", "(", "self", ",", "group", ")", ":", "if", "util", ".", "config", ".", "future_deprecations", ":", "self", ".", "param", ".", "warning", "(", "'%s.regroup is deprecated, use relabel '", "'method with a group argument instead.'", "%", "type", "(", "self", ")", ".", "__name__", ")", "new_items", "=", "[", "el", ".", "relabel", "(", "group", "=", "group", ")", "for", "el", "in", "self", ".", "data", ".", "values", "(", ")", "]", "return", "reduce", "(", "lambda", "x", ",", "y", ":", "x", "+", "y", ",", "new_items", ")" ]
Deprecated method to apply new group to items. Equivalent functionality possible using: ViewableTree(tree.relabel(group='Group').values())
[ "Deprecated", "method", "to", "apply", "new", "group", "to", "items", "." ]
python
train
textX/textX
examples/StateMachine/state_machine.py
https://github.com/textX/textX/blob/5796ac38116ad86584392dbecdbf923ede746361/examples/StateMachine/state_machine.py#L46-L62
def interpret(self): """ Main interpreter loop. """ self.print_menu() while True: try: event = input() if event == 'q': return event = int(event) event = self.model.events[event-1] except Exception: print('Invalid input') self.event(event) self.print_menu()
[ "def", "interpret", "(", "self", ")", ":", "self", ".", "print_menu", "(", ")", "while", "True", ":", "try", ":", "event", "=", "input", "(", ")", "if", "event", "==", "'q'", ":", "return", "event", "=", "int", "(", "event", ")", "event", "=", "self", ".", "model", ".", "events", "[", "event", "-", "1", "]", "except", "Exception", ":", "print", "(", "'Invalid input'", ")", "self", ".", "event", "(", "event", ")", "self", ".", "print_menu", "(", ")" ]
Main interpreter loop.
[ "Main", "interpreter", "loop", "." ]
python
train
orbingol/NURBS-Python
geomdl/_tessellate.py
https://github.com/orbingol/NURBS-Python/blob/b1c6a8b51cf143ff58761438e93ba6baef470627/geomdl/_tessellate.py#L179-L214
def make_quad_mesh(points, size_u, size_v): """ Generates a mesh of quadrilateral elements. :param points: list of points :type points: list, tuple :param size_u: number of points on the u-direction (column) :type size_u: int :param size_v: number of points on the v-direction (row) :type size_v: int :return: a tuple containing lists of vertices and quads :rtype: tuple """ # Numbering vertex_idx = 0 quad_idx = 0 # Generate vertices vertices = [] for pt in points: vrt = Vertex(*pt, id=vertex_idx) vertices.append(vrt) vertex_idx += 1 # Generate quads quads = [] for i in range(0, size_u - 1): for j in range(0, size_v - 1): v1 = vertices[j + (size_v * i)] v2 = vertices[j + (size_v * (i + 1))] v3 = vertices[j + 1 + (size_v * (i + 1))] v4 = vertices[j + 1 + (size_v * i)] qd = Quad(v1, v2, v3, v4, id=quad_idx) quads.append(qd) quad_idx += 1 return vertices, quads
[ "def", "make_quad_mesh", "(", "points", ",", "size_u", ",", "size_v", ")", ":", "# Numbering", "vertex_idx", "=", "0", "quad_idx", "=", "0", "# Generate vertices", "vertices", "=", "[", "]", "for", "pt", "in", "points", ":", "vrt", "=", "Vertex", "(", "*", "pt", ",", "id", "=", "vertex_idx", ")", "vertices", ".", "append", "(", "vrt", ")", "vertex_idx", "+=", "1", "# Generate quads", "quads", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "size_u", "-", "1", ")", ":", "for", "j", "in", "range", "(", "0", ",", "size_v", "-", "1", ")", ":", "v1", "=", "vertices", "[", "j", "+", "(", "size_v", "*", "i", ")", "]", "v2", "=", "vertices", "[", "j", "+", "(", "size_v", "*", "(", "i", "+", "1", ")", ")", "]", "v3", "=", "vertices", "[", "j", "+", "1", "+", "(", "size_v", "*", "(", "i", "+", "1", ")", ")", "]", "v4", "=", "vertices", "[", "j", "+", "1", "+", "(", "size_v", "*", "i", ")", "]", "qd", "=", "Quad", "(", "v1", ",", "v2", ",", "v3", ",", "v4", ",", "id", "=", "quad_idx", ")", "quads", ".", "append", "(", "qd", ")", "quad_idx", "+=", "1", "return", "vertices", ",", "quads" ]
Generates a mesh of quadrilateral elements. :param points: list of points :type points: list, tuple :param size_u: number of points on the u-direction (column) :type size_u: int :param size_v: number of points on the v-direction (row) :type size_v: int :return: a tuple containing lists of vertices and quads :rtype: tuple
[ "Generates", "a", "mesh", "of", "quadrilateral", "elements", "." ]
python
train
annoviko/pyclustering
pyclustering/utils/__init__.py
https://github.com/annoviko/pyclustering/blob/98aa0dd89fd36f701668fb1eb29c8fb5662bf7d0/pyclustering/utils/__init__.py#L1202-L1213
def list_math_subtraction(a, b): """! @brief Calculates subtraction of two lists. @details Each element from list 'a' is subtracted by element from list 'b' accordingly. @param[in] a (list): List of elements that supports mathematical subtraction. @param[in] b (list): List of elements that supports mathematical subtraction. @return (list) Results of subtraction of two lists. """ return [a[i] - b[i] for i in range(len(a))];
[ "def", "list_math_subtraction", "(", "a", ",", "b", ")", ":", "return", "[", "a", "[", "i", "]", "-", "b", "[", "i", "]", "for", "i", "in", "range", "(", "len", "(", "a", ")", ")", "]" ]
! @brief Calculates subtraction of two lists. @details Each element from list 'a' is subtracted by element from list 'b' accordingly. @param[in] a (list): List of elements that supports mathematical subtraction. @param[in] b (list): List of elements that supports mathematical subtraction. @return (list) Results of subtraction of two lists.
[ "!" ]
python
valid
saltstack/salt
salt/spm/__init__.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/spm/__init__.py#L1093-L1112
def _render(self, data, formula_def): ''' Render a [pre|post]_local_state or [pre|post]_tgt_state script ''' # FORMULA can contain a renderer option renderer = formula_def.get('renderer', self.opts.get('renderer', 'jinja|yaml')) rend = salt.loader.render(self.opts, {}) blacklist = self.opts.get('renderer_blacklist') whitelist = self.opts.get('renderer_whitelist') template_vars = formula_def.copy() template_vars['opts'] = self.opts.copy() return compile_template( ':string:', rend, renderer, blacklist, whitelist, input_data=data, **template_vars )
[ "def", "_render", "(", "self", ",", "data", ",", "formula_def", ")", ":", "# FORMULA can contain a renderer option", "renderer", "=", "formula_def", ".", "get", "(", "'renderer'", ",", "self", ".", "opts", ".", "get", "(", "'renderer'", ",", "'jinja|yaml'", ")", ")", "rend", "=", "salt", ".", "loader", ".", "render", "(", "self", ".", "opts", ",", "{", "}", ")", "blacklist", "=", "self", ".", "opts", ".", "get", "(", "'renderer_blacklist'", ")", "whitelist", "=", "self", ".", "opts", ".", "get", "(", "'renderer_whitelist'", ")", "template_vars", "=", "formula_def", ".", "copy", "(", ")", "template_vars", "[", "'opts'", "]", "=", "self", ".", "opts", ".", "copy", "(", ")", "return", "compile_template", "(", "':string:'", ",", "rend", ",", "renderer", ",", "blacklist", ",", "whitelist", ",", "input_data", "=", "data", ",", "*", "*", "template_vars", ")" ]
Render a [pre|post]_local_state or [pre|post]_tgt_state script
[ "Render", "a", "[", "pre|post", "]", "_local_state", "or", "[", "pre|post", "]", "_tgt_state", "script" ]
python
train
abseil/abseil-py
absl/logging/__init__.py
https://github.com/abseil/abseil-py/blob/9d73fdaa23a6b6726aa5731390f388c0c6250ee5/absl/logging/__init__.py#L569-L611
def find_log_dir_and_names(program_name=None, log_dir=None): """Computes the directory and filename prefix for log file. Args: program_name: str|None, the filename part of the path to the program that is running without its extension. e.g: if your program is called 'usr/bin/foobar.py' this method should probably be called with program_name='foobar' However, this is just a convention, you can pass in any string you want, and it will be used as part of the log filename. If you don't pass in anything, the default behavior is as described in the example. In python standard logging mode, the program_name will be prepended with py_ if it is the program_name argument is omitted. log_dir: str|None, the desired log directory. Returns: (log_dir, file_prefix, symlink_prefix) """ if not program_name: # Strip the extension (foobar.par becomes foobar, and # fubar.py becomes fubar). We do this so that the log # file names are similar to C++ log file names. program_name = os.path.splitext(os.path.basename(sys.argv[0]))[0] # Prepend py_ to files so that python code gets a unique file, and # so that C++ libraries do not try to write to the same log files as us. program_name = 'py_%s' % program_name actual_log_dir = find_log_dir(log_dir=log_dir) try: username = getpass.getuser() except KeyError: # This can happen, e.g. when running under docker w/o passwd file. if hasattr(os, 'getuid'): # Windows doesn't have os.getuid username = str(os.getuid()) else: username = 'unknown' hostname = socket.gethostname() file_prefix = '%s.%s.%s.log' % (program_name, hostname, username) return actual_log_dir, file_prefix, program_name
[ "def", "find_log_dir_and_names", "(", "program_name", "=", "None", ",", "log_dir", "=", "None", ")", ":", "if", "not", "program_name", ":", "# Strip the extension (foobar.par becomes foobar, and", "# fubar.py becomes fubar). We do this so that the log", "# file names are similar to C++ log file names.", "program_name", "=", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "sys", ".", "argv", "[", "0", "]", ")", ")", "[", "0", "]", "# Prepend py_ to files so that python code gets a unique file, and", "# so that C++ libraries do not try to write to the same log files as us.", "program_name", "=", "'py_%s'", "%", "program_name", "actual_log_dir", "=", "find_log_dir", "(", "log_dir", "=", "log_dir", ")", "try", ":", "username", "=", "getpass", ".", "getuser", "(", ")", "except", "KeyError", ":", "# This can happen, e.g. when running under docker w/o passwd file.", "if", "hasattr", "(", "os", ",", "'getuid'", ")", ":", "# Windows doesn't have os.getuid", "username", "=", "str", "(", "os", ".", "getuid", "(", ")", ")", "else", ":", "username", "=", "'unknown'", "hostname", "=", "socket", ".", "gethostname", "(", ")", "file_prefix", "=", "'%s.%s.%s.log'", "%", "(", "program_name", ",", "hostname", ",", "username", ")", "return", "actual_log_dir", ",", "file_prefix", ",", "program_name" ]
Computes the directory and filename prefix for log file. Args: program_name: str|None, the filename part of the path to the program that is running without its extension. e.g: if your program is called 'usr/bin/foobar.py' this method should probably be called with program_name='foobar' However, this is just a convention, you can pass in any string you want, and it will be used as part of the log filename. If you don't pass in anything, the default behavior is as described in the example. In python standard logging mode, the program_name will be prepended with py_ if it is the program_name argument is omitted. log_dir: str|None, the desired log directory. Returns: (log_dir, file_prefix, symlink_prefix)
[ "Computes", "the", "directory", "and", "filename", "prefix", "for", "log", "file", "." ]
python
train
FactoryBoy/factory_boy
factory/builder.py
https://github.com/FactoryBoy/factory_boy/blob/edaa7c7f5a14065b229927903bd7989cc93cd069/factory/builder.py#L70-L94
def update(self, values): """Add new declarations to this set/ Args: values (dict(name, declaration)): the declarations to ingest. """ for k, v in values.items(): root, sub = self.split(k) if sub is None: self.declarations[root] = v else: self.contexts[root][sub] = v extra_context_keys = set(self.contexts) - set(self.declarations) if extra_context_keys: raise errors.InvalidDeclarationError( "Received deep context for unknown fields: %r (known=%r)" % ( { self.join(root, sub): v for root in extra_context_keys for sub, v in self.contexts[root].items() }, sorted(self.declarations), ) )
[ "def", "update", "(", "self", ",", "values", ")", ":", "for", "k", ",", "v", "in", "values", ".", "items", "(", ")", ":", "root", ",", "sub", "=", "self", ".", "split", "(", "k", ")", "if", "sub", "is", "None", ":", "self", ".", "declarations", "[", "root", "]", "=", "v", "else", ":", "self", ".", "contexts", "[", "root", "]", "[", "sub", "]", "=", "v", "extra_context_keys", "=", "set", "(", "self", ".", "contexts", ")", "-", "set", "(", "self", ".", "declarations", ")", "if", "extra_context_keys", ":", "raise", "errors", ".", "InvalidDeclarationError", "(", "\"Received deep context for unknown fields: %r (known=%r)\"", "%", "(", "{", "self", ".", "join", "(", "root", ",", "sub", ")", ":", "v", "for", "root", "in", "extra_context_keys", "for", "sub", ",", "v", "in", "self", ".", "contexts", "[", "root", "]", ".", "items", "(", ")", "}", ",", "sorted", "(", "self", ".", "declarations", ")", ",", ")", ")" ]
Add new declarations to this set/ Args: values (dict(name, declaration)): the declarations to ingest.
[ "Add", "new", "declarations", "to", "this", "set", "/" ]
python
train
dbrattli/OSlash
oslash/abc/monoid.py
https://github.com/dbrattli/OSlash/blob/ffdc714c5d454f7519f740254de89f70850929eb/oslash/abc/monoid.py#L48-L60
def concat(cls, xs): """mconcat :: [m] -> m Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types. """ def reducer(a, b): return a.append(b) return reduce(reducer, xs, cls.empty())
[ "def", "concat", "(", "cls", ",", "xs", ")", ":", "def", "reducer", "(", "a", ",", "b", ")", ":", "return", "a", ".", "append", "(", "b", ")", "return", "reduce", "(", "reducer", ",", "xs", ",", "cls", ".", "empty", "(", ")", ")" ]
mconcat :: [m] -> m Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.
[ "mconcat", "::", "[", "m", "]", "-", ">", "m" ]
python
train
google/tangent
tangent/ast.py
https://github.com/google/tangent/blob/6533e83af09de7345d1b438512679992f080dcc9/tangent/ast.py#L83-L90
def copy_node(node): """Copy a node but keep its annotations intact.""" if not isinstance(node, gast.AST): return [copy_node(n) for n in node] new_node = copy.deepcopy(node) setattr(new_node, anno.ANNOTATION_FIELD, getattr(node, anno.ANNOTATION_FIELD, {}).copy()) return new_node
[ "def", "copy_node", "(", "node", ")", ":", "if", "not", "isinstance", "(", "node", ",", "gast", ".", "AST", ")", ":", "return", "[", "copy_node", "(", "n", ")", "for", "n", "in", "node", "]", "new_node", "=", "copy", ".", "deepcopy", "(", "node", ")", "setattr", "(", "new_node", ",", "anno", ".", "ANNOTATION_FIELD", ",", "getattr", "(", "node", ",", "anno", ".", "ANNOTATION_FIELD", ",", "{", "}", ")", ".", "copy", "(", ")", ")", "return", "new_node" ]
Copy a node but keep its annotations intact.
[ "Copy", "a", "node", "but", "keep", "its", "annotations", "intact", "." ]
python
train
rocioar/flake8-django
flake8_django/checkers/model_form.py
https://github.com/rocioar/flake8-django/blob/917f196e2518412bda6e841c1ed3de312004fc67/flake8_django/checkers/model_form.py#L39-L68
def run(self, node): """ Captures the use of exclude in ModelForm Meta """ if not self.checker_applies(node): return issues = [] for body in node.body: if not isinstance(body, ast.ClassDef): continue for element in body.body: if not isinstance(element, ast.Assign): continue for target in element.targets: if target.id == 'fields' and self.is_string_dunder_all(element): issues.append( DJ07( lineno=node.lineno, col=node.col_offset, ) ) elif target.id == 'exclude': issues.append( DJ06( lineno=node.lineno, col=node.col_offset, ) ) return issues
[ "def", "run", "(", "self", ",", "node", ")", ":", "if", "not", "self", ".", "checker_applies", "(", "node", ")", ":", "return", "issues", "=", "[", "]", "for", "body", "in", "node", ".", "body", ":", "if", "not", "isinstance", "(", "body", ",", "ast", ".", "ClassDef", ")", ":", "continue", "for", "element", "in", "body", ".", "body", ":", "if", "not", "isinstance", "(", "element", ",", "ast", ".", "Assign", ")", ":", "continue", "for", "target", "in", "element", ".", "targets", ":", "if", "target", ".", "id", "==", "'fields'", "and", "self", ".", "is_string_dunder_all", "(", "element", ")", ":", "issues", ".", "append", "(", "DJ07", "(", "lineno", "=", "node", ".", "lineno", ",", "col", "=", "node", ".", "col_offset", ",", ")", ")", "elif", "target", ".", "id", "==", "'exclude'", ":", "issues", ".", "append", "(", "DJ06", "(", "lineno", "=", "node", ".", "lineno", ",", "col", "=", "node", ".", "col_offset", ",", ")", ")", "return", "issues" ]
Captures the use of exclude in ModelForm Meta
[ "Captures", "the", "use", "of", "exclude", "in", "ModelForm", "Meta" ]
python
train
ioos/compliance-checker
compliance_checker/cf/cf.py
https://github.com/ioos/compliance-checker/blob/ee89c27b0daade58812489a2da3aa3b6859eafd9/compliance_checker/cf/cf.py#L1802-L1850
def check_dimensionless_vertical_coordinate(self, ds): ''' Check the validity of dimensionless coordinates under CF CF §4.3.2 The units attribute is not required for dimensionless coordinates. The standard_name attribute associates a coordinate with its definition from Appendix D, Dimensionless Vertical Coordinates. The definition provides a mapping between the dimensionless coordinate values and dimensional values that can positively and uniquely indicate the location of the data. A new attribute, formula_terms, is used to associate terms in the definitions with variables in a netCDF file. To maintain backwards compatibility with COARDS the use of these attributes is not required, but is strongly recommended. :param netCDF4.Dataset ds: An open netCDF dataset :rtype: list :return: List of results ''' ret_val = [] z_variables = cfutil.get_z_variables(ds) deprecated_units = [ 'level', 'layer', 'sigma_level' ] for name in z_variables: variable = ds.variables[name] standard_name = getattr(variable, 'standard_name', None) units = getattr(variable, 'units', None) formula_terms = getattr(variable, 'formula_terms', None) # Skip the variable if it's dimensional if (formula_terms is None and standard_name not in dimless_vertical_coordinates): continue is_not_deprecated = TestCtx(BaseCheck.LOW, self.section_titles["4.3"]) is_not_deprecated.assert_true(units not in deprecated_units, "§4.3.2: units are deprecated by CF in variable {}: {}" "".format(name, units)) ret_val.append(is_not_deprecated.to_result()) ret_val.append(self._check_formula_terms(ds, name)) return ret_val
[ "def", "check_dimensionless_vertical_coordinate", "(", "self", ",", "ds", ")", ":", "ret_val", "=", "[", "]", "z_variables", "=", "cfutil", ".", "get_z_variables", "(", "ds", ")", "deprecated_units", "=", "[", "'level'", ",", "'layer'", ",", "'sigma_level'", "]", "for", "name", "in", "z_variables", ":", "variable", "=", "ds", ".", "variables", "[", "name", "]", "standard_name", "=", "getattr", "(", "variable", ",", "'standard_name'", ",", "None", ")", "units", "=", "getattr", "(", "variable", ",", "'units'", ",", "None", ")", "formula_terms", "=", "getattr", "(", "variable", ",", "'formula_terms'", ",", "None", ")", "# Skip the variable if it's dimensional", "if", "(", "formula_terms", "is", "None", "and", "standard_name", "not", "in", "dimless_vertical_coordinates", ")", ":", "continue", "is_not_deprecated", "=", "TestCtx", "(", "BaseCheck", ".", "LOW", ",", "self", ".", "section_titles", "[", "\"4.3\"", "]", ")", "is_not_deprecated", ".", "assert_true", "(", "units", "not", "in", "deprecated_units", ",", "\"§4.3.2: units are deprecated by CF in variable {}: {}\"", "\"\"", ".", "format", "(", "name", ",", "units", ")", ")", "ret_val", ".", "append", "(", "is_not_deprecated", ".", "to_result", "(", ")", ")", "ret_val", ".", "append", "(", "self", ".", "_check_formula_terms", "(", "ds", ",", "name", ")", ")", "return", "ret_val" ]
Check the validity of dimensionless coordinates under CF CF §4.3.2 The units attribute is not required for dimensionless coordinates. The standard_name attribute associates a coordinate with its definition from Appendix D, Dimensionless Vertical Coordinates. The definition provides a mapping between the dimensionless coordinate values and dimensional values that can positively and uniquely indicate the location of the data. A new attribute, formula_terms, is used to associate terms in the definitions with variables in a netCDF file. To maintain backwards compatibility with COARDS the use of these attributes is not required, but is strongly recommended. :param netCDF4.Dataset ds: An open netCDF dataset :rtype: list :return: List of results
[ "Check", "the", "validity", "of", "dimensionless", "coordinates", "under", "CF" ]
python
train
dnanexus/dx-toolkit
src/python/dxpy/utils/resolver.py
https://github.com/dnanexus/dx-toolkit/blob/74befb53ad90fcf902d8983ae6d74580f402d619/src/python/dxpy/utils/resolver.py#L615-L718
def _check_resolution_needed(path, project, folderpath, entity_name, expected_classes=None, describe=True, enclose_in_list=False): """ :param path: Path to the object that required resolution; propagated from command-line :type path: string :param project: The potential project the entity belongs to :type project: string :param folderpath: Path to the entity :type folderpath: string :param entity_name: The name of the entity :type entity_name: string :param expected_classes: A list of expected classes the entity is allowed to belong to if it is an ID (e.g. "record", "file", "job"); if None, then entity_name may be any data object class :type expected_classes: list or None :param describe: Dictionary of inputs to the describe API call; if no describe input is provided (default value True), then an empty mapping is passed to the describe API method :type describe: dict or True :param enclose_in_list: Whether the describe output is to be in the form of a list (if False, the last return value is a dictionary; if True, the last return value is a list of one dictionary); it will only have an effect if entity_name is a DX ID and is described :type enclose_in_list: boolean :returns: Whether or not the entity needs to be resolved with a more general resolution method, the project, the folderpath, and the entity name :rtype: tuple of 4 elements :raises: ResolutionError if the entity fails to be described Attempts to resolve the entity to a folder or an object, and describes the entity iff it is a DX ID of an expected class in the list expected_classes. Otherwise, determines whether or not more general resolution may be able to resolve the entity. If a more general resolution method is needed, then the return values will look like: (True, <project>, <folderpath>, <entity_name>) If the entity is a DX ID, but is not one of the supplied expected classes, then the return values will look like: (False, None, None, None) If the entity can be successfully described, then the return values will look like: <desc_output> ::= {"id": entity_name, "describe": {...}} <desc_or_desc_list> ::= <desc_output> || [<desc_output>] (False, <project>, <folderpath>, <desc_or_desc_list>) If the entity may be a folder, then the return values will look like: (False, <project>, <folderpath>, None) TODO: Allow arbitrary flags for the describe mapping. """ if entity_name is None: # Definitely a folder (or project) # TODO: find a good way to check if folder exists and expected=folder return False, project, folderpath, None elif is_hashid(entity_name): found_valid_class = True if expected_classes is not None: found_valid_class = False for klass in expected_classes: if entity_name.startswith(klass): found_valid_class = True if not found_valid_class: return False, None, None, None if describe is True: describe = {} # entity is an ID of a valid class, try to describe it if 'project' not in describe: if project != dxpy.WORKSPACE_ID: describe['project'] = project elif dxpy.WORKSPACE_ID is not None: describe['project'] = dxpy.WORKSPACE_ID try: desc = dxpy.DXHTTPRequest('/' + entity_name + '/describe', describe) desc = dxpy.append_underlying_workflow_describe(desc) except Exception as details: if 'project' in describe: # Now try it without the hint del describe['project'] try: desc = dxpy.DXHTTPRequest('/' + entity_name + '/describe', describe) except Exception as details2: raise ResolutionError(str(details2)) else: raise ResolutionError(str(details)) result = {"id": entity_name, "describe": desc} if enclose_in_list: return False, project, folderpath, [result] else: return False, project, folderpath, result else: # Need to resolve later return True, project, folderpath, entity_name
[ "def", "_check_resolution_needed", "(", "path", ",", "project", ",", "folderpath", ",", "entity_name", ",", "expected_classes", "=", "None", ",", "describe", "=", "True", ",", "enclose_in_list", "=", "False", ")", ":", "if", "entity_name", "is", "None", ":", "# Definitely a folder (or project)", "# TODO: find a good way to check if folder exists and expected=folder", "return", "False", ",", "project", ",", "folderpath", ",", "None", "elif", "is_hashid", "(", "entity_name", ")", ":", "found_valid_class", "=", "True", "if", "expected_classes", "is", "not", "None", ":", "found_valid_class", "=", "False", "for", "klass", "in", "expected_classes", ":", "if", "entity_name", ".", "startswith", "(", "klass", ")", ":", "found_valid_class", "=", "True", "if", "not", "found_valid_class", ":", "return", "False", ",", "None", ",", "None", ",", "None", "if", "describe", "is", "True", ":", "describe", "=", "{", "}", "# entity is an ID of a valid class, try to describe it", "if", "'project'", "not", "in", "describe", ":", "if", "project", "!=", "dxpy", ".", "WORKSPACE_ID", ":", "describe", "[", "'project'", "]", "=", "project", "elif", "dxpy", ".", "WORKSPACE_ID", "is", "not", "None", ":", "describe", "[", "'project'", "]", "=", "dxpy", ".", "WORKSPACE_ID", "try", ":", "desc", "=", "dxpy", ".", "DXHTTPRequest", "(", "'/'", "+", "entity_name", "+", "'/describe'", ",", "describe", ")", "desc", "=", "dxpy", ".", "append_underlying_workflow_describe", "(", "desc", ")", "except", "Exception", "as", "details", ":", "if", "'project'", "in", "describe", ":", "# Now try it without the hint", "del", "describe", "[", "'project'", "]", "try", ":", "desc", "=", "dxpy", ".", "DXHTTPRequest", "(", "'/'", "+", "entity_name", "+", "'/describe'", ",", "describe", ")", "except", "Exception", "as", "details2", ":", "raise", "ResolutionError", "(", "str", "(", "details2", ")", ")", "else", ":", "raise", "ResolutionError", "(", "str", "(", "details", ")", ")", "result", "=", "{", "\"id\"", ":", "entity_name", ",", "\"describe\"", ":", "desc", "}", "if", "enclose_in_list", ":", "return", "False", ",", "project", ",", "folderpath", ",", "[", "result", "]", "else", ":", "return", "False", ",", "project", ",", "folderpath", ",", "result", "else", ":", "# Need to resolve later", "return", "True", ",", "project", ",", "folderpath", ",", "entity_name" ]
:param path: Path to the object that required resolution; propagated from command-line :type path: string :param project: The potential project the entity belongs to :type project: string :param folderpath: Path to the entity :type folderpath: string :param entity_name: The name of the entity :type entity_name: string :param expected_classes: A list of expected classes the entity is allowed to belong to if it is an ID (e.g. "record", "file", "job"); if None, then entity_name may be any data object class :type expected_classes: list or None :param describe: Dictionary of inputs to the describe API call; if no describe input is provided (default value True), then an empty mapping is passed to the describe API method :type describe: dict or True :param enclose_in_list: Whether the describe output is to be in the form of a list (if False, the last return value is a dictionary; if True, the last return value is a list of one dictionary); it will only have an effect if entity_name is a DX ID and is described :type enclose_in_list: boolean :returns: Whether or not the entity needs to be resolved with a more general resolution method, the project, the folderpath, and the entity name :rtype: tuple of 4 elements :raises: ResolutionError if the entity fails to be described Attempts to resolve the entity to a folder or an object, and describes the entity iff it is a DX ID of an expected class in the list expected_classes. Otherwise, determines whether or not more general resolution may be able to resolve the entity. If a more general resolution method is needed, then the return values will look like: (True, <project>, <folderpath>, <entity_name>) If the entity is a DX ID, but is not one of the supplied expected classes, then the return values will look like: (False, None, None, None) If the entity can be successfully described, then the return values will look like: <desc_output> ::= {"id": entity_name, "describe": {...}} <desc_or_desc_list> ::= <desc_output> || [<desc_output>] (False, <project>, <folderpath>, <desc_or_desc_list>) If the entity may be a folder, then the return values will look like: (False, <project>, <folderpath>, None) TODO: Allow arbitrary flags for the describe mapping.
[ ":", "param", "path", ":", "Path", "to", "the", "object", "that", "required", "resolution", ";", "propagated", "from", "command", "-", "line", ":", "type", "path", ":", "string", ":", "param", "project", ":", "The", "potential", "project", "the", "entity", "belongs", "to", ":", "type", "project", ":", "string", ":", "param", "folderpath", ":", "Path", "to", "the", "entity", ":", "type", "folderpath", ":", "string", ":", "param", "entity_name", ":", "The", "name", "of", "the", "entity", ":", "type", "entity_name", ":", "string", ":", "param", "expected_classes", ":", "A", "list", "of", "expected", "classes", "the", "entity", "is", "allowed", "to", "belong", "to", "if", "it", "is", "an", "ID", "(", "e", ".", "g", ".", "record", "file", "job", ")", ";", "if", "None", "then", "entity_name", "may", "be", "any", "data", "object", "class", ":", "type", "expected_classes", ":", "list", "or", "None", ":", "param", "describe", ":", "Dictionary", "of", "inputs", "to", "the", "describe", "API", "call", ";", "if", "no", "describe", "input", "is", "provided", "(", "default", "value", "True", ")", "then", "an", "empty", "mapping", "is", "passed", "to", "the", "describe", "API", "method", ":", "type", "describe", ":", "dict", "or", "True", ":", "param", "enclose_in_list", ":", "Whether", "the", "describe", "output", "is", "to", "be", "in", "the", "form", "of", "a", "list", "(", "if", "False", "the", "last", "return", "value", "is", "a", "dictionary", ";", "if", "True", "the", "last", "return", "value", "is", "a", "list", "of", "one", "dictionary", ")", ";", "it", "will", "only", "have", "an", "effect", "if", "entity_name", "is", "a", "DX", "ID", "and", "is", "described", ":", "type", "enclose_in_list", ":", "boolean", ":", "returns", ":", "Whether", "or", "not", "the", "entity", "needs", "to", "be", "resolved", "with", "a", "more", "general", "resolution", "method", "the", "project", "the", "folderpath", "and", "the", "entity", "name", ":", "rtype", ":", "tuple", "of", "4", "elements", ":", "raises", ":", "ResolutionError", "if", "the", "entity", "fails", "to", "be", "described" ]
python
train
kislyuk/ensure
ensure/main.py
https://github.com/kislyuk/ensure/blob/0a562a4b469ffbaf71c75dc4d394e94334c831f0/ensure/main.py#L282-L287
def does_not_contain(self, element): """ Ensures :attr:`subject` does not contain *element*. """ self._run(unittest_case.assertNotIn, (element, self._subject)) return ChainInspector(self._subject)
[ "def", "does_not_contain", "(", "self", ",", "element", ")", ":", "self", ".", "_run", "(", "unittest_case", ".", "assertNotIn", ",", "(", "element", ",", "self", ".", "_subject", ")", ")", "return", "ChainInspector", "(", "self", ".", "_subject", ")" ]
Ensures :attr:`subject` does not contain *element*.
[ "Ensures", ":", "attr", ":", "subject", "does", "not", "contain", "*", "element", "*", "." ]
python
train
dhermes/bezier
src/bezier/curve.py
https://github.com/dhermes/bezier/blob/4f941f82637a8e70a5b159a9203132192e23406b/src/bezier/curve.py#L443-L538
def reduce_(self): r"""Return a degree-reduced version of the current curve. .. _pseudo-inverse: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse Does this by converting the current nodes :math:`v_0, \ldots, v_n` to new nodes :math:`w_0, \ldots, w_{n - 1}` that correspond to reversing the :meth:`elevate` process. This uses the `pseudo-inverse`_ of the elevation matrix. For example when elevating from degree 2 to 3, the matrix :math:`E_2` is given by .. math:: \mathbf{v} = \left[\begin{array}{c c c} v_0 & v_1 & v_2 \end{array}\right] \longmapsto \left[\begin{array}{c c c c} v_0 & \frac{v_0 + 2 v_1}{3} & \frac{2 v_1 + v_2}{3} & v_2 \end{array}\right] = \frac{1}{3} \mathbf{v} \left[\begin{array}{c c c c} 3 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 3 \end{array}\right] and the (right) pseudo-inverse is given by .. math:: R_2 = E_2^T \left(E_2 E_2^T\right)^{-1} = \frac{1}{20} \left[\begin{array}{c c c} 19 & -5 & 1 \\ 3 & 15 & -3 \\ -3 & 15 & 3 \\ 1 & -5 & 19 \end{array}\right]. .. warning:: Though degree-elevation preserves the start and end nodes, degree reduction has no such guarantee. Rather, the nodes produced are "best" in the least squares sense (when solving the normal equations). .. image:: ../../images/curve_reduce.png :align: center .. testsetup:: curve-reduce, curve-reduce-approx import numpy as np import bezier .. doctest:: curve-reduce :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [-3.0, 0.0, 1.0, 0.0], ... [ 3.0, 2.0, 3.0, 6.0], ... ]) >>> curve = bezier.Curve(nodes, degree=3) >>> reduced = curve.reduce_() >>> reduced <Curve (degree=2, dimension=2)> >>> reduced.nodes array([[-3. , 1.5, 0. ], [ 3. , 1.5, 6. ]]) .. testcleanup:: curve-reduce import make_images make_images.curve_reduce(curve, reduced) In the case that the current curve **is not** degree-elevated. .. image:: ../../images/curve_reduce_approx.png :align: center .. doctest:: curve-reduce-approx :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [0.0, 1.25, 3.75, 5.0], ... [2.5, 5.0 , 7.5 , 2.5], ... ]) >>> curve = bezier.Curve(nodes, degree=3) >>> reduced = curve.reduce_() >>> reduced <Curve (degree=2, dimension=2)> >>> reduced.nodes array([[-0.125, 2.5 , 5.125], [ 2.125, 8.125, 2.875]]) .. testcleanup:: curve-reduce-approx import make_images make_images.curve_reduce_approx(curve, reduced) Returns: Curve: The degree-reduced curve. """ new_nodes = _curve_helpers.reduce_pseudo_inverse(self._nodes) return Curve(new_nodes, self._degree - 1, _copy=False)
[ "def", "reduce_", "(", "self", ")", ":", "new_nodes", "=", "_curve_helpers", ".", "reduce_pseudo_inverse", "(", "self", ".", "_nodes", ")", "return", "Curve", "(", "new_nodes", ",", "self", ".", "_degree", "-", "1", ",", "_copy", "=", "False", ")" ]
r"""Return a degree-reduced version of the current curve. .. _pseudo-inverse: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse Does this by converting the current nodes :math:`v_0, \ldots, v_n` to new nodes :math:`w_0, \ldots, w_{n - 1}` that correspond to reversing the :meth:`elevate` process. This uses the `pseudo-inverse`_ of the elevation matrix. For example when elevating from degree 2 to 3, the matrix :math:`E_2` is given by .. math:: \mathbf{v} = \left[\begin{array}{c c c} v_0 & v_1 & v_2 \end{array}\right] \longmapsto \left[\begin{array}{c c c c} v_0 & \frac{v_0 + 2 v_1}{3} & \frac{2 v_1 + v_2}{3} & v_2 \end{array}\right] = \frac{1}{3} \mathbf{v} \left[\begin{array}{c c c c} 3 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 3 \end{array}\right] and the (right) pseudo-inverse is given by .. math:: R_2 = E_2^T \left(E_2 E_2^T\right)^{-1} = \frac{1}{20} \left[\begin{array}{c c c} 19 & -5 & 1 \\ 3 & 15 & -3 \\ -3 & 15 & 3 \\ 1 & -5 & 19 \end{array}\right]. .. warning:: Though degree-elevation preserves the start and end nodes, degree reduction has no such guarantee. Rather, the nodes produced are "best" in the least squares sense (when solving the normal equations). .. image:: ../../images/curve_reduce.png :align: center .. testsetup:: curve-reduce, curve-reduce-approx import numpy as np import bezier .. doctest:: curve-reduce :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [-3.0, 0.0, 1.0, 0.0], ... [ 3.0, 2.0, 3.0, 6.0], ... ]) >>> curve = bezier.Curve(nodes, degree=3) >>> reduced = curve.reduce_() >>> reduced <Curve (degree=2, dimension=2)> >>> reduced.nodes array([[-3. , 1.5, 0. ], [ 3. , 1.5, 6. ]]) .. testcleanup:: curve-reduce import make_images make_images.curve_reduce(curve, reduced) In the case that the current curve **is not** degree-elevated. .. image:: ../../images/curve_reduce_approx.png :align: center .. doctest:: curve-reduce-approx :options: +NORMALIZE_WHITESPACE >>> nodes = np.asfortranarray([ ... [0.0, 1.25, 3.75, 5.0], ... [2.5, 5.0 , 7.5 , 2.5], ... ]) >>> curve = bezier.Curve(nodes, degree=3) >>> reduced = curve.reduce_() >>> reduced <Curve (degree=2, dimension=2)> >>> reduced.nodes array([[-0.125, 2.5 , 5.125], [ 2.125, 8.125, 2.875]]) .. testcleanup:: curve-reduce-approx import make_images make_images.curve_reduce_approx(curve, reduced) Returns: Curve: The degree-reduced curve.
[ "r", "Return", "a", "degree", "-", "reduced", "version", "of", "the", "current", "curve", "." ]
python
train
project-rig/rig
rig/place_and_route/place/breadth_first.py
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/place_and_route/place/breadth_first.py#L8-L39
def breadth_first_vertex_order(vertices_resources, nets): """A generator which iterates over a set of vertices in a breadth-first order in terms of connectivity. For use as a vertex ordering for the sequential placer. """ # Special case: no vertices, just stop immediately if len(vertices_resources) == 0: return # Enumerate the set of nets attached to each vertex vertex_neighbours = defaultdict(set) for net in nets: # Note: Iterating over a Net object produces the set of vertices # involved in the net. vertex_neighbours[net.source].update(net) for sink in net.sinks: vertex_neighbours[sink].update(net) # Perform a breadth-first iteration over the vertices. unplaced_vertices = set(vertices_resources) vertex_queue = deque() while vertex_queue or unplaced_vertices: if not vertex_queue: vertex_queue.append(unplaced_vertices.pop()) vertex = vertex_queue.popleft() yield vertex vertex_queue.extend(v for v in vertex_neighbours[vertex] if v in unplaced_vertices) unplaced_vertices.difference_update(vertex_neighbours[vertex])
[ "def", "breadth_first_vertex_order", "(", "vertices_resources", ",", "nets", ")", ":", "# Special case: no vertices, just stop immediately", "if", "len", "(", "vertices_resources", ")", "==", "0", ":", "return", "# Enumerate the set of nets attached to each vertex", "vertex_neighbours", "=", "defaultdict", "(", "set", ")", "for", "net", "in", "nets", ":", "# Note: Iterating over a Net object produces the set of vertices", "# involved in the net.", "vertex_neighbours", "[", "net", ".", "source", "]", ".", "update", "(", "net", ")", "for", "sink", "in", "net", ".", "sinks", ":", "vertex_neighbours", "[", "sink", "]", ".", "update", "(", "net", ")", "# Perform a breadth-first iteration over the vertices.", "unplaced_vertices", "=", "set", "(", "vertices_resources", ")", "vertex_queue", "=", "deque", "(", ")", "while", "vertex_queue", "or", "unplaced_vertices", ":", "if", "not", "vertex_queue", ":", "vertex_queue", ".", "append", "(", "unplaced_vertices", ".", "pop", "(", ")", ")", "vertex", "=", "vertex_queue", ".", "popleft", "(", ")", "yield", "vertex", "vertex_queue", ".", "extend", "(", "v", "for", "v", "in", "vertex_neighbours", "[", "vertex", "]", "if", "v", "in", "unplaced_vertices", ")", "unplaced_vertices", ".", "difference_update", "(", "vertex_neighbours", "[", "vertex", "]", ")" ]
A generator which iterates over a set of vertices in a breadth-first order in terms of connectivity. For use as a vertex ordering for the sequential placer.
[ "A", "generator", "which", "iterates", "over", "a", "set", "of", "vertices", "in", "a", "breadth", "-", "first", "order", "in", "terms", "of", "connectivity", "." ]
python
train
sparklingpandas/sparklingpandas
sparklingpandas/groupby.py
https://github.com/sparklingpandas/sparklingpandas/blob/7d549df4348c979042b683c355aa778fc6d3a768/sparklingpandas/groupby.py#L119-L126
def groups(self): """Returns dict {group name -> group labels}.""" self._prep_pandas_groupby() def extract_group_labels(frame): return (frame[0], frame[1].index.values) return self._mergedRDD.map(extract_group_labels).collectAsMap()
[ "def", "groups", "(", "self", ")", ":", "self", ".", "_prep_pandas_groupby", "(", ")", "def", "extract_group_labels", "(", "frame", ")", ":", "return", "(", "frame", "[", "0", "]", ",", "frame", "[", "1", "]", ".", "index", ".", "values", ")", "return", "self", ".", "_mergedRDD", ".", "map", "(", "extract_group_labels", ")", ".", "collectAsMap", "(", ")" ]
Returns dict {group name -> group labels}.
[ "Returns", "dict", "{", "group", "name", "-", ">", "group", "labels", "}", "." ]
python
train
chrisspen/weka
weka/arff.py
https://github.com/chrisspen/weka/blob/c86fc4b8eef1afd56f89ec28283bdf9e2fdc453b/weka/arff.py#L370-L383
def parse(cls, s, schema_only=False): """ Parse an ARFF File already loaded into a string. """ a = cls() a.state = 'comment' a.lineno = 1 for l in s.splitlines(): a.parseline(l) a.lineno += 1 if schema_only and a.state == 'data': # Don't parse data if we're only loading the schema. break return a
[ "def", "parse", "(", "cls", ",", "s", ",", "schema_only", "=", "False", ")", ":", "a", "=", "cls", "(", ")", "a", ".", "state", "=", "'comment'", "a", ".", "lineno", "=", "1", "for", "l", "in", "s", ".", "splitlines", "(", ")", ":", "a", ".", "parseline", "(", "l", ")", "a", ".", "lineno", "+=", "1", "if", "schema_only", "and", "a", ".", "state", "==", "'data'", ":", "# Don't parse data if we're only loading the schema.", "break", "return", "a" ]
Parse an ARFF File already loaded into a string.
[ "Parse", "an", "ARFF", "File", "already", "loaded", "into", "a", "string", "." ]
python
train
adamreeve/npTDMS
nptdms/tdms.py
https://github.com/adamreeve/npTDMS/blob/d7d6632d4ebc2e78ed941477c2f1c56bd7493d74/nptdms/tdms.py#L208-L226
def as_dataframe(self, time_index=False, absolute_time=False): """ Converts the TDMS file to a DataFrame :param time_index: Whether to include a time index for the dataframe. :param absolute_time: If time_index is true, whether the time index values are absolute times or relative to the start time. :return: The full TDMS file data. :rtype: pandas.DataFrame """ import pandas as pd dataframe_dict = OrderedDict() for key, value in self.objects.items(): if value.has_data: index = value.time_track(absolute_time) if time_index else None dataframe_dict[key] = pd.Series(data=value.data, index=index) return pd.DataFrame.from_dict(dataframe_dict)
[ "def", "as_dataframe", "(", "self", ",", "time_index", "=", "False", ",", "absolute_time", "=", "False", ")", ":", "import", "pandas", "as", "pd", "dataframe_dict", "=", "OrderedDict", "(", ")", "for", "key", ",", "value", "in", "self", ".", "objects", ".", "items", "(", ")", ":", "if", "value", ".", "has_data", ":", "index", "=", "value", ".", "time_track", "(", "absolute_time", ")", "if", "time_index", "else", "None", "dataframe_dict", "[", "key", "]", "=", "pd", ".", "Series", "(", "data", "=", "value", ".", "data", ",", "index", "=", "index", ")", "return", "pd", ".", "DataFrame", ".", "from_dict", "(", "dataframe_dict", ")" ]
Converts the TDMS file to a DataFrame :param time_index: Whether to include a time index for the dataframe. :param absolute_time: If time_index is true, whether the time index values are absolute times or relative to the start time. :return: The full TDMS file data. :rtype: pandas.DataFrame
[ "Converts", "the", "TDMS", "file", "to", "a", "DataFrame" ]
python
train
zetaops/pyoko
pyoko/manage.py
https://github.com/zetaops/pyoko/blob/236c509ad85640933ac0f89ad8f7ed95f62adf07/pyoko/manage.py#L884-L893
def _print_fields(self, fields): """Print the fields, padding the names as necessary to align them.""" # Prepare a formatting string that aligns the names and types based on the longest ones longest_name = max(fields, key=lambda f: len(f[1]))[1] longest_type = max(fields, key=lambda f: len(f[2]))[2] field_format = '%s%-{}s %-{}s %s'.format( len(longest_name) + self._padding_after_name, len(longest_type) + self._padding_after_type) for field in fields: self._print(field_format % field)
[ "def", "_print_fields", "(", "self", ",", "fields", ")", ":", "# Prepare a formatting string that aligns the names and types based on the longest ones", "longest_name", "=", "max", "(", "fields", ",", "key", "=", "lambda", "f", ":", "len", "(", "f", "[", "1", "]", ")", ")", "[", "1", "]", "longest_type", "=", "max", "(", "fields", ",", "key", "=", "lambda", "f", ":", "len", "(", "f", "[", "2", "]", ")", ")", "[", "2", "]", "field_format", "=", "'%s%-{}s %-{}s %s'", ".", "format", "(", "len", "(", "longest_name", ")", "+", "self", ".", "_padding_after_name", ",", "len", "(", "longest_type", ")", "+", "self", ".", "_padding_after_type", ")", "for", "field", "in", "fields", ":", "self", ".", "_print", "(", "field_format", "%", "field", ")" ]
Print the fields, padding the names as necessary to align them.
[ "Print", "the", "fields", "padding", "the", "names", "as", "necessary", "to", "align", "them", "." ]
python
train
pandas-dev/pandas
pandas/core/arrays/categorical.py
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/arrays/categorical.py#L1088-L1124
def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, 'inplace') cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath(new_categories, ordered=self.ordered) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat
[ "def", "remove_unused_categories", "(", "self", ",", "inplace", "=", "False", ")", ":", "inplace", "=", "validate_bool_kwarg", "(", "inplace", ",", "'inplace'", ")", "cat", "=", "self", "if", "inplace", "else", "self", ".", "copy", "(", ")", "idx", ",", "inv", "=", "np", ".", "unique", "(", "cat", ".", "_codes", ",", "return_inverse", "=", "True", ")", "if", "idx", ".", "size", "!=", "0", "and", "idx", "[", "0", "]", "==", "-", "1", ":", "# na sentinel", "idx", ",", "inv", "=", "idx", "[", "1", ":", "]", ",", "inv", "-", "1", "new_categories", "=", "cat", ".", "dtype", ".", "categories", ".", "take", "(", "idx", ")", "new_dtype", "=", "CategoricalDtype", ".", "_from_fastpath", "(", "new_categories", ",", "ordered", "=", "self", ".", "ordered", ")", "cat", ".", "_dtype", "=", "new_dtype", "cat", ".", "_codes", "=", "coerce_indexer_dtype", "(", "inv", ",", "new_dtype", ".", "categories", ")", "if", "not", "inplace", ":", "return", "cat" ]
Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories
[ "Remove", "categories", "which", "are", "not", "used", "." ]
python
train
sixty-north/asq
asq/queryables.py
https://github.com/sixty-north/asq/blob/db0c4cbcf2118435136d4b63c62a12711441088e/asq/queryables.py#L417-L476
def select_many_with_correspondence( self, collection_selector=identity, result_selector=KeyedElement): '''Projects each element of a sequence to an intermediate new sequence, and flattens the resulting sequence, into one sequence and uses a selector function to incorporate the corresponding source for each item in the result sequence. Note: This method uses deferred execution. Args: collection_selector: A unary function mapping each element of the source iterable into an intermediate sequence. The single argument of the collection_selector is the value of an element from the source sequence. The return value should be an iterable derived from that element value. The default collection_selector, which is the identity function, assumes that each element of the source sequence is itself iterable. result_selector: An optional binary function mapping the elements in the flattened intermediate sequence together with their corresponding source elements to elements of the result sequence. The two positional arguments of the result_selector are, first the source element corresponding to an element from the intermediate sequence, and second the actual element from the intermediate sequence. The return value should be the corresponding value in the result sequence. If no result_selector function is provided, the elements of the result sequence are KeyedElement namedtuples. Returns: A Queryable over a generated sequence whose elements are the result of applying the one-to-many collection_selector to each element of the source sequence, concatenating the results into an intermediate sequence, and then mapping each of those elements through the result_selector which incorporates the corresponding source element into the result sequence. Raises: ValueError: If this Queryable has been closed. TypeError: If projector or selector are not callable. ''' if self.closed(): raise ValueError("Attempt to call " "select_many_with_correspondence() on a closed Queryable.") if not is_callable(collection_selector): raise TypeError("select_many_with_correspondence() parameter " "projector={0} is not callable".format(repr(collection_selector))) if not is_callable(result_selector): raise TypeError("select_many_with_correspondence() parameter " "selector={0} is not callable".format(repr(result_selector))) return self._create( self._generate_select_many_with_correspondence(collection_selector, result_selector))
[ "def", "select_many_with_correspondence", "(", "self", ",", "collection_selector", "=", "identity", ",", "result_selector", "=", "KeyedElement", ")", ":", "if", "self", ".", "closed", "(", ")", ":", "raise", "ValueError", "(", "\"Attempt to call \"", "\"select_many_with_correspondence() on a closed Queryable.\"", ")", "if", "not", "is_callable", "(", "collection_selector", ")", ":", "raise", "TypeError", "(", "\"select_many_with_correspondence() parameter \"", "\"projector={0} is not callable\"", ".", "format", "(", "repr", "(", "collection_selector", ")", ")", ")", "if", "not", "is_callable", "(", "result_selector", ")", ":", "raise", "TypeError", "(", "\"select_many_with_correspondence() parameter \"", "\"selector={0} is not callable\"", ".", "format", "(", "repr", "(", "result_selector", ")", ")", ")", "return", "self", ".", "_create", "(", "self", ".", "_generate_select_many_with_correspondence", "(", "collection_selector", ",", "result_selector", ")", ")" ]
Projects each element of a sequence to an intermediate new sequence, and flattens the resulting sequence, into one sequence and uses a selector function to incorporate the corresponding source for each item in the result sequence. Note: This method uses deferred execution. Args: collection_selector: A unary function mapping each element of the source iterable into an intermediate sequence. The single argument of the collection_selector is the value of an element from the source sequence. The return value should be an iterable derived from that element value. The default collection_selector, which is the identity function, assumes that each element of the source sequence is itself iterable. result_selector: An optional binary function mapping the elements in the flattened intermediate sequence together with their corresponding source elements to elements of the result sequence. The two positional arguments of the result_selector are, first the source element corresponding to an element from the intermediate sequence, and second the actual element from the intermediate sequence. The return value should be the corresponding value in the result sequence. If no result_selector function is provided, the elements of the result sequence are KeyedElement namedtuples. Returns: A Queryable over a generated sequence whose elements are the result of applying the one-to-many collection_selector to each element of the source sequence, concatenating the results into an intermediate sequence, and then mapping each of those elements through the result_selector which incorporates the corresponding source element into the result sequence. Raises: ValueError: If this Queryable has been closed. TypeError: If projector or selector are not callable.
[ "Projects", "each", "element", "of", "a", "sequence", "to", "an", "intermediate", "new", "sequence", "and", "flattens", "the", "resulting", "sequence", "into", "one", "sequence", "and", "uses", "a", "selector", "function", "to", "incorporate", "the", "corresponding", "source", "for", "each", "item", "in", "the", "result", "sequence", "." ]
python
train
weluse/django-nose-selenium
noseselenium/plugins.py
https://github.com/weluse/django-nose-selenium/blob/19a09b9455545f70271f884649323a38812793e6/noseselenium/plugins.py#L81-L89
def _patch_static_handler(handler): """Patch in support for static files serving if supported and enabled. """ if django.VERSION[:2] < (1, 3): return from django.contrib.staticfiles.handlers import StaticFilesHandler return StaticFilesHandler(handler)
[ "def", "_patch_static_handler", "(", "handler", ")", ":", "if", "django", ".", "VERSION", "[", ":", "2", "]", "<", "(", "1", ",", "3", ")", ":", "return", "from", "django", ".", "contrib", ".", "staticfiles", ".", "handlers", "import", "StaticFilesHandler", "return", "StaticFilesHandler", "(", "handler", ")" ]
Patch in support for static files serving if supported and enabled.
[ "Patch", "in", "support", "for", "static", "files", "serving", "if", "supported", "and", "enabled", "." ]
python
train
kodexlab/reliure
reliure/web.py
https://github.com/kodexlab/reliure/blob/0450c7a9254c5c003162738458bbe0c49e777ba5/reliure/web.py#L248-L257
def options(self): """ Engine options discover HTTP entry point """ #configure engine with an empty dict to ensure default selection/options self.engine.configure({}) conf = self.engine.as_dict() conf["returns"] = [oname for oname in six.iterkeys(self._outputs)] # Note: we overide args to only list the ones that are declared in this view conf["args"] = [iname for iname in six.iterkeys(self._inputs)] return jsonify(conf)
[ "def", "options", "(", "self", ")", ":", "#configure engine with an empty dict to ensure default selection/options", "self", ".", "engine", ".", "configure", "(", "{", "}", ")", "conf", "=", "self", ".", "engine", ".", "as_dict", "(", ")", "conf", "[", "\"returns\"", "]", "=", "[", "oname", "for", "oname", "in", "six", ".", "iterkeys", "(", "self", ".", "_outputs", ")", "]", "# Note: we overide args to only list the ones that are declared in this view", "conf", "[", "\"args\"", "]", "=", "[", "iname", "for", "iname", "in", "six", ".", "iterkeys", "(", "self", ".", "_inputs", ")", "]", "return", "jsonify", "(", "conf", ")" ]
Engine options discover HTTP entry point
[ "Engine", "options", "discover", "HTTP", "entry", "point" ]
python
train
yunojuno/python-env-utils
env_utils/utils.py
https://github.com/yunojuno/python-env-utils/blob/7f3b5635f93322759856644901221955908e7e99/env_utils/utils.py#L146-L149
def get_list(key, *default, **kwargs): """Return env var as a list.""" separator = kwargs.get('separator', ' ') return get_env(key, *default, coerce=lambda x: x.split(separator))
[ "def", "get_list", "(", "key", ",", "*", "default", ",", "*", "*", "kwargs", ")", ":", "separator", "=", "kwargs", ".", "get", "(", "'separator'", ",", "' '", ")", "return", "get_env", "(", "key", ",", "*", "default", ",", "coerce", "=", "lambda", "x", ":", "x", ".", "split", "(", "separator", ")", ")" ]
Return env var as a list.
[ "Return", "env", "var", "as", "a", "list", "." ]
python
train
BlockHub/blockhubdpostools
dpostools/dbtools.py
https://github.com/BlockHub/blockhubdpostools/blob/27712cd97cd3658ee54a4330ff3135b51a01d7d1/dpostools/dbtools.py#L519-L654
def tbw(self, delegate_address, blacklist=None, share_fees=False, compound_interest=False): """This function doesn't work yet. Instead use legacy.trueshare() for a functional tbw script""" if not blacklist: blacklist = [] delegate_public_key = self.account_details(address=delegate_address)['public_key'] height_at_calculation = self.node_height_details()['height'] # string format of the rawasset minvote = '{{"votes":["-{0}"]}}'.format(delegate_public_key) plusvote = '{{"votes":["+{0}"]}}'.format(delegate_public_key) events = self.get_events_vote_cluster(delegate_address) votes = self.get_historic_voters(delegate_address) blocks = self.get_blocks(delegate_address) # create a map of voters voter_dict = {} for voter in votes: voter_dict.update({voter: { 'balance': 0.0, 'status': False, 'last_payout': votes[voter]['height'], 'share': 0.0, 'vote_height': votes[voter]['height'], 'blocks_forged': []} }) for blacklisted_address in blacklist: voter_dict.pop(blacklisted_address, None) last_payout = self.get_last_out_transactions(delegate_address) # not all voters have had a payout, thus a KeyError is thrown for payout in last_payout: try: voter_dict[payout]['last_payout'] = last_payout[payout]['height'] except KeyError: pass # the change in the previous state of the voter_dict. This is added to the voterdict if # no state change occurs in the blockchain. delta_state = {} no_state_change = False block_keys = sorted(list(blocks.keys())) block_nr = 0 try: for id in events: # calculating poolbalances and updating shares if events[id]['height'] > blocks[block_keys[block_nr]]['height']: # if the state is the same for the votepool, the previous calculation can be reused. block_nr += 1 if no_state_change: for x in delta_state: voter_dict[x]['share'] += delta_state[x] continue # update pool balances poolbalance = 0 delta_state = {} for i in voter_dict: # here we update the poolbalance if compound_interest: balance = voter_dict[i]['balance'] + voter_dict[i]['share'] else: balance = voter_dict[i]['balance'] if voter_dict[i]['status']: # if not voter_dict[i]['balance'] < 0: poolbalance += balance # else: # raise exceptions.NegativeBalanceError('balance lower than zero for: {0}. balance: {1}'.format(i, voter_dict[i]['balance'])) # here we calculate the share per voter for i in voter_dict: if compound_interest: balance = voter_dict[i]['balance'] + voter_dict[i]['share'] else: balance = voter_dict[i]['balance'] if voter_dict[i]['status'] and voter_dict[i]['last_payout'] < blocks[block_keys[block_nr]]['height']: if share_fees: share = (balance / poolbalance) * (blocks[block_keys[block_nr]]['reward'] + blocks[block_keys[block_nr]]['totalFee']) else: share = (balance / poolbalance) * blocks[block_keys[block_nr]]['reward'] voter_dict[i]['share'] += share delta_state.update({i: share}) no_state_change = True continue # parsing an event no_state_change = False if events[id]['event_type'] == 'transaction': if events[id]['recipient_id'] == 'Acw2vAVA48TcV8EnoBmZKJdV8bxnW6Y4E9': print(events[id]['amount']) # parsing a transaction if events[id]['event_type'] == 'transaction': if events[id]['recipient_id'] in voter_dict: voter_dict[events[id]['recipient_id']]['balance'] += events[id]['amount'] if events[id]['sender_id'] in voter_dict: voter_dict[events[id]['sender_id']]['balance'] -= (events[id]['amount'] + events[id]['fee']) if events[id]['sender_id'] in voter_dict and events[id]['type'] == 3 and plusvote in events[id]['rawasset']: voter_dict[events[id]['sender_id']]['status'] = True if events[id]['sender_id'] in voter_dict and events[id]['type'] == 3 and minvote in events[id]['rawasset']: voter_dict[events[id]['sender_id']]['status'] = False # parsing a forged block (if forged by a voter) if events[id]['event_type'] == 'block': voter_dict[events[id]['address']]['balance'] += (events[id]['reward'] + events[id]['total_fee']) # the transaction for loop ends with the final transaction. However more blocks may be forged. This copies # the final delta share and adds it to the share x the amount of blocks left. remaining_blocks = len(block_keys) - block_nr - 1 for i in range(remaining_blocks): for x in delta_state: voter_dict[x]['share'] += delta_state[x] # and indexerror indicates that we have ran out of forged blocks, thus the calculation is done (blocks[block_nr] # throw the error) except IndexError: raise return voter_dict, height_at_calculation
[ "def", "tbw", "(", "self", ",", "delegate_address", ",", "blacklist", "=", "None", ",", "share_fees", "=", "False", ",", "compound_interest", "=", "False", ")", ":", "if", "not", "blacklist", ":", "blacklist", "=", "[", "]", "delegate_public_key", "=", "self", ".", "account_details", "(", "address", "=", "delegate_address", ")", "[", "'public_key'", "]", "height_at_calculation", "=", "self", ".", "node_height_details", "(", ")", "[", "'height'", "]", "# string format of the rawasset", "minvote", "=", "'{{\"votes\":[\"-{0}\"]}}'", ".", "format", "(", "delegate_public_key", ")", "plusvote", "=", "'{{\"votes\":[\"+{0}\"]}}'", ".", "format", "(", "delegate_public_key", ")", "events", "=", "self", ".", "get_events_vote_cluster", "(", "delegate_address", ")", "votes", "=", "self", ".", "get_historic_voters", "(", "delegate_address", ")", "blocks", "=", "self", ".", "get_blocks", "(", "delegate_address", ")", "# create a map of voters", "voter_dict", "=", "{", "}", "for", "voter", "in", "votes", ":", "voter_dict", ".", "update", "(", "{", "voter", ":", "{", "'balance'", ":", "0.0", ",", "'status'", ":", "False", ",", "'last_payout'", ":", "votes", "[", "voter", "]", "[", "'height'", "]", ",", "'share'", ":", "0.0", ",", "'vote_height'", ":", "votes", "[", "voter", "]", "[", "'height'", "]", ",", "'blocks_forged'", ":", "[", "]", "}", "}", ")", "for", "blacklisted_address", "in", "blacklist", ":", "voter_dict", ".", "pop", "(", "blacklisted_address", ",", "None", ")", "last_payout", "=", "self", ".", "get_last_out_transactions", "(", "delegate_address", ")", "# not all voters have had a payout, thus a KeyError is thrown", "for", "payout", "in", "last_payout", ":", "try", ":", "voter_dict", "[", "payout", "]", "[", "'last_payout'", "]", "=", "last_payout", "[", "payout", "]", "[", "'height'", "]", "except", "KeyError", ":", "pass", "# the change in the previous state of the voter_dict. This is added to the voterdict if", "# no state change occurs in the blockchain.", "delta_state", "=", "{", "}", "no_state_change", "=", "False", "block_keys", "=", "sorted", "(", "list", "(", "blocks", ".", "keys", "(", ")", ")", ")", "block_nr", "=", "0", "try", ":", "for", "id", "in", "events", ":", "# calculating poolbalances and updating shares", "if", "events", "[", "id", "]", "[", "'height'", "]", ">", "blocks", "[", "block_keys", "[", "block_nr", "]", "]", "[", "'height'", "]", ":", "# if the state is the same for the votepool, the previous calculation can be reused.", "block_nr", "+=", "1", "if", "no_state_change", ":", "for", "x", "in", "delta_state", ":", "voter_dict", "[", "x", "]", "[", "'share'", "]", "+=", "delta_state", "[", "x", "]", "continue", "# update pool balances", "poolbalance", "=", "0", "delta_state", "=", "{", "}", "for", "i", "in", "voter_dict", ":", "# here we update the poolbalance", "if", "compound_interest", ":", "balance", "=", "voter_dict", "[", "i", "]", "[", "'balance'", "]", "+", "voter_dict", "[", "i", "]", "[", "'share'", "]", "else", ":", "balance", "=", "voter_dict", "[", "i", "]", "[", "'balance'", "]", "if", "voter_dict", "[", "i", "]", "[", "'status'", "]", ":", "# if not voter_dict[i]['balance'] < 0:", "poolbalance", "+=", "balance", "# else:", "# raise exceptions.NegativeBalanceError('balance lower than zero for: {0}. balance: {1}'.format(i, voter_dict[i]['balance']))", "# here we calculate the share per voter", "for", "i", "in", "voter_dict", ":", "if", "compound_interest", ":", "balance", "=", "voter_dict", "[", "i", "]", "[", "'balance'", "]", "+", "voter_dict", "[", "i", "]", "[", "'share'", "]", "else", ":", "balance", "=", "voter_dict", "[", "i", "]", "[", "'balance'", "]", "if", "voter_dict", "[", "i", "]", "[", "'status'", "]", "and", "voter_dict", "[", "i", "]", "[", "'last_payout'", "]", "<", "blocks", "[", "block_keys", "[", "block_nr", "]", "]", "[", "'height'", "]", ":", "if", "share_fees", ":", "share", "=", "(", "balance", "/", "poolbalance", ")", "*", "(", "blocks", "[", "block_keys", "[", "block_nr", "]", "]", "[", "'reward'", "]", "+", "blocks", "[", "block_keys", "[", "block_nr", "]", "]", "[", "'totalFee'", "]", ")", "else", ":", "share", "=", "(", "balance", "/", "poolbalance", ")", "*", "blocks", "[", "block_keys", "[", "block_nr", "]", "]", "[", "'reward'", "]", "voter_dict", "[", "i", "]", "[", "'share'", "]", "+=", "share", "delta_state", ".", "update", "(", "{", "i", ":", "share", "}", ")", "no_state_change", "=", "True", "continue", "# parsing an event", "no_state_change", "=", "False", "if", "events", "[", "id", "]", "[", "'event_type'", "]", "==", "'transaction'", ":", "if", "events", "[", "id", "]", "[", "'recipient_id'", "]", "==", "'Acw2vAVA48TcV8EnoBmZKJdV8bxnW6Y4E9'", ":", "print", "(", "events", "[", "id", "]", "[", "'amount'", "]", ")", "# parsing a transaction", "if", "events", "[", "id", "]", "[", "'event_type'", "]", "==", "'transaction'", ":", "if", "events", "[", "id", "]", "[", "'recipient_id'", "]", "in", "voter_dict", ":", "voter_dict", "[", "events", "[", "id", "]", "[", "'recipient_id'", "]", "]", "[", "'balance'", "]", "+=", "events", "[", "id", "]", "[", "'amount'", "]", "if", "events", "[", "id", "]", "[", "'sender_id'", "]", "in", "voter_dict", ":", "voter_dict", "[", "events", "[", "id", "]", "[", "'sender_id'", "]", "]", "[", "'balance'", "]", "-=", "(", "events", "[", "id", "]", "[", "'amount'", "]", "+", "events", "[", "id", "]", "[", "'fee'", "]", ")", "if", "events", "[", "id", "]", "[", "'sender_id'", "]", "in", "voter_dict", "and", "events", "[", "id", "]", "[", "'type'", "]", "==", "3", "and", "plusvote", "in", "events", "[", "id", "]", "[", "'rawasset'", "]", ":", "voter_dict", "[", "events", "[", "id", "]", "[", "'sender_id'", "]", "]", "[", "'status'", "]", "=", "True", "if", "events", "[", "id", "]", "[", "'sender_id'", "]", "in", "voter_dict", "and", "events", "[", "id", "]", "[", "'type'", "]", "==", "3", "and", "minvote", "in", "events", "[", "id", "]", "[", "'rawasset'", "]", ":", "voter_dict", "[", "events", "[", "id", "]", "[", "'sender_id'", "]", "]", "[", "'status'", "]", "=", "False", "# parsing a forged block (if forged by a voter)", "if", "events", "[", "id", "]", "[", "'event_type'", "]", "==", "'block'", ":", "voter_dict", "[", "events", "[", "id", "]", "[", "'address'", "]", "]", "[", "'balance'", "]", "+=", "(", "events", "[", "id", "]", "[", "'reward'", "]", "+", "events", "[", "id", "]", "[", "'total_fee'", "]", ")", "# the transaction for loop ends with the final transaction. However more blocks may be forged. This copies", "# the final delta share and adds it to the share x the amount of blocks left.", "remaining_blocks", "=", "len", "(", "block_keys", ")", "-", "block_nr", "-", "1", "for", "i", "in", "range", "(", "remaining_blocks", ")", ":", "for", "x", "in", "delta_state", ":", "voter_dict", "[", "x", "]", "[", "'share'", "]", "+=", "delta_state", "[", "x", "]", "# and indexerror indicates that we have ran out of forged blocks, thus the calculation is done (blocks[block_nr]", "# throw the error)", "except", "IndexError", ":", "raise", "return", "voter_dict", ",", "height_at_calculation" ]
This function doesn't work yet. Instead use legacy.trueshare() for a functional tbw script
[ "This", "function", "doesn", "t", "work", "yet", ".", "Instead", "use", "legacy", ".", "trueshare", "()", "for", "a", "functional", "tbw", "script" ]
python
valid
collectiveacuity/jsonModel
jsonmodel/validators.py
https://github.com/collectiveacuity/jsonModel/blob/1ea64c36d78add3faa7b85ff82c5ec685458c940/jsonmodel/validators.py#L1368-L1385
def _ingest_boolean(self, input_boolean, path_to_root): ''' a helper method for ingesting a boolean :return: valid_boolean ''' valid_boolean = False try: valid_boolean = self._validate_boolean(input_boolean, path_to_root) except: rules_path_to_root = re.sub('\[\d+\]', '[0]', path_to_root) if 'default_value' in self.keyMap[rules_path_to_root]: valid_boolean = self.keyMap[rules_path_to_root]['default_value'] return valid_boolean
[ "def", "_ingest_boolean", "(", "self", ",", "input_boolean", ",", "path_to_root", ")", ":", "valid_boolean", "=", "False", "try", ":", "valid_boolean", "=", "self", ".", "_validate_boolean", "(", "input_boolean", ",", "path_to_root", ")", "except", ":", "rules_path_to_root", "=", "re", ".", "sub", "(", "'\\[\\d+\\]'", ",", "'[0]'", ",", "path_to_root", ")", "if", "'default_value'", "in", "self", ".", "keyMap", "[", "rules_path_to_root", "]", ":", "valid_boolean", "=", "self", ".", "keyMap", "[", "rules_path_to_root", "]", "[", "'default_value'", "]", "return", "valid_boolean" ]
a helper method for ingesting a boolean :return: valid_boolean
[ "a", "helper", "method", "for", "ingesting", "a", "boolean" ]
python
train
open-homeautomation/pknx
knxip/ip.py
https://github.com/open-homeautomation/pknx/blob/a8aed8271563923c447aa330ba7c1c2927286f7a/knxip/ip.py#L182-L193
def init_group_write(self, dst_addr=1, data=None, dptsize=0): """Initialize the CEMI frame for a group write operation.""" self.init_group(dst_addr) # unnumbered data packet, group write self.tpci_apci = 0x00 * 256 + 0x80 self.dptsize = dptsize if data is None: self.data = [0] else: self.data = data
[ "def", "init_group_write", "(", "self", ",", "dst_addr", "=", "1", ",", "data", "=", "None", ",", "dptsize", "=", "0", ")", ":", "self", ".", "init_group", "(", "dst_addr", ")", "# unnumbered data packet, group write", "self", ".", "tpci_apci", "=", "0x00", "*", "256", "+", "0x80", "self", ".", "dptsize", "=", "dptsize", "if", "data", "is", "None", ":", "self", ".", "data", "=", "[", "0", "]", "else", ":", "self", ".", "data", "=", "data" ]
Initialize the CEMI frame for a group write operation.
[ "Initialize", "the", "CEMI", "frame", "for", "a", "group", "write", "operation", "." ]
python
train
zhmcclient/python-zhmcclient
zhmcclient_mock/_hmc.py
https://github.com/zhmcclient/python-zhmcclient/blob/9657563e5d9184c51d3c903442a58b9725fdf335/zhmcclient_mock/_hmc.py#L3077-L3110
def get_metric_values_response(self): """ Get the faked metrics, for all metric groups and all resources that have been prepared on the manager object of this context object, as a string in the format needed for the "Get Metrics" operation response. Returns: "MetricsResponse" string as described for the "Get Metrics" operation response. """ mv_list = self.get_metric_values() resp_lines = [] for mv in mv_list: group_name = mv[0] resp_lines.append('"{}"'.format(group_name)) mo_vals = mv[1] for mo_val in mo_vals: resp_lines.append('"{}"'.format(mo_val.resource_uri)) resp_lines.append( str(timestamp_from_datetime(mo_val.timestamp))) v_list = [] for n, v in mo_val.values: if isinstance(v, six.string_types): v_str = '"{}"'.format(v) else: v_str = str(v) v_list.append(v_str) v_line = ','.join(v_list) resp_lines.append(v_line) resp_lines.append('') resp_lines.append('') resp_lines.append('') return '\n'.join(resp_lines) + '\n'
[ "def", "get_metric_values_response", "(", "self", ")", ":", "mv_list", "=", "self", ".", "get_metric_values", "(", ")", "resp_lines", "=", "[", "]", "for", "mv", "in", "mv_list", ":", "group_name", "=", "mv", "[", "0", "]", "resp_lines", ".", "append", "(", "'\"{}\"'", ".", "format", "(", "group_name", ")", ")", "mo_vals", "=", "mv", "[", "1", "]", "for", "mo_val", "in", "mo_vals", ":", "resp_lines", ".", "append", "(", "'\"{}\"'", ".", "format", "(", "mo_val", ".", "resource_uri", ")", ")", "resp_lines", ".", "append", "(", "str", "(", "timestamp_from_datetime", "(", "mo_val", ".", "timestamp", ")", ")", ")", "v_list", "=", "[", "]", "for", "n", ",", "v", "in", "mo_val", ".", "values", ":", "if", "isinstance", "(", "v", ",", "six", ".", "string_types", ")", ":", "v_str", "=", "'\"{}\"'", ".", "format", "(", "v", ")", "else", ":", "v_str", "=", "str", "(", "v", ")", "v_list", ".", "append", "(", "v_str", ")", "v_line", "=", "','", ".", "join", "(", "v_list", ")", "resp_lines", ".", "append", "(", "v_line", ")", "resp_lines", ".", "append", "(", "''", ")", "resp_lines", ".", "append", "(", "''", ")", "resp_lines", ".", "append", "(", "''", ")", "return", "'\\n'", ".", "join", "(", "resp_lines", ")", "+", "'\\n'" ]
Get the faked metrics, for all metric groups and all resources that have been prepared on the manager object of this context object, as a string in the format needed for the "Get Metrics" operation response. Returns: "MetricsResponse" string as described for the "Get Metrics" operation response.
[ "Get", "the", "faked", "metrics", "for", "all", "metric", "groups", "and", "all", "resources", "that", "have", "been", "prepared", "on", "the", "manager", "object", "of", "this", "context", "object", "as", "a", "string", "in", "the", "format", "needed", "for", "the", "Get", "Metrics", "operation", "response", "." ]
python
train
deepmind/sonnet
sonnet/python/modules/sequential.py
https://github.com/deepmind/sonnet/blob/00612ca3178964d86b556e062694d808ff81fcca/sonnet/python/modules/sequential.py#L79-L107
def _build(self, *args): """Connects the Sequential module into the graph. Args: *args: A tuple of inputs, to be unpacked as the arguments to the first layer. Returns: The output value of the last layer. """ net = args if not self._layers: # If the sequential is passed a single arg, this will end up being # wrapped in an extra layer of tuple by *args. Normally we internally # handle this in the loop below, but if there are no layers we unpack here # in order to make Sequential([]) act like an identity, which seems right. if len(args) == 1: return args[0] else: return args for layer in self._layers: if isinstance(net, tuple): net = layer(*net) else: net = layer(net) return net
[ "def", "_build", "(", "self", ",", "*", "args", ")", ":", "net", "=", "args", "if", "not", "self", ".", "_layers", ":", "# If the sequential is passed a single arg, this will end up being", "# wrapped in an extra layer of tuple by *args. Normally we internally", "# handle this in the loop below, but if there are no layers we unpack here", "# in order to make Sequential([]) act like an identity, which seems right.", "if", "len", "(", "args", ")", "==", "1", ":", "return", "args", "[", "0", "]", "else", ":", "return", "args", "for", "layer", "in", "self", ".", "_layers", ":", "if", "isinstance", "(", "net", ",", "tuple", ")", ":", "net", "=", "layer", "(", "*", "net", ")", "else", ":", "net", "=", "layer", "(", "net", ")", "return", "net" ]
Connects the Sequential module into the graph. Args: *args: A tuple of inputs, to be unpacked as the arguments to the first layer. Returns: The output value of the last layer.
[ "Connects", "the", "Sequential", "module", "into", "the", "graph", "." ]
python
train
chaoss/grimoirelab-perceval
perceval/backends/core/git.py
https://github.com/chaoss/grimoirelab-perceval/blob/41c908605e88b7ebc3a536c643fa0f212eaf9e0e/perceval/backends/core/git.py#L1204-L1223
def _update_ref(self, ref, delete=False): """Update a reference.""" cmd = ['git', 'update-ref'] if delete: cmd.extend(['-d', ref.refname]) action = 'deleted' else: cmd.extend([ref.refname, ref.hash]) action = 'updated to %s' % ref.hash try: self._exec(cmd, cwd=self.dirpath, env=self.gitenv) except RepositoryError as e: logger.warning("Git %s ref could not be %s during sync process in %s (%s); skipped", ref.refname, action, self.uri, self.dirpath) else: logger.debug("Git %s ref %s in %s (%s)", ref.refname, action, self.uri, self.dirpath)
[ "def", "_update_ref", "(", "self", ",", "ref", ",", "delete", "=", "False", ")", ":", "cmd", "=", "[", "'git'", ",", "'update-ref'", "]", "if", "delete", ":", "cmd", ".", "extend", "(", "[", "'-d'", ",", "ref", ".", "refname", "]", ")", "action", "=", "'deleted'", "else", ":", "cmd", ".", "extend", "(", "[", "ref", ".", "refname", ",", "ref", ".", "hash", "]", ")", "action", "=", "'updated to %s'", "%", "ref", ".", "hash", "try", ":", "self", ".", "_exec", "(", "cmd", ",", "cwd", "=", "self", ".", "dirpath", ",", "env", "=", "self", ".", "gitenv", ")", "except", "RepositoryError", "as", "e", ":", "logger", ".", "warning", "(", "\"Git %s ref could not be %s during sync process in %s (%s); skipped\"", ",", "ref", ".", "refname", ",", "action", ",", "self", ".", "uri", ",", "self", ".", "dirpath", ")", "else", ":", "logger", ".", "debug", "(", "\"Git %s ref %s in %s (%s)\"", ",", "ref", ".", "refname", ",", "action", ",", "self", ".", "uri", ",", "self", ".", "dirpath", ")" ]
Update a reference.
[ "Update", "a", "reference", "." ]
python
test
AkihikoITOH/capybara
capybara/virtualenv/lib/python2.7/site-packages/werkzeug/wrappers.py
https://github.com/AkihikoITOH/capybara/blob/e86c2173ea386654f4ae061148e8fbe3f25e715c/capybara/virtualenv/lib/python2.7/site-packages/werkzeug/wrappers.py#L1078-L1167
def get_wsgi_headers(self, environ): """This is automatically called right before the response is started and returns headers modified for the given environment. It returns a copy of the headers from the response with some modifications applied if necessary. For example the location header (if present) is joined with the root URL of the environment. Also the content length is automatically set to zero here for certain status codes. .. versionchanged:: 0.6 Previously that function was called `fix_headers` and modified the response object in place. Also since 0.6, IRIs in location and content-location headers are handled properly. Also starting with 0.6, Werkzeug will attempt to set the content length if it is able to figure it out on its own. This is the case if all the strings in the response iterable are already encoded and the iterable is buffered. :param environ: the WSGI environment of the request. :return: returns a new :class:`~werkzeug.datastructures.Headers` object. """ headers = Headers(self.headers) location = None content_location = None content_length = None status = self.status_code # iterate over the headers to find all values in one go. Because # get_wsgi_headers is used each response that gives us a tiny # speedup. for key, value in headers: ikey = key.lower() if ikey == u'location': location = value elif ikey == u'content-location': content_location = value elif ikey == u'content-length': content_length = value # make sure the location header is an absolute URL if location is not None: old_location = location if isinstance(location, text_type): # Safe conversion is necessary here as we might redirect # to a broken URI scheme (for instance itms-services). location = iri_to_uri(location, safe_conversion=True) if self.autocorrect_location_header: current_url = get_current_url(environ, root_only=True) if isinstance(current_url, text_type): current_url = iri_to_uri(current_url) location = url_join(current_url, location) if location != old_location: headers['Location'] = location # make sure the content location is a URL if content_location is not None and \ isinstance(content_location, text_type): headers['Content-Location'] = iri_to_uri(content_location) # remove entity headers and set content length to zero if needed. # Also update content_length accordingly so that the automatic # content length detection does not trigger in the following # code. if 100 <= status < 200 or status == 204: headers['Content-Length'] = content_length = u'0' elif status == 304: remove_entity_headers(headers) # if we can determine the content length automatically, we # should try to do that. But only if this does not involve # flattening the iterator or encoding of unicode strings in # the response. We however should not do that if we have a 304 # response. if self.automatically_set_content_length and \ self.is_sequence and content_length is None and status != 304: try: content_length = sum(len(to_bytes(x, 'ascii')) for x in self.response) except UnicodeError: # aha, something non-bytestringy in there, too bad, we # can't safely figure out the length of the response. pass else: headers['Content-Length'] = str(content_length) return headers
[ "def", "get_wsgi_headers", "(", "self", ",", "environ", ")", ":", "headers", "=", "Headers", "(", "self", ".", "headers", ")", "location", "=", "None", "content_location", "=", "None", "content_length", "=", "None", "status", "=", "self", ".", "status_code", "# iterate over the headers to find all values in one go. Because", "# get_wsgi_headers is used each response that gives us a tiny", "# speedup.", "for", "key", ",", "value", "in", "headers", ":", "ikey", "=", "key", ".", "lower", "(", ")", "if", "ikey", "==", "u'location'", ":", "location", "=", "value", "elif", "ikey", "==", "u'content-location'", ":", "content_location", "=", "value", "elif", "ikey", "==", "u'content-length'", ":", "content_length", "=", "value", "# make sure the location header is an absolute URL", "if", "location", "is", "not", "None", ":", "old_location", "=", "location", "if", "isinstance", "(", "location", ",", "text_type", ")", ":", "# Safe conversion is necessary here as we might redirect", "# to a broken URI scheme (for instance itms-services).", "location", "=", "iri_to_uri", "(", "location", ",", "safe_conversion", "=", "True", ")", "if", "self", ".", "autocorrect_location_header", ":", "current_url", "=", "get_current_url", "(", "environ", ",", "root_only", "=", "True", ")", "if", "isinstance", "(", "current_url", ",", "text_type", ")", ":", "current_url", "=", "iri_to_uri", "(", "current_url", ")", "location", "=", "url_join", "(", "current_url", ",", "location", ")", "if", "location", "!=", "old_location", ":", "headers", "[", "'Location'", "]", "=", "location", "# make sure the content location is a URL", "if", "content_location", "is", "not", "None", "and", "isinstance", "(", "content_location", ",", "text_type", ")", ":", "headers", "[", "'Content-Location'", "]", "=", "iri_to_uri", "(", "content_location", ")", "# remove entity headers and set content length to zero if needed.", "# Also update content_length accordingly so that the automatic", "# content length detection does not trigger in the following", "# code.", "if", "100", "<=", "status", "<", "200", "or", "status", "==", "204", ":", "headers", "[", "'Content-Length'", "]", "=", "content_length", "=", "u'0'", "elif", "status", "==", "304", ":", "remove_entity_headers", "(", "headers", ")", "# if we can determine the content length automatically, we", "# should try to do that. But only if this does not involve", "# flattening the iterator or encoding of unicode strings in", "# the response. We however should not do that if we have a 304", "# response.", "if", "self", ".", "automatically_set_content_length", "and", "self", ".", "is_sequence", "and", "content_length", "is", "None", "and", "status", "!=", "304", ":", "try", ":", "content_length", "=", "sum", "(", "len", "(", "to_bytes", "(", "x", ",", "'ascii'", ")", ")", "for", "x", "in", "self", ".", "response", ")", "except", "UnicodeError", ":", "# aha, something non-bytestringy in there, too bad, we", "# can't safely figure out the length of the response.", "pass", "else", ":", "headers", "[", "'Content-Length'", "]", "=", "str", "(", "content_length", ")", "return", "headers" ]
This is automatically called right before the response is started and returns headers modified for the given environment. It returns a copy of the headers from the response with some modifications applied if necessary. For example the location header (if present) is joined with the root URL of the environment. Also the content length is automatically set to zero here for certain status codes. .. versionchanged:: 0.6 Previously that function was called `fix_headers` and modified the response object in place. Also since 0.6, IRIs in location and content-location headers are handled properly. Also starting with 0.6, Werkzeug will attempt to set the content length if it is able to figure it out on its own. This is the case if all the strings in the response iterable are already encoded and the iterable is buffered. :param environ: the WSGI environment of the request. :return: returns a new :class:`~werkzeug.datastructures.Headers` object.
[ "This", "is", "automatically", "called", "right", "before", "the", "response", "is", "started", "and", "returns", "headers", "modified", "for", "the", "given", "environment", ".", "It", "returns", "a", "copy", "of", "the", "headers", "from", "the", "response", "with", "some", "modifications", "applied", "if", "necessary", "." ]
python
test
openwisp/netdiff
netdiff/parsers/olsr.py
https://github.com/openwisp/netdiff/blob/f7fda2ed78ad815b8c56eae27dfd193172fb23f5/netdiff/parsers/olsr.py#L11-L18
def to_python(self, data): """ Adds support for txtinfo format """ try: return super(OlsrParser, self).to_python(data) except ConversionException as e: return self._txtinfo_to_jsoninfo(e.data)
[ "def", "to_python", "(", "self", ",", "data", ")", ":", "try", ":", "return", "super", "(", "OlsrParser", ",", "self", ")", ".", "to_python", "(", "data", ")", "except", "ConversionException", "as", "e", ":", "return", "self", ".", "_txtinfo_to_jsoninfo", "(", "e", ".", "data", ")" ]
Adds support for txtinfo format
[ "Adds", "support", "for", "txtinfo", "format" ]
python
train
ewels/MultiQC
multiqc/modules/rseqc/gene_body_coverage.py
https://github.com/ewels/MultiQC/blob/2037d6322b2554146a74efbf869156ad20d4c4ec/multiqc/modules/rseqc/gene_body_coverage.py#L15-L106
def parse_reports(self): """ Find RSeQC gene_body_coverage reports and parse their data """ # Set up vars self.gene_body_cov_hist_counts = dict() self.gene_body_cov_hist_percent = dict() # TODO - Do separate parsing step to find skewness values # and add these to the general stats table? # Go through files and parse data for f in self.find_log_files('rseqc/gene_body_coverage'): # RSeQC >= v2.4 if f['f'].startswith('Percentile'): keys = [] nrows = 0 for l in f['f'].splitlines(): s = l.split() if len(keys) == 0: keys = s[1:] else: nrows += 1 s_name = self.clean_s_name(s[0], f['root']) if s_name in self.gene_body_cov_hist_counts: log.debug("Duplicate sample name found! Overwriting: {}".format(s_name)) self.add_data_source(f, s_name, section='gene_body_coverage') self.gene_body_cov_hist_counts[s_name] = OrderedDict() for k, var in enumerate(s[1:]): self.gene_body_cov_hist_counts[s_name][int(keys[k])] = float(var) if nrows == 0: log.warning("Empty geneBodyCoverage file found: {}".format(f['fn'])) # RSeQC < v2.4 elif f['f'].startswith('Total reads'): if f['s_name'].endswith('.geneBodyCoverage'): f['s_name'] = f['s_name'][:-17] if f['s_name'] in self.gene_body_cov_hist_counts: log.debug("Duplicate sample name found! Overwriting: {}".format(f['s_name'])) self.add_data_source(f, section='gene_body_coverage') self.gene_body_cov_hist_counts[f['s_name']] = OrderedDict() nrows = 0 for l in f['f'].splitlines(): s = l.split() try: nrows += 1 self.gene_body_cov_hist_counts[f['s_name']][int(s[0])] = float(s[1]) except: pass if nrows == 0: del self.gene_body_cov_hist_counts[f['s_name']] log.warning("Empty geneBodyCoverage file found: {}".format(f['fn'])) # Filter to strip out ignored sample names self.gene_body_cov_hist_counts = self.ignore_samples(self.gene_body_cov_hist_counts) if len(self.gene_body_cov_hist_counts) > 0: # Make a normalised percentage version of the data for s_name in self.gene_body_cov_hist_counts: self.gene_body_cov_hist_percent[s_name] = OrderedDict() total = sum( self.gene_body_cov_hist_counts[s_name].values() ) for k, v in self.gene_body_cov_hist_counts[s_name].items(): self.gene_body_cov_hist_percent[s_name][k] = (v/total)*100 # Add line graph to section pconfig = { 'id': 'rseqc_gene_body_coverage_plot', 'title': 'RSeQC: Gene Body Coverage', 'ylab': '% Coverage', 'xlab': "Gene Body Percentile (5' -> 3')", 'xmin': 0, 'xmax': 100, 'tt_label': "<strong>{point.x}% from 5'</strong>: {point.y:.2f}", 'data_labels': [ {'name': 'Percentages', 'ylab': 'Percentage Coverage'}, {'name': 'Counts', 'ylab': 'Coverage'} ] } self.add_section ( name = 'Gene Body Coverage', anchor = 'rseqc-gene_body_coverage', description = '<a href="http://rseqc.sourceforge.net/#genebody-coverage-py" target="_blank">Gene Body Coverage</a>' \ " calculates read coverage over gene bodies." \ " This is used to check if reads coverage is uniform and" \ " if there is any 5' or 3' bias.", plot = linegraph.plot([self.gene_body_cov_hist_percent, self.gene_body_cov_hist_counts], pconfig) ) # Return number of samples found return len(self.gene_body_cov_hist_counts)
[ "def", "parse_reports", "(", "self", ")", ":", "# Set up vars", "self", ".", "gene_body_cov_hist_counts", "=", "dict", "(", ")", "self", ".", "gene_body_cov_hist_percent", "=", "dict", "(", ")", "# TODO - Do separate parsing step to find skewness values", "# and add these to the general stats table?", "# Go through files and parse data", "for", "f", "in", "self", ".", "find_log_files", "(", "'rseqc/gene_body_coverage'", ")", ":", "# RSeQC >= v2.4", "if", "f", "[", "'f'", "]", ".", "startswith", "(", "'Percentile'", ")", ":", "keys", "=", "[", "]", "nrows", "=", "0", "for", "l", "in", "f", "[", "'f'", "]", ".", "splitlines", "(", ")", ":", "s", "=", "l", ".", "split", "(", ")", "if", "len", "(", "keys", ")", "==", "0", ":", "keys", "=", "s", "[", "1", ":", "]", "else", ":", "nrows", "+=", "1", "s_name", "=", "self", ".", "clean_s_name", "(", "s", "[", "0", "]", ",", "f", "[", "'root'", "]", ")", "if", "s_name", "in", "self", ".", "gene_body_cov_hist_counts", ":", "log", ".", "debug", "(", "\"Duplicate sample name found! Overwriting: {}\"", ".", "format", "(", "s_name", ")", ")", "self", ".", "add_data_source", "(", "f", ",", "s_name", ",", "section", "=", "'gene_body_coverage'", ")", "self", ".", "gene_body_cov_hist_counts", "[", "s_name", "]", "=", "OrderedDict", "(", ")", "for", "k", ",", "var", "in", "enumerate", "(", "s", "[", "1", ":", "]", ")", ":", "self", ".", "gene_body_cov_hist_counts", "[", "s_name", "]", "[", "int", "(", "keys", "[", "k", "]", ")", "]", "=", "float", "(", "var", ")", "if", "nrows", "==", "0", ":", "log", ".", "warning", "(", "\"Empty geneBodyCoverage file found: {}\"", ".", "format", "(", "f", "[", "'fn'", "]", ")", ")", "# RSeQC < v2.4", "elif", "f", "[", "'f'", "]", ".", "startswith", "(", "'Total reads'", ")", ":", "if", "f", "[", "'s_name'", "]", ".", "endswith", "(", "'.geneBodyCoverage'", ")", ":", "f", "[", "'s_name'", "]", "=", "f", "[", "'s_name'", "]", "[", ":", "-", "17", "]", "if", "f", "[", "'s_name'", "]", "in", "self", ".", "gene_body_cov_hist_counts", ":", "log", ".", "debug", "(", "\"Duplicate sample name found! Overwriting: {}\"", ".", "format", "(", "f", "[", "'s_name'", "]", ")", ")", "self", ".", "add_data_source", "(", "f", ",", "section", "=", "'gene_body_coverage'", ")", "self", ".", "gene_body_cov_hist_counts", "[", "f", "[", "'s_name'", "]", "]", "=", "OrderedDict", "(", ")", "nrows", "=", "0", "for", "l", "in", "f", "[", "'f'", "]", ".", "splitlines", "(", ")", ":", "s", "=", "l", ".", "split", "(", ")", "try", ":", "nrows", "+=", "1", "self", ".", "gene_body_cov_hist_counts", "[", "f", "[", "'s_name'", "]", "]", "[", "int", "(", "s", "[", "0", "]", ")", "]", "=", "float", "(", "s", "[", "1", "]", ")", "except", ":", "pass", "if", "nrows", "==", "0", ":", "del", "self", ".", "gene_body_cov_hist_counts", "[", "f", "[", "'s_name'", "]", "]", "log", ".", "warning", "(", "\"Empty geneBodyCoverage file found: {}\"", ".", "format", "(", "f", "[", "'fn'", "]", ")", ")", "# Filter to strip out ignored sample names", "self", ".", "gene_body_cov_hist_counts", "=", "self", ".", "ignore_samples", "(", "self", ".", "gene_body_cov_hist_counts", ")", "if", "len", "(", "self", ".", "gene_body_cov_hist_counts", ")", ">", "0", ":", "# Make a normalised percentage version of the data", "for", "s_name", "in", "self", ".", "gene_body_cov_hist_counts", ":", "self", ".", "gene_body_cov_hist_percent", "[", "s_name", "]", "=", "OrderedDict", "(", ")", "total", "=", "sum", "(", "self", ".", "gene_body_cov_hist_counts", "[", "s_name", "]", ".", "values", "(", ")", ")", "for", "k", ",", "v", "in", "self", ".", "gene_body_cov_hist_counts", "[", "s_name", "]", ".", "items", "(", ")", ":", "self", ".", "gene_body_cov_hist_percent", "[", "s_name", "]", "[", "k", "]", "=", "(", "v", "/", "total", ")", "*", "100", "# Add line graph to section", "pconfig", "=", "{", "'id'", ":", "'rseqc_gene_body_coverage_plot'", ",", "'title'", ":", "'RSeQC: Gene Body Coverage'", ",", "'ylab'", ":", "'% Coverage'", ",", "'xlab'", ":", "\"Gene Body Percentile (5' -> 3')\"", ",", "'xmin'", ":", "0", ",", "'xmax'", ":", "100", ",", "'tt_label'", ":", "\"<strong>{point.x}% from 5'</strong>: {point.y:.2f}\"", ",", "'data_labels'", ":", "[", "{", "'name'", ":", "'Percentages'", ",", "'ylab'", ":", "'Percentage Coverage'", "}", ",", "{", "'name'", ":", "'Counts'", ",", "'ylab'", ":", "'Coverage'", "}", "]", "}", "self", ".", "add_section", "(", "name", "=", "'Gene Body Coverage'", ",", "anchor", "=", "'rseqc-gene_body_coverage'", ",", "description", "=", "'<a href=\"http://rseqc.sourceforge.net/#genebody-coverage-py\" target=\"_blank\">Gene Body Coverage</a>'", "\" calculates read coverage over gene bodies.\"", "\" This is used to check if reads coverage is uniform and\"", "\" if there is any 5' or 3' bias.\"", ",", "plot", "=", "linegraph", ".", "plot", "(", "[", "self", ".", "gene_body_cov_hist_percent", ",", "self", ".", "gene_body_cov_hist_counts", "]", ",", "pconfig", ")", ")", "# Return number of samples found", "return", "len", "(", "self", ".", "gene_body_cov_hist_counts", ")" ]
Find RSeQC gene_body_coverage reports and parse their data
[ "Find", "RSeQC", "gene_body_coverage", "reports", "and", "parse", "their", "data" ]
python
train
pmacosta/peng
peng/functions.py
https://github.com/pmacosta/peng/blob/976935377adaa3de26fc5677aceb2cdfbd6f93a7/peng/functions.py#L804-L1051
def pprint_vector(vector, limit=False, width=None, indent=0, eng=False, frac_length=3): r""" Format a list of numbers (vector) or a Numpy vector for printing. If the argument **vector** is :code:`None` the string :code:`'None'` is returned :param vector: Vector to pretty print or None :type vector: list of integers or floats, Numpy vector or None :param limit: Flag that indicates whether at most 6 vector items are printed (all vector items if its length is equal or less than 6, first and last 3 vector items if it is not) (True), or the entire vector is printed (False) :type limit: boolean :param width: Number of available characters per line. If None the vector is printed in one line :type width: integer or None :param indent: Flag that indicates whether all subsequent lines after the first one are indented (True) or not (False). Only relevant if **width** is not None :type indent: boolean :param eng: Flag that indicates whether engineering notation is used (True) or not (False) :type eng: boolean :param frac_length: Number of digits of fractional part (only applicable if **eng** is True) :type frac_length: integer :raises: ValueError (Argument \`width\` is too small) :rtype: string For example: >>> from __future__ import print_function >>> import peng >>> header = 'Vector: ' >>> data = [1e-3, 20e-6, 300e+6, 4e-12, 5.25e3, -6e-9, 700, 8, 9] >>> print( ... header+peng.pprint_vector( ... data, ... width=30, ... eng=True, ... frac_length=1, ... limit=True, ... indent=len(header) ... ) ... ) Vector: [ 1.0m, 20.0u, 300.0M, ... 700.0 , 8.0 , 9.0 ] >>> print( ... header+peng.pprint_vector( ... data, ... width=30, ... eng=True, ... frac_length=0, ... indent=len(header) ... ) ... ) Vector: [ 1m, 20u, 300M, 4p, 5k, -6n, 700 , 8 , 9 ] >>> print(peng.pprint_vector(data, eng=True, frac_length=0)) [ 1m, 20u, 300M, 4p, 5k, -6n, 700 , 8 , 9 ] >>> print(peng.pprint_vector(data, limit=True)) [ 0.001, 2e-05, 300000000.0, ..., 700, 8, 9 ] """ # pylint: disable=R0912,R0913 num_digits = 12 approx = lambda x: float(x) if "." not in x else round(float(x), num_digits) def limstr(value): str1 = str(value) iscomplex = isinstance(value, complex) str1 = str1.lstrip("(").rstrip(")") if "." not in str1: return str1 if iscomplex: sign = "+" if value.imag >= 0 else "-" regexp = re.compile( r"(.*(?:[Ee][\+-]\d+)?)" + (r"\+" if sign == "+" else "-") + r"(.*(?:[Ee][\+-]\d+)?j)" ) rvalue, ivalue = regexp.match(str1).groups() return ( str(complex(approx(rvalue), approx(sign + ivalue.strip("j")))) .lstrip("(") .rstrip(")") ) str2 = str(round(value, num_digits)) return str2 if len(str1) > len(str2) else str1 def _str(*args): """ Convert numbers to string, optionally represented in engineering notation. Numbers may be integers, float or complex """ ret = [ (limstr(element) if not eng else peng(element, frac_length, True)) if not isinstance(element, complex) else ( limstr(element) if not eng else "{real}{sign}{imag}j".format( real=peng(element.real, frac_length, True), imag=peng(abs(element.imag), frac_length, True), sign="+" if element.imag >= 0 else "-", ) ) for element in args ] return ret[0] if len(ret) == 1 else ret if vector is None: return "None" lvector = len(vector) if (not limit) or (limit and (lvector < 7)): items = _str(*vector) uret = "[ {0} ]".format(", ".join(items)) else: items = _str(*(vector[:3] + vector[-3:])) uret = "[ {0}, ..., {1} ]".format(", ".join(items[:3]), ", ".join(items[-3:])) if (width is None) or (len(uret) < width): return uret # -4 comes from the fact that an opening '[ ' and a closing ' ]' # are added to the multi-line vector string if any([len(item) > width - 4 for item in items]): raise ValueError("Argument `width` is too small") # Text needs to be wrapped in multiple lines # Figure out how long the first line needs to be wobj = textwrap.TextWrapper(initial_indent="[ ", width=width) # uret[2:] -> do not include initial '[ ' as this is specified as # the initial indent to the text wrapper rlist = wobj.wrap(uret[2:]) first_line = rlist[0] first_line_elements = first_line.count(",") # Reconstruct string representation of vector excluding first line # Remove ... from text to be wrapped because it is placed in a single # line centered with the content uret_left = (",".join(uret.split(",")[first_line_elements:])).replace("...,", "") wobj = textwrap.TextWrapper(width=width - 2) wrapped_text = wobj.wrap(uret_left.lstrip()) # Construct candidate wrapped and indented list of vector elements rlist = [first_line] + [ (" " * (indent + 2)) + item.rstrip() for item in wrapped_text ] last_line = rlist[-1] last_line_elements = last_line.count(",") + 1 # "Manually" format limit output so that it is either 3 lines, first and # last line with 3 elements and the middle with '...' or 7 lines, each with # 1 element and the middle with '...' # If numbers are not to be aligned at commas (variable width) then use the # existing results of the wrap() function if limit and (lvector > 6): if (first_line_elements < 3) or ( (first_line_elements == 3) and (last_line_elements < 3) ): rlist = [ "[ {0},".format(_str(vector[0])), _str(vector[1]), _str(vector[2]), "...", _str(vector[-3]), _str(vector[-2]), "{0} ]".format(_str(vector[-1])), ] first_line_elements = 1 else: rlist = [ "[ {0},".format(", ".join(_str(*vector[:3]))), "...", "{0} ]".format(", ".join(_str(*vector[-3:]))), ] first_line = rlist[0] elif limit: rlist = [item.lstrip() for item in rlist] first_comma_index = first_line.find(",") actual_width = len(first_line) - 2 if not eng: if not limit: return "\n".join(rlist) num_elements = len(rlist) return "\n".join( [ "{spaces}{line}{comma}".format( spaces=(" " * (indent + 2)) if num > 0 else "", line=( line.center(actual_width).rstrip() if line.strip() == "..." else line ), comma=( "," if ( (num < num_elements - 1) and (not line.endswith(",")) and (line.strip() != "...") ) else "" ), ) if num > 0 else line for num, line in enumerate(rlist) ] ) # Align elements across multiple lines if limit: remainder_list = [line.lstrip() for line in rlist[1:]] else: remainder_list = _split_every( text=uret[len(first_line) :], sep=",", count=first_line_elements, lstrip=True, ) new_wrapped_lines_list = [first_line] for line in remainder_list[:-1]: new_wrapped_lines_list.append( "{0},".format(line).rjust(actual_width) if line != "..." else line.center(actual_width).rstrip() ) # Align last line on fist comma (if it exists) or # on length of field if does not if remainder_list[-1].find(",") == -1: marker = len(remainder_list[-1]) - 2 else: marker = remainder_list[-1].find(",") new_wrapped_lines_list.append( "{0}{1}".format((first_comma_index - marker - 2) * " ", remainder_list[-1]) ) return "\n".join( [ "{spaces}{line}".format(spaces=" " * (indent + 2), line=line) if num > 0 else line for num, line in enumerate(new_wrapped_lines_list) ] )
[ "def", "pprint_vector", "(", "vector", ",", "limit", "=", "False", ",", "width", "=", "None", ",", "indent", "=", "0", ",", "eng", "=", "False", ",", "frac_length", "=", "3", ")", ":", "# pylint: disable=R0912,R0913", "num_digits", "=", "12", "approx", "=", "lambda", "x", ":", "float", "(", "x", ")", "if", "\".\"", "not", "in", "x", "else", "round", "(", "float", "(", "x", ")", ",", "num_digits", ")", "def", "limstr", "(", "value", ")", ":", "str1", "=", "str", "(", "value", ")", "iscomplex", "=", "isinstance", "(", "value", ",", "complex", ")", "str1", "=", "str1", ".", "lstrip", "(", "\"(\"", ")", ".", "rstrip", "(", "\")\"", ")", "if", "\".\"", "not", "in", "str1", ":", "return", "str1", "if", "iscomplex", ":", "sign", "=", "\"+\"", "if", "value", ".", "imag", ">=", "0", "else", "\"-\"", "regexp", "=", "re", ".", "compile", "(", "r\"(.*(?:[Ee][\\+-]\\d+)?)\"", "+", "(", "r\"\\+\"", "if", "sign", "==", "\"+\"", "else", "\"-\"", ")", "+", "r\"(.*(?:[Ee][\\+-]\\d+)?j)\"", ")", "rvalue", ",", "ivalue", "=", "regexp", ".", "match", "(", "str1", ")", ".", "groups", "(", ")", "return", "(", "str", "(", "complex", "(", "approx", "(", "rvalue", ")", ",", "approx", "(", "sign", "+", "ivalue", ".", "strip", "(", "\"j\"", ")", ")", ")", ")", ".", "lstrip", "(", "\"(\"", ")", ".", "rstrip", "(", "\")\"", ")", ")", "str2", "=", "str", "(", "round", "(", "value", ",", "num_digits", ")", ")", "return", "str2", "if", "len", "(", "str1", ")", ">", "len", "(", "str2", ")", "else", "str1", "def", "_str", "(", "*", "args", ")", ":", "\"\"\"\n Convert numbers to string, optionally represented in engineering notation.\n\n Numbers may be integers, float or complex\n \"\"\"", "ret", "=", "[", "(", "limstr", "(", "element", ")", "if", "not", "eng", "else", "peng", "(", "element", ",", "frac_length", ",", "True", ")", ")", "if", "not", "isinstance", "(", "element", ",", "complex", ")", "else", "(", "limstr", "(", "element", ")", "if", "not", "eng", "else", "\"{real}{sign}{imag}j\"", ".", "format", "(", "real", "=", "peng", "(", "element", ".", "real", ",", "frac_length", ",", "True", ")", ",", "imag", "=", "peng", "(", "abs", "(", "element", ".", "imag", ")", ",", "frac_length", ",", "True", ")", ",", "sign", "=", "\"+\"", "if", "element", ".", "imag", ">=", "0", "else", "\"-\"", ",", ")", ")", "for", "element", "in", "args", "]", "return", "ret", "[", "0", "]", "if", "len", "(", "ret", ")", "==", "1", "else", "ret", "if", "vector", "is", "None", ":", "return", "\"None\"", "lvector", "=", "len", "(", "vector", ")", "if", "(", "not", "limit", ")", "or", "(", "limit", "and", "(", "lvector", "<", "7", ")", ")", ":", "items", "=", "_str", "(", "*", "vector", ")", "uret", "=", "\"[ {0} ]\"", ".", "format", "(", "\", \"", ".", "join", "(", "items", ")", ")", "else", ":", "items", "=", "_str", "(", "*", "(", "vector", "[", ":", "3", "]", "+", "vector", "[", "-", "3", ":", "]", ")", ")", "uret", "=", "\"[ {0}, ..., {1} ]\"", ".", "format", "(", "\", \"", ".", "join", "(", "items", "[", ":", "3", "]", ")", ",", "\", \"", ".", "join", "(", "items", "[", "-", "3", ":", "]", ")", ")", "if", "(", "width", "is", "None", ")", "or", "(", "len", "(", "uret", ")", "<", "width", ")", ":", "return", "uret", "# -4 comes from the fact that an opening '[ ' and a closing ' ]'", "# are added to the multi-line vector string", "if", "any", "(", "[", "len", "(", "item", ")", ">", "width", "-", "4", "for", "item", "in", "items", "]", ")", ":", "raise", "ValueError", "(", "\"Argument `width` is too small\"", ")", "# Text needs to be wrapped in multiple lines", "# Figure out how long the first line needs to be", "wobj", "=", "textwrap", ".", "TextWrapper", "(", "initial_indent", "=", "\"[ \"", ",", "width", "=", "width", ")", "# uret[2:] -> do not include initial '[ ' as this is specified as", "# the initial indent to the text wrapper", "rlist", "=", "wobj", ".", "wrap", "(", "uret", "[", "2", ":", "]", ")", "first_line", "=", "rlist", "[", "0", "]", "first_line_elements", "=", "first_line", ".", "count", "(", "\",\"", ")", "# Reconstruct string representation of vector excluding first line", "# Remove ... from text to be wrapped because it is placed in a single", "# line centered with the content", "uret_left", "=", "(", "\",\"", ".", "join", "(", "uret", ".", "split", "(", "\",\"", ")", "[", "first_line_elements", ":", "]", ")", ")", ".", "replace", "(", "\"...,\"", ",", "\"\"", ")", "wobj", "=", "textwrap", ".", "TextWrapper", "(", "width", "=", "width", "-", "2", ")", "wrapped_text", "=", "wobj", ".", "wrap", "(", "uret_left", ".", "lstrip", "(", ")", ")", "# Construct candidate wrapped and indented list of vector elements", "rlist", "=", "[", "first_line", "]", "+", "[", "(", "\" \"", "*", "(", "indent", "+", "2", ")", ")", "+", "item", ".", "rstrip", "(", ")", "for", "item", "in", "wrapped_text", "]", "last_line", "=", "rlist", "[", "-", "1", "]", "last_line_elements", "=", "last_line", ".", "count", "(", "\",\"", ")", "+", "1", "# \"Manually\" format limit output so that it is either 3 lines, first and", "# last line with 3 elements and the middle with '...' or 7 lines, each with", "# 1 element and the middle with '...'", "# If numbers are not to be aligned at commas (variable width) then use the", "# existing results of the wrap() function", "if", "limit", "and", "(", "lvector", ">", "6", ")", ":", "if", "(", "first_line_elements", "<", "3", ")", "or", "(", "(", "first_line_elements", "==", "3", ")", "and", "(", "last_line_elements", "<", "3", ")", ")", ":", "rlist", "=", "[", "\"[ {0},\"", ".", "format", "(", "_str", "(", "vector", "[", "0", "]", ")", ")", ",", "_str", "(", "vector", "[", "1", "]", ")", ",", "_str", "(", "vector", "[", "2", "]", ")", ",", "\"...\"", ",", "_str", "(", "vector", "[", "-", "3", "]", ")", ",", "_str", "(", "vector", "[", "-", "2", "]", ")", ",", "\"{0} ]\"", ".", "format", "(", "_str", "(", "vector", "[", "-", "1", "]", ")", ")", ",", "]", "first_line_elements", "=", "1", "else", ":", "rlist", "=", "[", "\"[ {0},\"", ".", "format", "(", "\", \"", ".", "join", "(", "_str", "(", "*", "vector", "[", ":", "3", "]", ")", ")", ")", ",", "\"...\"", ",", "\"{0} ]\"", ".", "format", "(", "\", \"", ".", "join", "(", "_str", "(", "*", "vector", "[", "-", "3", ":", "]", ")", ")", ")", ",", "]", "first_line", "=", "rlist", "[", "0", "]", "elif", "limit", ":", "rlist", "=", "[", "item", ".", "lstrip", "(", ")", "for", "item", "in", "rlist", "]", "first_comma_index", "=", "first_line", ".", "find", "(", "\",\"", ")", "actual_width", "=", "len", "(", "first_line", ")", "-", "2", "if", "not", "eng", ":", "if", "not", "limit", ":", "return", "\"\\n\"", ".", "join", "(", "rlist", ")", "num_elements", "=", "len", "(", "rlist", ")", "return", "\"\\n\"", ".", "join", "(", "[", "\"{spaces}{line}{comma}\"", ".", "format", "(", "spaces", "=", "(", "\" \"", "*", "(", "indent", "+", "2", ")", ")", "if", "num", ">", "0", "else", "\"\"", ",", "line", "=", "(", "line", ".", "center", "(", "actual_width", ")", ".", "rstrip", "(", ")", "if", "line", ".", "strip", "(", ")", "==", "\"...\"", "else", "line", ")", ",", "comma", "=", "(", "\",\"", "if", "(", "(", "num", "<", "num_elements", "-", "1", ")", "and", "(", "not", "line", ".", "endswith", "(", "\",\"", ")", ")", "and", "(", "line", ".", "strip", "(", ")", "!=", "\"...\"", ")", ")", "else", "\"\"", ")", ",", ")", "if", "num", ">", "0", "else", "line", "for", "num", ",", "line", "in", "enumerate", "(", "rlist", ")", "]", ")", "# Align elements across multiple lines", "if", "limit", ":", "remainder_list", "=", "[", "line", ".", "lstrip", "(", ")", "for", "line", "in", "rlist", "[", "1", ":", "]", "]", "else", ":", "remainder_list", "=", "_split_every", "(", "text", "=", "uret", "[", "len", "(", "first_line", ")", ":", "]", ",", "sep", "=", "\",\"", ",", "count", "=", "first_line_elements", ",", "lstrip", "=", "True", ",", ")", "new_wrapped_lines_list", "=", "[", "first_line", "]", "for", "line", "in", "remainder_list", "[", ":", "-", "1", "]", ":", "new_wrapped_lines_list", ".", "append", "(", "\"{0},\"", ".", "format", "(", "line", ")", ".", "rjust", "(", "actual_width", ")", "if", "line", "!=", "\"...\"", "else", "line", ".", "center", "(", "actual_width", ")", ".", "rstrip", "(", ")", ")", "# Align last line on fist comma (if it exists) or", "# on length of field if does not", "if", "remainder_list", "[", "-", "1", "]", ".", "find", "(", "\",\"", ")", "==", "-", "1", ":", "marker", "=", "len", "(", "remainder_list", "[", "-", "1", "]", ")", "-", "2", "else", ":", "marker", "=", "remainder_list", "[", "-", "1", "]", ".", "find", "(", "\",\"", ")", "new_wrapped_lines_list", ".", "append", "(", "\"{0}{1}\"", ".", "format", "(", "(", "first_comma_index", "-", "marker", "-", "2", ")", "*", "\" \"", ",", "remainder_list", "[", "-", "1", "]", ")", ")", "return", "\"\\n\"", ".", "join", "(", "[", "\"{spaces}{line}\"", ".", "format", "(", "spaces", "=", "\" \"", "*", "(", "indent", "+", "2", ")", ",", "line", "=", "line", ")", "if", "num", ">", "0", "else", "line", "for", "num", ",", "line", "in", "enumerate", "(", "new_wrapped_lines_list", ")", "]", ")" ]
r""" Format a list of numbers (vector) or a Numpy vector for printing. If the argument **vector** is :code:`None` the string :code:`'None'` is returned :param vector: Vector to pretty print or None :type vector: list of integers or floats, Numpy vector or None :param limit: Flag that indicates whether at most 6 vector items are printed (all vector items if its length is equal or less than 6, first and last 3 vector items if it is not) (True), or the entire vector is printed (False) :type limit: boolean :param width: Number of available characters per line. If None the vector is printed in one line :type width: integer or None :param indent: Flag that indicates whether all subsequent lines after the first one are indented (True) or not (False). Only relevant if **width** is not None :type indent: boolean :param eng: Flag that indicates whether engineering notation is used (True) or not (False) :type eng: boolean :param frac_length: Number of digits of fractional part (only applicable if **eng** is True) :type frac_length: integer :raises: ValueError (Argument \`width\` is too small) :rtype: string For example: >>> from __future__ import print_function >>> import peng >>> header = 'Vector: ' >>> data = [1e-3, 20e-6, 300e+6, 4e-12, 5.25e3, -6e-9, 700, 8, 9] >>> print( ... header+peng.pprint_vector( ... data, ... width=30, ... eng=True, ... frac_length=1, ... limit=True, ... indent=len(header) ... ) ... ) Vector: [ 1.0m, 20.0u, 300.0M, ... 700.0 , 8.0 , 9.0 ] >>> print( ... header+peng.pprint_vector( ... data, ... width=30, ... eng=True, ... frac_length=0, ... indent=len(header) ... ) ... ) Vector: [ 1m, 20u, 300M, 4p, 5k, -6n, 700 , 8 , 9 ] >>> print(peng.pprint_vector(data, eng=True, frac_length=0)) [ 1m, 20u, 300M, 4p, 5k, -6n, 700 , 8 , 9 ] >>> print(peng.pprint_vector(data, limit=True)) [ 0.001, 2e-05, 300000000.0, ..., 700, 8, 9 ]
[ "r", "Format", "a", "list", "of", "numbers", "(", "vector", ")", "or", "a", "Numpy", "vector", "for", "printing", "." ]
python
test
yatiml/yatiml
yatiml/helpers.py
https://github.com/yatiml/yatiml/blob/4f55c058b72388350f0af3076ac3ea9bc1c142b0/yatiml/helpers.py#L321-L425
def seq_attribute_to_map(self, attribute: str, key_attribute: str, value_attribute: Optional[str] = None, strict: Optional[bool] = True) -> None: """Converts a sequence attribute to a map. This function takes an attribute of this Node that is \ a sequence of mappings and turns it into a mapping of mappings. \ It assumes that each of the mappings in the original sequence \ has an attribute containing a unique value, which it will use \ as a key for the new outer mapping. An example probably helps. If you have a Node representing \ this piece of YAML:: items: - item_id: item1 description: Basic widget price: 100.0 - item_id: item2 description: Premium quality widget price: 200.0 and call seq_attribute_to_map('items', 'item_id'), then the \ Node will be modified to represent this:: items: item1: description: Basic widget price: 100.0 item2: description: Premium quality widget price: 200.0 which is often more intuitive for people to read and write. If the attribute does not exist, or is not a sequence of \ mappings, this function will silently do nothing. If the keys \ are not unique and strict is False, it will also do nothing. If \ the keys are not unique and strict is True, it will raise an \ error. With thanks to the makers of the Common Workflow Language for \ the idea. Args: attribute: Name of the attribute whose value to modify. key_attribute: Name of the attribute in each item to use \ as a key for the new mapping. strict: Whether to give an error if the intended keys are \ not unique. Raises: SeasoningError: If the keys are not unique and strict is \ True. """ if not self.has_attribute(attribute): return attr_node = self.get_attribute(attribute) if not attr_node.is_sequence(): return start_mark = attr_node.yaml_node.start_mark end_mark = attr_node.yaml_node.end_mark # check that all list items are mappings and that the keys are unique # strings seen_keys = set() # type: Set[str] for item in attr_node.seq_items(): key_attr_node = item.get_attribute(key_attribute) if not key_attr_node.is_scalar(str): raise SeasoningError( ('Attribute names must be strings in' 'YAtiML, {} is not a string.').format(key_attr_node)) if key_attr_node.get_value() in seen_keys: if strict: raise SeasoningError( ('Found a duplicate key {}: {} when' ' converting from sequence to mapping'.format( key_attribute, key_attr_node.get_value()))) return seen_keys.add(key_attr_node.get_value()) # type: ignore # construct mapping mapping_values = list() for item in attr_node.seq_items(): # we've already checked that it's a SequenceNode above key_node = item.get_attribute(key_attribute).yaml_node item.remove_attribute(key_attribute) if value_attribute is not None: value_node = item.get_attribute(value_attribute).yaml_node if len(item.yaml_node.value) == 1: # no other attributes, use short form mapping_values.append((key_node, value_node)) else: mapping_values.append((key_node, item.yaml_node)) else: mapping_values.append((key_node, item.yaml_node)) # create mapping node mapping = yaml.MappingNode('tag:yaml.org,2002:map', mapping_values, start_mark, end_mark) self.set_attribute(attribute, mapping)
[ "def", "seq_attribute_to_map", "(", "self", ",", "attribute", ":", "str", ",", "key_attribute", ":", "str", ",", "value_attribute", ":", "Optional", "[", "str", "]", "=", "None", ",", "strict", ":", "Optional", "[", "bool", "]", "=", "True", ")", "->", "None", ":", "if", "not", "self", ".", "has_attribute", "(", "attribute", ")", ":", "return", "attr_node", "=", "self", ".", "get_attribute", "(", "attribute", ")", "if", "not", "attr_node", ".", "is_sequence", "(", ")", ":", "return", "start_mark", "=", "attr_node", ".", "yaml_node", ".", "start_mark", "end_mark", "=", "attr_node", ".", "yaml_node", ".", "end_mark", "# check that all list items are mappings and that the keys are unique", "# strings", "seen_keys", "=", "set", "(", ")", "# type: Set[str]", "for", "item", "in", "attr_node", ".", "seq_items", "(", ")", ":", "key_attr_node", "=", "item", ".", "get_attribute", "(", "key_attribute", ")", "if", "not", "key_attr_node", ".", "is_scalar", "(", "str", ")", ":", "raise", "SeasoningError", "(", "(", "'Attribute names must be strings in'", "'YAtiML, {} is not a string.'", ")", ".", "format", "(", "key_attr_node", ")", ")", "if", "key_attr_node", ".", "get_value", "(", ")", "in", "seen_keys", ":", "if", "strict", ":", "raise", "SeasoningError", "(", "(", "'Found a duplicate key {}: {} when'", "' converting from sequence to mapping'", ".", "format", "(", "key_attribute", ",", "key_attr_node", ".", "get_value", "(", ")", ")", ")", ")", "return", "seen_keys", ".", "add", "(", "key_attr_node", ".", "get_value", "(", ")", ")", "# type: ignore", "# construct mapping", "mapping_values", "=", "list", "(", ")", "for", "item", "in", "attr_node", ".", "seq_items", "(", ")", ":", "# we've already checked that it's a SequenceNode above", "key_node", "=", "item", ".", "get_attribute", "(", "key_attribute", ")", ".", "yaml_node", "item", ".", "remove_attribute", "(", "key_attribute", ")", "if", "value_attribute", "is", "not", "None", ":", "value_node", "=", "item", ".", "get_attribute", "(", "value_attribute", ")", ".", "yaml_node", "if", "len", "(", "item", ".", "yaml_node", ".", "value", ")", "==", "1", ":", "# no other attributes, use short form", "mapping_values", ".", "append", "(", "(", "key_node", ",", "value_node", ")", ")", "else", ":", "mapping_values", ".", "append", "(", "(", "key_node", ",", "item", ".", "yaml_node", ")", ")", "else", ":", "mapping_values", ".", "append", "(", "(", "key_node", ",", "item", ".", "yaml_node", ")", ")", "# create mapping node", "mapping", "=", "yaml", ".", "MappingNode", "(", "'tag:yaml.org,2002:map'", ",", "mapping_values", ",", "start_mark", ",", "end_mark", ")", "self", ".", "set_attribute", "(", "attribute", ",", "mapping", ")" ]
Converts a sequence attribute to a map. This function takes an attribute of this Node that is \ a sequence of mappings and turns it into a mapping of mappings. \ It assumes that each of the mappings in the original sequence \ has an attribute containing a unique value, which it will use \ as a key for the new outer mapping. An example probably helps. If you have a Node representing \ this piece of YAML:: items: - item_id: item1 description: Basic widget price: 100.0 - item_id: item2 description: Premium quality widget price: 200.0 and call seq_attribute_to_map('items', 'item_id'), then the \ Node will be modified to represent this:: items: item1: description: Basic widget price: 100.0 item2: description: Premium quality widget price: 200.0 which is often more intuitive for people to read and write. If the attribute does not exist, or is not a sequence of \ mappings, this function will silently do nothing. If the keys \ are not unique and strict is False, it will also do nothing. If \ the keys are not unique and strict is True, it will raise an \ error. With thanks to the makers of the Common Workflow Language for \ the idea. Args: attribute: Name of the attribute whose value to modify. key_attribute: Name of the attribute in each item to use \ as a key for the new mapping. strict: Whether to give an error if the intended keys are \ not unique. Raises: SeasoningError: If the keys are not unique and strict is \ True.
[ "Converts", "a", "sequence", "attribute", "to", "a", "map", "." ]
python
train
hyperledger/indy-plenum
plenum/server/replica.py
https://github.com/hyperledger/indy-plenum/blob/dcd144e238af7f17a869ffc9412f13dc488b7020/plenum/server/replica.py#L1333-L1348
def processCommit(self, commit: Commit, sender: str) -> None: """ Validate and process the COMMIT specified. If validation is successful, return the message to the node. :param commit: an incoming COMMIT message :param sender: name of the node that sent the COMMIT """ self.logger.debug("{} received COMMIT{} from {}".format( self, (commit.viewNo, commit.ppSeqNo), sender)) if self.validateCommit(commit, sender): self.stats.inc(TPCStat.CommitRcvd) self.addToCommits(commit, sender) self.logger.debug("{} processed incoming COMMIT{}".format( self, (commit.viewNo, commit.ppSeqNo)))
[ "def", "processCommit", "(", "self", ",", "commit", ":", "Commit", ",", "sender", ":", "str", ")", "->", "None", ":", "self", ".", "logger", ".", "debug", "(", "\"{} received COMMIT{} from {}\"", ".", "format", "(", "self", ",", "(", "commit", ".", "viewNo", ",", "commit", ".", "ppSeqNo", ")", ",", "sender", ")", ")", "if", "self", ".", "validateCommit", "(", "commit", ",", "sender", ")", ":", "self", ".", "stats", ".", "inc", "(", "TPCStat", ".", "CommitRcvd", ")", "self", ".", "addToCommits", "(", "commit", ",", "sender", ")", "self", ".", "logger", ".", "debug", "(", "\"{} processed incoming COMMIT{}\"", ".", "format", "(", "self", ",", "(", "commit", ".", "viewNo", ",", "commit", ".", "ppSeqNo", ")", ")", ")" ]
Validate and process the COMMIT specified. If validation is successful, return the message to the node. :param commit: an incoming COMMIT message :param sender: name of the node that sent the COMMIT
[ "Validate", "and", "process", "the", "COMMIT", "specified", ".", "If", "validation", "is", "successful", "return", "the", "message", "to", "the", "node", "." ]
python
train
Alignak-monitoring/alignak
alignak/external_command.py
https://github.com/Alignak-monitoring/alignak/blob/f3c145207e83159b799d3714e4241399c7740a64/alignak/external_command.py#L2436-L2450
def disable_svc_check(self, service): """Disable checks for a service Format of the line that triggers function call:: DISABLE_SVC_CHECK;<host_name>;<service_description> :param service: service to edit :type service: alignak.objects.service.Service :return: None """ if service.active_checks_enabled: service.disable_active_checks(self.daemon.checks) service.modified_attributes |= \ DICT_MODATTR["MODATTR_ACTIVE_CHECKS_ENABLED"].value self.send_an_element(service.get_update_status_brok())
[ "def", "disable_svc_check", "(", "self", ",", "service", ")", ":", "if", "service", ".", "active_checks_enabled", ":", "service", ".", "disable_active_checks", "(", "self", ".", "daemon", ".", "checks", ")", "service", ".", "modified_attributes", "|=", "DICT_MODATTR", "[", "\"MODATTR_ACTIVE_CHECKS_ENABLED\"", "]", ".", "value", "self", ".", "send_an_element", "(", "service", ".", "get_update_status_brok", "(", ")", ")" ]
Disable checks for a service Format of the line that triggers function call:: DISABLE_SVC_CHECK;<host_name>;<service_description> :param service: service to edit :type service: alignak.objects.service.Service :return: None
[ "Disable", "checks", "for", "a", "service", "Format", "of", "the", "line", "that", "triggers", "function", "call", "::" ]
python
train
learningequality/iceqube
src/iceqube/storage/backends/inmem.py
https://github.com/learningequality/iceqube/blob/97ac9e0f65bfedb0efa9f94638bcb57c7926dea2/src/iceqube/storage/backends/inmem.py#L304-L312
def _ns_query(self, session): """ Return a SQLAlchemy query that is already namespaced by the app and namespace given to this backend during initialization. Returns: a SQLAlchemy query object """ return session.query(ORMJob).filter(ORMJob.app == self.app, ORMJob.namespace == self.namespace)
[ "def", "_ns_query", "(", "self", ",", "session", ")", ":", "return", "session", ".", "query", "(", "ORMJob", ")", ".", "filter", "(", "ORMJob", ".", "app", "==", "self", ".", "app", ",", "ORMJob", ".", "namespace", "==", "self", ".", "namespace", ")" ]
Return a SQLAlchemy query that is already namespaced by the app and namespace given to this backend during initialization. Returns: a SQLAlchemy query object
[ "Return", "a", "SQLAlchemy", "query", "that", "is", "already", "namespaced", "by", "the", "app", "and", "namespace", "given", "to", "this", "backend", "during", "initialization", ".", "Returns", ":", "a", "SQLAlchemy", "query", "object" ]
python
train
saltstack/salt
salt/modules/win_system.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/win_system.py#L788-L846
def _join_domain(domain, username=None, password=None, account_ou=None, account_exists=False): ''' Helper function to join the domain. Args: domain (str): The domain to which the computer should be joined, e.g. ``example.com`` username (str): Username of an account which is authorized to join computers to the specified domain. Need to be either fully qualified like ``[email protected]`` or simply ``user`` password (str): Password of the specified user account_ou (str): The DN of the OU below which the account for this computer should be created when joining the domain, e.g. ``ou=computers,ou=departm_432,dc=my-company,dc=com`` account_exists (bool): If set to ``True`` the computer will only join the domain if the account already exists. If set to ``False`` the computer account will be created if it does not exist, otherwise it will use the existing account. Default is False. Returns: int: :param domain: :param username: :param password: :param account_ou: :param account_exists: :return: ''' NETSETUP_JOIN_DOMAIN = 0x1 # pylint: disable=invalid-name NETSETUP_ACCOUNT_CREATE = 0x2 # pylint: disable=invalid-name NETSETUP_DOMAIN_JOIN_IF_JOINED = 0x20 # pylint: disable=invalid-name NETSETUP_JOIN_WITH_NEW_NAME = 0x400 # pylint: disable=invalid-name join_options = 0x0 join_options |= NETSETUP_JOIN_DOMAIN join_options |= NETSETUP_DOMAIN_JOIN_IF_JOINED join_options |= NETSETUP_JOIN_WITH_NEW_NAME if not account_exists: join_options |= NETSETUP_ACCOUNT_CREATE with salt.utils.winapi.Com(): conn = wmi.WMI() comp = conn.Win32_ComputerSystem()[0] # Return the results of the command as an error # JoinDomainOrWorkgroup returns a strangely formatted value that looks like # (0,) so return the first item return comp.JoinDomainOrWorkgroup( Name=domain, Password=password, UserName=username, AccountOU=account_ou, FJoinOptions=join_options)[0]
[ "def", "_join_domain", "(", "domain", ",", "username", "=", "None", ",", "password", "=", "None", ",", "account_ou", "=", "None", ",", "account_exists", "=", "False", ")", ":", "NETSETUP_JOIN_DOMAIN", "=", "0x1", "# pylint: disable=invalid-name", "NETSETUP_ACCOUNT_CREATE", "=", "0x2", "# pylint: disable=invalid-name", "NETSETUP_DOMAIN_JOIN_IF_JOINED", "=", "0x20", "# pylint: disable=invalid-name", "NETSETUP_JOIN_WITH_NEW_NAME", "=", "0x400", "# pylint: disable=invalid-name", "join_options", "=", "0x0", "join_options", "|=", "NETSETUP_JOIN_DOMAIN", "join_options", "|=", "NETSETUP_DOMAIN_JOIN_IF_JOINED", "join_options", "|=", "NETSETUP_JOIN_WITH_NEW_NAME", "if", "not", "account_exists", ":", "join_options", "|=", "NETSETUP_ACCOUNT_CREATE", "with", "salt", ".", "utils", ".", "winapi", ".", "Com", "(", ")", ":", "conn", "=", "wmi", ".", "WMI", "(", ")", "comp", "=", "conn", ".", "Win32_ComputerSystem", "(", ")", "[", "0", "]", "# Return the results of the command as an error", "# JoinDomainOrWorkgroup returns a strangely formatted value that looks like", "# (0,) so return the first item", "return", "comp", ".", "JoinDomainOrWorkgroup", "(", "Name", "=", "domain", ",", "Password", "=", "password", ",", "UserName", "=", "username", ",", "AccountOU", "=", "account_ou", ",", "FJoinOptions", "=", "join_options", ")", "[", "0", "]" ]
Helper function to join the domain. Args: domain (str): The domain to which the computer should be joined, e.g. ``example.com`` username (str): Username of an account which is authorized to join computers to the specified domain. Need to be either fully qualified like ``[email protected]`` or simply ``user`` password (str): Password of the specified user account_ou (str): The DN of the OU below which the account for this computer should be created when joining the domain, e.g. ``ou=computers,ou=departm_432,dc=my-company,dc=com`` account_exists (bool): If set to ``True`` the computer will only join the domain if the account already exists. If set to ``False`` the computer account will be created if it does not exist, otherwise it will use the existing account. Default is False. Returns: int: :param domain: :param username: :param password: :param account_ou: :param account_exists: :return:
[ "Helper", "function", "to", "join", "the", "domain", "." ]
python
train
ThreatConnect-Inc/tcex
tcex/tcex_vault.py
https://github.com/ThreatConnect-Inc/tcex/blob/dd4d7a1ef723af1561687120191886b9a2fd4b47/tcex/tcex_vault.py#L23-L31
def create(self, key, value, lease='1h'): """Create key/value pair in Vault. Args: key (string): The data key. value (string): The data value. lease (string): The least time. """ return self._client.write(key, value, lease=lease)
[ "def", "create", "(", "self", ",", "key", ",", "value", ",", "lease", "=", "'1h'", ")", ":", "return", "self", ".", "_client", ".", "write", "(", "key", ",", "value", ",", "lease", "=", "lease", ")" ]
Create key/value pair in Vault. Args: key (string): The data key. value (string): The data value. lease (string): The least time.
[ "Create", "key", "/", "value", "pair", "in", "Vault", "." ]
python
train
Nachtfeuer/pipeline
spline/components/config.py
https://github.com/Nachtfeuer/pipeline/blob/04ca18c4e95e4349532bb45b768206393e1f2c13/spline/components/config.py#L29-L46
def schema(): """Provide schema for shell configuration.""" return Schema({ 'script': And(Or(type(' '), type(u' ')), len), Optional('title', default=''): str, Optional('model', default={}): {Optional(And(str, len)): object}, Optional('env', default={}): {Optional(And(str, len)): And(str, len)}, Optional('item', default=None): object, Optional('dry_run', default=False): bool, Optional('debug', default=False): bool, Optional('strict', default=False): bool, Optional('variables', default={}): { Optional(And(Or(type(' '), type(u' ')), len, Regex(r'([a-zA-Z][_a-zA-Z]*)'))): Or(type(' '), type(u' ')) }, Optional('temporary_scripts_path', default=''): Or(type(''), type(u'')), Optional('internal', default=False): bool })
[ "def", "schema", "(", ")", ":", "return", "Schema", "(", "{", "'script'", ":", "And", "(", "Or", "(", "type", "(", "' '", ")", ",", "type", "(", "u' '", ")", ")", ",", "len", ")", ",", "Optional", "(", "'title'", ",", "default", "=", "''", ")", ":", "str", ",", "Optional", "(", "'model'", ",", "default", "=", "{", "}", ")", ":", "{", "Optional", "(", "And", "(", "str", ",", "len", ")", ")", ":", "object", "}", ",", "Optional", "(", "'env'", ",", "default", "=", "{", "}", ")", ":", "{", "Optional", "(", "And", "(", "str", ",", "len", ")", ")", ":", "And", "(", "str", ",", "len", ")", "}", ",", "Optional", "(", "'item'", ",", "default", "=", "None", ")", ":", "object", ",", "Optional", "(", "'dry_run'", ",", "default", "=", "False", ")", ":", "bool", ",", "Optional", "(", "'debug'", ",", "default", "=", "False", ")", ":", "bool", ",", "Optional", "(", "'strict'", ",", "default", "=", "False", ")", ":", "bool", ",", "Optional", "(", "'variables'", ",", "default", "=", "{", "}", ")", ":", "{", "Optional", "(", "And", "(", "Or", "(", "type", "(", "' '", ")", ",", "type", "(", "u' '", ")", ")", ",", "len", ",", "Regex", "(", "r'([a-zA-Z][_a-zA-Z]*)'", ")", ")", ")", ":", "Or", "(", "type", "(", "' '", ")", ",", "type", "(", "u' '", ")", ")", "}", ",", "Optional", "(", "'temporary_scripts_path'", ",", "default", "=", "''", ")", ":", "Or", "(", "type", "(", "''", ")", ",", "type", "(", "u''", ")", ")", ",", "Optional", "(", "'internal'", ",", "default", "=", "False", ")", ":", "bool", "}", ")" ]
Provide schema for shell configuration.
[ "Provide", "schema", "for", "shell", "configuration", "." ]
python
train
wummel/dosage
dosagelib/scraper.py
https://github.com/wummel/dosage/blob/a0109c3a46219f280e6e5e77183674e40da0f304/dosagelib/scraper.py#L198-L211
def getPrevUrl(self, url, data): """Find previous URL.""" prevUrl = None if self.prevSearch: try: prevUrl = self.fetchUrl(url, data, self.prevSearch) except ValueError as msg: # assume there is no previous URL, but print a warning out.warn(u"%s Assuming no previous comic strips exist." % msg) else: prevUrl = self.prevUrlModifier(prevUrl) out.debug(u"Found previous URL %s" % prevUrl) getHandler().comicPageLink(self.getName(), url, prevUrl) return prevUrl
[ "def", "getPrevUrl", "(", "self", ",", "url", ",", "data", ")", ":", "prevUrl", "=", "None", "if", "self", ".", "prevSearch", ":", "try", ":", "prevUrl", "=", "self", ".", "fetchUrl", "(", "url", ",", "data", ",", "self", ".", "prevSearch", ")", "except", "ValueError", "as", "msg", ":", "# assume there is no previous URL, but print a warning", "out", ".", "warn", "(", "u\"%s Assuming no previous comic strips exist.\"", "%", "msg", ")", "else", ":", "prevUrl", "=", "self", ".", "prevUrlModifier", "(", "prevUrl", ")", "out", ".", "debug", "(", "u\"Found previous URL %s\"", "%", "prevUrl", ")", "getHandler", "(", ")", ".", "comicPageLink", "(", "self", ".", "getName", "(", ")", ",", "url", ",", "prevUrl", ")", "return", "prevUrl" ]
Find previous URL.
[ "Find", "previous", "URL", "." ]
python
train
chrisspen/dtree
dtree.py
https://github.com/chrisspen/dtree/blob/9e9c9992b22ad9a7e296af7e6837666b05db43ef/dtree.py#L145-L154
def normpdf(x, mu, sigma): """ Describes the relative likelihood that a real-valued random variable X will take on a given value. http://en.wikipedia.org/wiki/Probability_density_function """ u = (x-mu)/abs(sigma) y = (1/(math.sqrt(2*pi)*abs(sigma)))*math.exp(-u*u/2) return y
[ "def", "normpdf", "(", "x", ",", "mu", ",", "sigma", ")", ":", "u", "=", "(", "x", "-", "mu", ")", "/", "abs", "(", "sigma", ")", "y", "=", "(", "1", "/", "(", "math", ".", "sqrt", "(", "2", "*", "pi", ")", "*", "abs", "(", "sigma", ")", ")", ")", "*", "math", ".", "exp", "(", "-", "u", "*", "u", "/", "2", ")", "return", "y" ]
Describes the relative likelihood that a real-valued random variable X will take on a given value. http://en.wikipedia.org/wiki/Probability_density_function
[ "Describes", "the", "relative", "likelihood", "that", "a", "real", "-", "valued", "random", "variable", "X", "will", "take", "on", "a", "given", "value", ".", "http", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Probability_density_function" ]
python
train
apache/incubator-mxnet
python/mxnet/ndarray/sparse.py
https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/python/mxnet/ndarray/sparse.py#L72-L104
def _new_alloc_handle(stype, shape, ctx, delay_alloc, dtype, aux_types, aux_shapes=None): """Return a new handle with specified storage type, shape, dtype and context. Empty handle is only used to hold results Returns ------- handle A new empty ndarray handle """ hdl = NDArrayHandle() for aux_t in aux_types: if np.dtype(aux_t) != np.dtype("int64"): raise NotImplementedError("only int64 is supported for aux types") aux_type_ids = [int(_DTYPE_NP_TO_MX[np.dtype(aux_t).type]) for aux_t in aux_types] aux_shapes = [(0,) for aux_t in aux_types] if aux_shapes is None else aux_shapes aux_shape_lens = [len(aux_shape) for aux_shape in aux_shapes] aux_shapes = py_sum(aux_shapes, ()) num_aux = mx_uint(len(aux_types)) check_call(_LIB.MXNDArrayCreateSparseEx( ctypes.c_int(int(_STORAGE_TYPE_STR_TO_ID[stype])), c_array_buf(mx_uint, native_array('I', shape)), mx_uint(len(shape)), ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), ctypes.c_int(int(delay_alloc)), ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])), num_aux, c_array_buf(ctypes.c_int, native_array('i', aux_type_ids)), c_array_buf(mx_uint, native_array('I', aux_shape_lens)), c_array_buf(mx_uint, native_array('I', aux_shapes)), ctypes.byref(hdl))) return hdl
[ "def", "_new_alloc_handle", "(", "stype", ",", "shape", ",", "ctx", ",", "delay_alloc", ",", "dtype", ",", "aux_types", ",", "aux_shapes", "=", "None", ")", ":", "hdl", "=", "NDArrayHandle", "(", ")", "for", "aux_t", "in", "aux_types", ":", "if", "np", ".", "dtype", "(", "aux_t", ")", "!=", "np", ".", "dtype", "(", "\"int64\"", ")", ":", "raise", "NotImplementedError", "(", "\"only int64 is supported for aux types\"", ")", "aux_type_ids", "=", "[", "int", "(", "_DTYPE_NP_TO_MX", "[", "np", ".", "dtype", "(", "aux_t", ")", ".", "type", "]", ")", "for", "aux_t", "in", "aux_types", "]", "aux_shapes", "=", "[", "(", "0", ",", ")", "for", "aux_t", "in", "aux_types", "]", "if", "aux_shapes", "is", "None", "else", "aux_shapes", "aux_shape_lens", "=", "[", "len", "(", "aux_shape", ")", "for", "aux_shape", "in", "aux_shapes", "]", "aux_shapes", "=", "py_sum", "(", "aux_shapes", ",", "(", ")", ")", "num_aux", "=", "mx_uint", "(", "len", "(", "aux_types", ")", ")", "check_call", "(", "_LIB", ".", "MXNDArrayCreateSparseEx", "(", "ctypes", ".", "c_int", "(", "int", "(", "_STORAGE_TYPE_STR_TO_ID", "[", "stype", "]", ")", ")", ",", "c_array_buf", "(", "mx_uint", ",", "native_array", "(", "'I'", ",", "shape", ")", ")", ",", "mx_uint", "(", "len", "(", "shape", ")", ")", ",", "ctypes", ".", "c_int", "(", "ctx", ".", "device_typeid", ")", ",", "ctypes", ".", "c_int", "(", "ctx", ".", "device_id", ")", ",", "ctypes", ".", "c_int", "(", "int", "(", "delay_alloc", ")", ")", ",", "ctypes", ".", "c_int", "(", "int", "(", "_DTYPE_NP_TO_MX", "[", "np", ".", "dtype", "(", "dtype", ")", ".", "type", "]", ")", ")", ",", "num_aux", ",", "c_array_buf", "(", "ctypes", ".", "c_int", ",", "native_array", "(", "'i'", ",", "aux_type_ids", ")", ")", ",", "c_array_buf", "(", "mx_uint", ",", "native_array", "(", "'I'", ",", "aux_shape_lens", ")", ")", ",", "c_array_buf", "(", "mx_uint", ",", "native_array", "(", "'I'", ",", "aux_shapes", ")", ")", ",", "ctypes", ".", "byref", "(", "hdl", ")", ")", ")", "return", "hdl" ]
Return a new handle with specified storage type, shape, dtype and context. Empty handle is only used to hold results Returns ------- handle A new empty ndarray handle
[ "Return", "a", "new", "handle", "with", "specified", "storage", "type", "shape", "dtype", "and", "context", "." ]
python
train
ARMmbed/icetea
examples/sample_cloud.py
https://github.com/ARMmbed/icetea/blob/b2b97ac607429830cf7d62dae2e3903692c7c778/examples/sample_cloud.py#L24-L30
def create(host, port, result_converter=None, testcase_converter=None, args=None): """ Function which is called by Icetea to create an instance of the cloud client. This function must exists. This function myust not return None. Either return an instance of Client or raise. """ return SampleClient(host, port, result_converter, testcase_converter, args)
[ "def", "create", "(", "host", ",", "port", ",", "result_converter", "=", "None", ",", "testcase_converter", "=", "None", ",", "args", "=", "None", ")", ":", "return", "SampleClient", "(", "host", ",", "port", ",", "result_converter", ",", "testcase_converter", ",", "args", ")" ]
Function which is called by Icetea to create an instance of the cloud client. This function must exists. This function myust not return None. Either return an instance of Client or raise.
[ "Function", "which", "is", "called", "by", "Icetea", "to", "create", "an", "instance", "of", "the", "cloud", "client", ".", "This", "function", "must", "exists", ".", "This", "function", "myust", "not", "return", "None", ".", "Either", "return", "an", "instance", "of", "Client", "or", "raise", "." ]
python
train
trailofbits/protofuzz
protofuzz/gen.py
https://github.com/trailofbits/protofuzz/blob/589492d34de9a0da6cc5554094e2588b893b2fd8/protofuzz/gen.py#L130-L152
def make_dependent(self, source, target, action): ''' Create a dependency between path 'source' and path 'target' via the callable 'action'. >>> permuter._generators [IterValueGenerator(one), IterValueGenerator(two)] >>> permuter.make_dependent('one', 'two', lambda x: x + 1) Going forward, 'two' will only contain values that are (one+1) ''' if not self._generators: return src_permuter, src = self._resolve_child(source) dest = self._resolve_child(target)[1] # pylint: disable=protected-access container = src_permuter._generators idx = container.index(src) container[idx] = DependentValueGenerator(src.name(), dest, action) self._update_independent_generators()
[ "def", "make_dependent", "(", "self", ",", "source", ",", "target", ",", "action", ")", ":", "if", "not", "self", ".", "_generators", ":", "return", "src_permuter", ",", "src", "=", "self", ".", "_resolve_child", "(", "source", ")", "dest", "=", "self", ".", "_resolve_child", "(", "target", ")", "[", "1", "]", "# pylint: disable=protected-access", "container", "=", "src_permuter", ".", "_generators", "idx", "=", "container", ".", "index", "(", "src", ")", "container", "[", "idx", "]", "=", "DependentValueGenerator", "(", "src", ".", "name", "(", ")", ",", "dest", ",", "action", ")", "self", ".", "_update_independent_generators", "(", ")" ]
Create a dependency between path 'source' and path 'target' via the callable 'action'. >>> permuter._generators [IterValueGenerator(one), IterValueGenerator(two)] >>> permuter.make_dependent('one', 'two', lambda x: x + 1) Going forward, 'two' will only contain values that are (one+1)
[ "Create", "a", "dependency", "between", "path", "source", "and", "path", "target", "via", "the", "callable", "action", "." ]
python
train
readbeyond/aeneas
aeneas/validator.py
https://github.com/readbeyond/aeneas/blob/9d95535ad63eef4a98530cfdff033b8c35315ee1/aeneas/validator.py#L259-L276
def check_file_encoding(self, input_file_path): """ Check whether the given file is UTF-8 encoded. :param string input_file_path: the path of the file to be checked :rtype: :class:`~aeneas.validator.ValidatorResult` """ self.log([u"Checking encoding of file '%s'", input_file_path]) self.result = ValidatorResult() if self._are_safety_checks_disabled(u"check_file_encoding"): return self.result if not gf.file_can_be_read(input_file_path): self._failed(u"File '%s' cannot be read." % (input_file_path)) return self.result with io.open(input_file_path, "rb") as file_object: bstring = file_object.read() self._check_utf8_encoding(bstring) return self.result
[ "def", "check_file_encoding", "(", "self", ",", "input_file_path", ")", ":", "self", ".", "log", "(", "[", "u\"Checking encoding of file '%s'\"", ",", "input_file_path", "]", ")", "self", ".", "result", "=", "ValidatorResult", "(", ")", "if", "self", ".", "_are_safety_checks_disabled", "(", "u\"check_file_encoding\"", ")", ":", "return", "self", ".", "result", "if", "not", "gf", ".", "file_can_be_read", "(", "input_file_path", ")", ":", "self", ".", "_failed", "(", "u\"File '%s' cannot be read.\"", "%", "(", "input_file_path", ")", ")", "return", "self", ".", "result", "with", "io", ".", "open", "(", "input_file_path", ",", "\"rb\"", ")", "as", "file_object", ":", "bstring", "=", "file_object", ".", "read", "(", ")", "self", ".", "_check_utf8_encoding", "(", "bstring", ")", "return", "self", ".", "result" ]
Check whether the given file is UTF-8 encoded. :param string input_file_path: the path of the file to be checked :rtype: :class:`~aeneas.validator.ValidatorResult`
[ "Check", "whether", "the", "given", "file", "is", "UTF", "-", "8", "encoded", "." ]
python
train
jtwhite79/pyemu
pyemu/mat/mat_handler.py
https://github.com/jtwhite79/pyemu/blob/c504d8e7a4097cec07655a6318d275739bd8148a/pyemu/mat/mat_handler.py#L18-L64
def save_coo(x, row_names, col_names, filename, chunk=None): """write a PEST-compatible binary file. The data format is [int,int,float] for i,j,value. It is autodetected during the read with Matrix.from_binary(). Parameters ---------- x : numpy.sparse coo sparse matrix row_names : list list of row_names col_names : list list of col_names filename : str filename to save binary file droptol : float absolute value tolerance to make values smaller than zero. Default is None chunk : int number of elements to write in a single pass. Default is None """ f = open(filename, 'wb') # print("counting nnz") # write the header header = np.array((x.shape[1], x.shape[0], x.nnz), dtype=Matrix.binary_header_dt) header.tofile(f) data = np.core.records.fromarrays([x.row, x.col, x.data], dtype=Matrix.coo_rec_dt) data.tofile(f) for name in col_names: if len(name) > Matrix.new_par_length: name = name[:Matrix.new_par_length - 1] elif len(name) < Matrix.new_par_length: for i in range(len(name), Matrix.new_par_length): name = name + ' ' f.write(name.encode()) for name in row_names: if len(name) > Matrix.new_obs_length: name = name[:Matrix.new_obs_length - 1] elif len(name) < Matrix.new_obs_length: for i in range(len(name), Matrix.new_obs_length): name = name + ' ' f.write(name.encode()) f.close()
[ "def", "save_coo", "(", "x", ",", "row_names", ",", "col_names", ",", "filename", ",", "chunk", "=", "None", ")", ":", "f", "=", "open", "(", "filename", ",", "'wb'", ")", "# print(\"counting nnz\")", "# write the header", "header", "=", "np", ".", "array", "(", "(", "x", ".", "shape", "[", "1", "]", ",", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "nnz", ")", ",", "dtype", "=", "Matrix", ".", "binary_header_dt", ")", "header", ".", "tofile", "(", "f", ")", "data", "=", "np", ".", "core", ".", "records", ".", "fromarrays", "(", "[", "x", ".", "row", ",", "x", ".", "col", ",", "x", ".", "data", "]", ",", "dtype", "=", "Matrix", ".", "coo_rec_dt", ")", "data", ".", "tofile", "(", "f", ")", "for", "name", "in", "col_names", ":", "if", "len", "(", "name", ")", ">", "Matrix", ".", "new_par_length", ":", "name", "=", "name", "[", ":", "Matrix", ".", "new_par_length", "-", "1", "]", "elif", "len", "(", "name", ")", "<", "Matrix", ".", "new_par_length", ":", "for", "i", "in", "range", "(", "len", "(", "name", ")", ",", "Matrix", ".", "new_par_length", ")", ":", "name", "=", "name", "+", "' '", "f", ".", "write", "(", "name", ".", "encode", "(", ")", ")", "for", "name", "in", "row_names", ":", "if", "len", "(", "name", ")", ">", "Matrix", ".", "new_obs_length", ":", "name", "=", "name", "[", ":", "Matrix", ".", "new_obs_length", "-", "1", "]", "elif", "len", "(", "name", ")", "<", "Matrix", ".", "new_obs_length", ":", "for", "i", "in", "range", "(", "len", "(", "name", ")", ",", "Matrix", ".", "new_obs_length", ")", ":", "name", "=", "name", "+", "' '", "f", ".", "write", "(", "name", ".", "encode", "(", ")", ")", "f", ".", "close", "(", ")" ]
write a PEST-compatible binary file. The data format is [int,int,float] for i,j,value. It is autodetected during the read with Matrix.from_binary(). Parameters ---------- x : numpy.sparse coo sparse matrix row_names : list list of row_names col_names : list list of col_names filename : str filename to save binary file droptol : float absolute value tolerance to make values smaller than zero. Default is None chunk : int number of elements to write in a single pass. Default is None
[ "write", "a", "PEST", "-", "compatible", "binary", "file", ".", "The", "data", "format", "is", "[", "int", "int", "float", "]", "for", "i", "j", "value", ".", "It", "is", "autodetected", "during", "the", "read", "with", "Matrix", ".", "from_binary", "()", "." ]
python
train
gem/oq-engine
openquake/calculators/base.py
https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/calculators/base.py#L568-L586
def load_riskmodel(self): # to be called before read_exposure # NB: this is called even if there is no risk model """ Read the risk model and set the attribute .riskmodel. The riskmodel can be empty for hazard calculations. Save the loss ratios (if any) in the datastore. """ logging.info('Reading the risk model if present') self.riskmodel = readinput.get_risk_model(self.oqparam) if not self.riskmodel: parent = self.datastore.parent if 'risk_model' in parent: self.riskmodel = riskinput.CompositeRiskModel.read(parent) return if self.oqparam.ground_motion_fields and not self.oqparam.imtls: raise InvalidFile('No intensity_measure_types specified in %s' % self.oqparam.inputs['job_ini']) self.save_params()
[ "def", "load_riskmodel", "(", "self", ")", ":", "# to be called before read_exposure", "# NB: this is called even if there is no risk model", "logging", ".", "info", "(", "'Reading the risk model if present'", ")", "self", ".", "riskmodel", "=", "readinput", ".", "get_risk_model", "(", "self", ".", "oqparam", ")", "if", "not", "self", ".", "riskmodel", ":", "parent", "=", "self", ".", "datastore", ".", "parent", "if", "'risk_model'", "in", "parent", ":", "self", ".", "riskmodel", "=", "riskinput", ".", "CompositeRiskModel", ".", "read", "(", "parent", ")", "return", "if", "self", ".", "oqparam", ".", "ground_motion_fields", "and", "not", "self", ".", "oqparam", ".", "imtls", ":", "raise", "InvalidFile", "(", "'No intensity_measure_types specified in %s'", "%", "self", ".", "oqparam", ".", "inputs", "[", "'job_ini'", "]", ")", "self", ".", "save_params", "(", ")" ]
Read the risk model and set the attribute .riskmodel. The riskmodel can be empty for hazard calculations. Save the loss ratios (if any) in the datastore.
[ "Read", "the", "risk", "model", "and", "set", "the", "attribute", ".", "riskmodel", ".", "The", "riskmodel", "can", "be", "empty", "for", "hazard", "calculations", ".", "Save", "the", "loss", "ratios", "(", "if", "any", ")", "in", "the", "datastore", "." ]
python
train
bmcfee/pumpp
pumpp/base.py
https://github.com/bmcfee/pumpp/blob/06a17b888271dd1f6cd41bddb22b0eb04d494056/pumpp/base.py#L52-L84
def register(self, field, shape, dtype): '''Register a field as a tensor with specified shape and type. A `Tensor` of the given shape and type will be registered in this object's `fields` dict. Parameters ---------- field : str The name of the field shape : iterable of `int` or `None` The shape of the output variable. This does not include a dimension for multiple outputs. `None` may be used to indicate variable-length outputs dtype : type The data type of the field Raises ------ ParameterError If dtype or shape are improperly specified ''' if not isinstance(dtype, type): raise ParameterError('dtype={} must be a type'.format(dtype)) if not (isinstance(shape, Iterable) and all([s is None or isinstance(s, int) for s in shape])): raise ParameterError('shape={} must be an iterable of integers'.format(shape)) self.fields[self.scope(field)] = Tensor(tuple(shape), dtype)
[ "def", "register", "(", "self", ",", "field", ",", "shape", ",", "dtype", ")", ":", "if", "not", "isinstance", "(", "dtype", ",", "type", ")", ":", "raise", "ParameterError", "(", "'dtype={} must be a type'", ".", "format", "(", "dtype", ")", ")", "if", "not", "(", "isinstance", "(", "shape", ",", "Iterable", ")", "and", "all", "(", "[", "s", "is", "None", "or", "isinstance", "(", "s", ",", "int", ")", "for", "s", "in", "shape", "]", ")", ")", ":", "raise", "ParameterError", "(", "'shape={} must be an iterable of integers'", ".", "format", "(", "shape", ")", ")", "self", ".", "fields", "[", "self", ".", "scope", "(", "field", ")", "]", "=", "Tensor", "(", "tuple", "(", "shape", ")", ",", "dtype", ")" ]
Register a field as a tensor with specified shape and type. A `Tensor` of the given shape and type will be registered in this object's `fields` dict. Parameters ---------- field : str The name of the field shape : iterable of `int` or `None` The shape of the output variable. This does not include a dimension for multiple outputs. `None` may be used to indicate variable-length outputs dtype : type The data type of the field Raises ------ ParameterError If dtype or shape are improperly specified
[ "Register", "a", "field", "as", "a", "tensor", "with", "specified", "shape", "and", "type", "." ]
python
train
django-auth-ldap/django-auth-ldap
django_auth_ldap/backend.py
https://github.com/django-auth-ldap/django-auth-ldap/blob/9ce3c2825527f8faa1793958b041816e63d839af/django_auth_ldap/backend.py#L591-L632
def _get_or_create_user(self, force_populate=False): """ Loads the User model object from the database or creates it if it doesn't exist. Also populates the fields, subject to AUTH_LDAP_ALWAYS_UPDATE_USER. """ save_user = False username = self.backend.ldap_to_django_username(self._username) self._user, built = self.backend.get_or_build_user(username, self) self._user.ldap_user = self self._user.ldap_username = self._username should_populate = force_populate or self.settings.ALWAYS_UPDATE_USER or built if built: if self.settings.NO_NEW_USERS: raise self.AuthenticationFailed( "user does not satisfy AUTH_LDAP_NO_NEW_USERS" ) logger.debug("Creating Django user {}".format(username)) self._user.set_unusable_password() save_user = True if should_populate: logger.debug("Populating Django user {}".format(username)) self._populate_user() save_user = True # Give the client a chance to finish populating the user just # before saving. populate_user.send(self.backend.__class__, user=self._user, ldap_user=self) if save_user: self._user.save() # This has to wait until we're sure the user has a pk. if self.settings.MIRROR_GROUPS or self.settings.MIRROR_GROUPS_EXCEPT: self._normalize_mirror_settings() self._mirror_groups()
[ "def", "_get_or_create_user", "(", "self", ",", "force_populate", "=", "False", ")", ":", "save_user", "=", "False", "username", "=", "self", ".", "backend", ".", "ldap_to_django_username", "(", "self", ".", "_username", ")", "self", ".", "_user", ",", "built", "=", "self", ".", "backend", ".", "get_or_build_user", "(", "username", ",", "self", ")", "self", ".", "_user", ".", "ldap_user", "=", "self", "self", ".", "_user", ".", "ldap_username", "=", "self", ".", "_username", "should_populate", "=", "force_populate", "or", "self", ".", "settings", ".", "ALWAYS_UPDATE_USER", "or", "built", "if", "built", ":", "if", "self", ".", "settings", ".", "NO_NEW_USERS", ":", "raise", "self", ".", "AuthenticationFailed", "(", "\"user does not satisfy AUTH_LDAP_NO_NEW_USERS\"", ")", "logger", ".", "debug", "(", "\"Creating Django user {}\"", ".", "format", "(", "username", ")", ")", "self", ".", "_user", ".", "set_unusable_password", "(", ")", "save_user", "=", "True", "if", "should_populate", ":", "logger", ".", "debug", "(", "\"Populating Django user {}\"", ".", "format", "(", "username", ")", ")", "self", ".", "_populate_user", "(", ")", "save_user", "=", "True", "# Give the client a chance to finish populating the user just", "# before saving.", "populate_user", ".", "send", "(", "self", ".", "backend", ".", "__class__", ",", "user", "=", "self", ".", "_user", ",", "ldap_user", "=", "self", ")", "if", "save_user", ":", "self", ".", "_user", ".", "save", "(", ")", "# This has to wait until we're sure the user has a pk.", "if", "self", ".", "settings", ".", "MIRROR_GROUPS", "or", "self", ".", "settings", ".", "MIRROR_GROUPS_EXCEPT", ":", "self", ".", "_normalize_mirror_settings", "(", ")", "self", ".", "_mirror_groups", "(", ")" ]
Loads the User model object from the database or creates it if it doesn't exist. Also populates the fields, subject to AUTH_LDAP_ALWAYS_UPDATE_USER.
[ "Loads", "the", "User", "model", "object", "from", "the", "database", "or", "creates", "it", "if", "it", "doesn", "t", "exist", ".", "Also", "populates", "the", "fields", "subject", "to", "AUTH_LDAP_ALWAYS_UPDATE_USER", "." ]
python
train
tonyfischetti/sake
sakelib/build.py
https://github.com/tonyfischetti/sake/blob/b7ad20fe8e7137db99a20ac06b8da26492601b00/sakelib/build.py#L115-L129
def write_shas_to_shastore(sha_dict): """ Writes a sha1 dictionary stored in memory to the .shastore file """ if sys.version_info[0] < 3: fn_open = open else: fn_open = io.open with fn_open(".shastore", "w") as fh: fh.write("---\n") fh.write('sake version: {}\n'.format(constants.VERSION)) if sha_dict: fh.write(yaml.dump(sha_dict)) fh.write("...")
[ "def", "write_shas_to_shastore", "(", "sha_dict", ")", ":", "if", "sys", ".", "version_info", "[", "0", "]", "<", "3", ":", "fn_open", "=", "open", "else", ":", "fn_open", "=", "io", ".", "open", "with", "fn_open", "(", "\".shastore\"", ",", "\"w\"", ")", "as", "fh", ":", "fh", ".", "write", "(", "\"---\\n\"", ")", "fh", ".", "write", "(", "'sake version: {}\\n'", ".", "format", "(", "constants", ".", "VERSION", ")", ")", "if", "sha_dict", ":", "fh", ".", "write", "(", "yaml", ".", "dump", "(", "sha_dict", ")", ")", "fh", ".", "write", "(", "\"...\"", ")" ]
Writes a sha1 dictionary stored in memory to the .shastore file
[ "Writes", "a", "sha1", "dictionary", "stored", "in", "memory", "to", "the", ".", "shastore", "file" ]
python
valid
mlperf/training
object_detection/pytorch/maskrcnn_benchmark/data/datasets/evaluation/voc/voc_eval.py
https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/object_detection/pytorch/maskrcnn_benchmark/data/datasets/evaluation/voc/voc_eval.py#L68-L157
def calc_detection_voc_prec_rec(gt_boxlists, pred_boxlists, iou_thresh=0.5): """Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge. """ n_pos = defaultdict(int) score = defaultdict(list) match = defaultdict(list) for gt_boxlist, pred_boxlist in zip(gt_boxlists, pred_boxlists): pred_bbox = pred_boxlist.bbox.numpy() pred_label = pred_boxlist.get_field("labels").numpy() pred_score = pred_boxlist.get_field("scores").numpy() gt_bbox = gt_boxlist.bbox.numpy() gt_label = gt_boxlist.get_field("labels").numpy() gt_difficult = gt_boxlist.get_field("difficult").numpy() for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)): pred_mask_l = pred_label == l pred_bbox_l = pred_bbox[pred_mask_l] pred_score_l = pred_score[pred_mask_l] # sort by score order = pred_score_l.argsort()[::-1] pred_bbox_l = pred_bbox_l[order] pred_score_l = pred_score_l[order] gt_mask_l = gt_label == l gt_bbox_l = gt_bbox[gt_mask_l] gt_difficult_l = gt_difficult[gt_mask_l] n_pos[l] += np.logical_not(gt_difficult_l).sum() score[l].extend(pred_score_l) if len(pred_bbox_l) == 0: continue if len(gt_bbox_l) == 0: match[l].extend((0,) * pred_bbox_l.shape[0]) continue # VOC evaluation follows integer typed bounding boxes. pred_bbox_l = pred_bbox_l.copy() pred_bbox_l[:, 2:] += 1 gt_bbox_l = gt_bbox_l.copy() gt_bbox_l[:, 2:] += 1 iou = boxlist_iou( BoxList(pred_bbox_l, gt_boxlist.size), BoxList(gt_bbox_l, gt_boxlist.size), ).numpy() gt_index = iou.argmax(axis=1) # set -1 if there is no matching ground truth gt_index[iou.max(axis=1) < iou_thresh] = -1 del iou selec = np.zeros(gt_bbox_l.shape[0], dtype=bool) for gt_idx in gt_index: if gt_idx >= 0: if gt_difficult_l[gt_idx]: match[l].append(-1) else: if not selec[gt_idx]: match[l].append(1) else: match[l].append(0) selec[gt_idx] = True else: match[l].append(0) n_fg_class = max(n_pos.keys()) + 1 prec = [None] * n_fg_class rec = [None] * n_fg_class for l in n_pos.keys(): score_l = np.array(score[l]) match_l = np.array(match[l], dtype=np.int8) order = score_l.argsort()[::-1] match_l = match_l[order] tp = np.cumsum(match_l == 1) fp = np.cumsum(match_l == 0) # If an element of fp + tp is 0, # the corresponding element of prec[l] is nan. prec[l] = tp / (fp + tp) # If n_pos[l] is 0, rec[l] is None. if n_pos[l] > 0: rec[l] = tp / n_pos[l] return prec, rec
[ "def", "calc_detection_voc_prec_rec", "(", "gt_boxlists", ",", "pred_boxlists", ",", "iou_thresh", "=", "0.5", ")", ":", "n_pos", "=", "defaultdict", "(", "int", ")", "score", "=", "defaultdict", "(", "list", ")", "match", "=", "defaultdict", "(", "list", ")", "for", "gt_boxlist", ",", "pred_boxlist", "in", "zip", "(", "gt_boxlists", ",", "pred_boxlists", ")", ":", "pred_bbox", "=", "pred_boxlist", ".", "bbox", ".", "numpy", "(", ")", "pred_label", "=", "pred_boxlist", ".", "get_field", "(", "\"labels\"", ")", ".", "numpy", "(", ")", "pred_score", "=", "pred_boxlist", ".", "get_field", "(", "\"scores\"", ")", ".", "numpy", "(", ")", "gt_bbox", "=", "gt_boxlist", ".", "bbox", ".", "numpy", "(", ")", "gt_label", "=", "gt_boxlist", ".", "get_field", "(", "\"labels\"", ")", ".", "numpy", "(", ")", "gt_difficult", "=", "gt_boxlist", ".", "get_field", "(", "\"difficult\"", ")", ".", "numpy", "(", ")", "for", "l", "in", "np", ".", "unique", "(", "np", ".", "concatenate", "(", "(", "pred_label", ",", "gt_label", ")", ")", ".", "astype", "(", "int", ")", ")", ":", "pred_mask_l", "=", "pred_label", "==", "l", "pred_bbox_l", "=", "pred_bbox", "[", "pred_mask_l", "]", "pred_score_l", "=", "pred_score", "[", "pred_mask_l", "]", "# sort by score", "order", "=", "pred_score_l", ".", "argsort", "(", ")", "[", ":", ":", "-", "1", "]", "pred_bbox_l", "=", "pred_bbox_l", "[", "order", "]", "pred_score_l", "=", "pred_score_l", "[", "order", "]", "gt_mask_l", "=", "gt_label", "==", "l", "gt_bbox_l", "=", "gt_bbox", "[", "gt_mask_l", "]", "gt_difficult_l", "=", "gt_difficult", "[", "gt_mask_l", "]", "n_pos", "[", "l", "]", "+=", "np", ".", "logical_not", "(", "gt_difficult_l", ")", ".", "sum", "(", ")", "score", "[", "l", "]", ".", "extend", "(", "pred_score_l", ")", "if", "len", "(", "pred_bbox_l", ")", "==", "0", ":", "continue", "if", "len", "(", "gt_bbox_l", ")", "==", "0", ":", "match", "[", "l", "]", ".", "extend", "(", "(", "0", ",", ")", "*", "pred_bbox_l", ".", "shape", "[", "0", "]", ")", "continue", "# VOC evaluation follows integer typed bounding boxes.", "pred_bbox_l", "=", "pred_bbox_l", ".", "copy", "(", ")", "pred_bbox_l", "[", ":", ",", "2", ":", "]", "+=", "1", "gt_bbox_l", "=", "gt_bbox_l", ".", "copy", "(", ")", "gt_bbox_l", "[", ":", ",", "2", ":", "]", "+=", "1", "iou", "=", "boxlist_iou", "(", "BoxList", "(", "pred_bbox_l", ",", "gt_boxlist", ".", "size", ")", ",", "BoxList", "(", "gt_bbox_l", ",", "gt_boxlist", ".", "size", ")", ",", ")", ".", "numpy", "(", ")", "gt_index", "=", "iou", ".", "argmax", "(", "axis", "=", "1", ")", "# set -1 if there is no matching ground truth", "gt_index", "[", "iou", ".", "max", "(", "axis", "=", "1", ")", "<", "iou_thresh", "]", "=", "-", "1", "del", "iou", "selec", "=", "np", ".", "zeros", "(", "gt_bbox_l", ".", "shape", "[", "0", "]", ",", "dtype", "=", "bool", ")", "for", "gt_idx", "in", "gt_index", ":", "if", "gt_idx", ">=", "0", ":", "if", "gt_difficult_l", "[", "gt_idx", "]", ":", "match", "[", "l", "]", ".", "append", "(", "-", "1", ")", "else", ":", "if", "not", "selec", "[", "gt_idx", "]", ":", "match", "[", "l", "]", ".", "append", "(", "1", ")", "else", ":", "match", "[", "l", "]", ".", "append", "(", "0", ")", "selec", "[", "gt_idx", "]", "=", "True", "else", ":", "match", "[", "l", "]", ".", "append", "(", "0", ")", "n_fg_class", "=", "max", "(", "n_pos", ".", "keys", "(", ")", ")", "+", "1", "prec", "=", "[", "None", "]", "*", "n_fg_class", "rec", "=", "[", "None", "]", "*", "n_fg_class", "for", "l", "in", "n_pos", ".", "keys", "(", ")", ":", "score_l", "=", "np", ".", "array", "(", "score", "[", "l", "]", ")", "match_l", "=", "np", ".", "array", "(", "match", "[", "l", "]", ",", "dtype", "=", "np", ".", "int8", ")", "order", "=", "score_l", ".", "argsort", "(", ")", "[", ":", ":", "-", "1", "]", "match_l", "=", "match_l", "[", "order", "]", "tp", "=", "np", ".", "cumsum", "(", "match_l", "==", "1", ")", "fp", "=", "np", ".", "cumsum", "(", "match_l", "==", "0", ")", "# If an element of fp + tp is 0,", "# the corresponding element of prec[l] is nan.", "prec", "[", "l", "]", "=", "tp", "/", "(", "fp", "+", "tp", ")", "# If n_pos[l] is 0, rec[l] is None.", "if", "n_pos", "[", "l", "]", ">", "0", ":", "rec", "[", "l", "]", "=", "tp", "/", "n_pos", "[", "l", "]", "return", "prec", ",", "rec" ]
Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge.
[ "Calculate", "precision", "and", "recall", "based", "on", "evaluation", "code", "of", "PASCAL", "VOC", ".", "This", "function", "calculates", "precision", "and", "recall", "of", "predicted", "bounding", "boxes", "obtained", "from", "a", "dataset", "which", "has", ":", "math", ":", "N", "images", ".", "The", "code", "is", "based", "on", "the", "evaluation", "code", "used", "in", "PASCAL", "VOC", "Challenge", "." ]
python
train
pytroll/satpy
satpy/scene.py
https://github.com/pytroll/satpy/blob/1f21d20ac686b745fb0da9b4030d139893e066dd/satpy/scene.py#L1036-L1097
def resample(self, destination=None, datasets=None, generate=True, unload=True, resampler=None, reduce_data=True, **resample_kwargs): """Resample datasets and return a new scene. Args: destination (AreaDefinition, GridDefinition): area definition to resample to. If not specified then the area returned by `Scene.max_area()` will be used. datasets (list): Limit datasets to resample to these specified `DatasetID` objects . By default all currently loaded datasets are resampled. generate (bool): Generate any requested composites that could not be previously due to incompatible areas (default: True). unload (bool): Remove any datasets no longer needed after requested composites have been generated (default: True). resampler (str): Name of resampling method to use. By default, this is a nearest neighbor KDTree-based resampling ('nearest'). Other possible values include 'native', 'ewa', etc. See the :mod:`~satpy.resample` documentation for more information. reduce_data (bool): Reduce data by matching the input and output areas and slicing the data arrays (default: True) resample_kwargs: Remaining keyword arguments to pass to individual resampler classes. See the individual resampler class documentation :mod:`here <satpy.resample>` for available arguments. """ to_resample_ids = [dsid for (dsid, dataset) in self.datasets.items() if (not datasets) or dsid in datasets] if destination is None: destination = self.max_area(to_resample_ids) new_scn = self.copy(datasets=to_resample_ids) # we may have some datasets we asked for but don't exist yet new_scn.wishlist = self.wishlist.copy() self._resampled_scene(new_scn, destination, resampler=resampler, reduce_data=reduce_data, **resample_kwargs) # regenerate anything from the wishlist that needs it (combining # multiple resolutions, etc.) if generate: keepables = new_scn.generate_composites() else: # don't lose datasets that we may need later for generating # composites keepables = set(new_scn.datasets.keys()) | new_scn.wishlist if new_scn.missing_datasets: # copy the set of missing datasets because they won't be valid # after they are removed in the next line missing = new_scn.missing_datasets.copy() new_scn._remove_failed_datasets(keepables) missing_str = ", ".join(str(x) for x in missing) LOG.warning( "The following datasets " "were not created: {}".format(missing_str)) if unload: new_scn.unload(keepables) return new_scn
[ "def", "resample", "(", "self", ",", "destination", "=", "None", ",", "datasets", "=", "None", ",", "generate", "=", "True", ",", "unload", "=", "True", ",", "resampler", "=", "None", ",", "reduce_data", "=", "True", ",", "*", "*", "resample_kwargs", ")", ":", "to_resample_ids", "=", "[", "dsid", "for", "(", "dsid", ",", "dataset", ")", "in", "self", ".", "datasets", ".", "items", "(", ")", "if", "(", "not", "datasets", ")", "or", "dsid", "in", "datasets", "]", "if", "destination", "is", "None", ":", "destination", "=", "self", ".", "max_area", "(", "to_resample_ids", ")", "new_scn", "=", "self", ".", "copy", "(", "datasets", "=", "to_resample_ids", ")", "# we may have some datasets we asked for but don't exist yet", "new_scn", ".", "wishlist", "=", "self", ".", "wishlist", ".", "copy", "(", ")", "self", ".", "_resampled_scene", "(", "new_scn", ",", "destination", ",", "resampler", "=", "resampler", ",", "reduce_data", "=", "reduce_data", ",", "*", "*", "resample_kwargs", ")", "# regenerate anything from the wishlist that needs it (combining", "# multiple resolutions, etc.)", "if", "generate", ":", "keepables", "=", "new_scn", ".", "generate_composites", "(", ")", "else", ":", "# don't lose datasets that we may need later for generating", "# composites", "keepables", "=", "set", "(", "new_scn", ".", "datasets", ".", "keys", "(", ")", ")", "|", "new_scn", ".", "wishlist", "if", "new_scn", ".", "missing_datasets", ":", "# copy the set of missing datasets because they won't be valid", "# after they are removed in the next line", "missing", "=", "new_scn", ".", "missing_datasets", ".", "copy", "(", ")", "new_scn", ".", "_remove_failed_datasets", "(", "keepables", ")", "missing_str", "=", "\", \"", ".", "join", "(", "str", "(", "x", ")", "for", "x", "in", "missing", ")", "LOG", ".", "warning", "(", "\"The following datasets \"", "\"were not created: {}\"", ".", "format", "(", "missing_str", ")", ")", "if", "unload", ":", "new_scn", ".", "unload", "(", "keepables", ")", "return", "new_scn" ]
Resample datasets and return a new scene. Args: destination (AreaDefinition, GridDefinition): area definition to resample to. If not specified then the area returned by `Scene.max_area()` will be used. datasets (list): Limit datasets to resample to these specified `DatasetID` objects . By default all currently loaded datasets are resampled. generate (bool): Generate any requested composites that could not be previously due to incompatible areas (default: True). unload (bool): Remove any datasets no longer needed after requested composites have been generated (default: True). resampler (str): Name of resampling method to use. By default, this is a nearest neighbor KDTree-based resampling ('nearest'). Other possible values include 'native', 'ewa', etc. See the :mod:`~satpy.resample` documentation for more information. reduce_data (bool): Reduce data by matching the input and output areas and slicing the data arrays (default: True) resample_kwargs: Remaining keyword arguments to pass to individual resampler classes. See the individual resampler class documentation :mod:`here <satpy.resample>` for available arguments.
[ "Resample", "datasets", "and", "return", "a", "new", "scene", "." ]
python
train