state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α ⊢ {a} = Iio (succ a) ∩ Ioi (pred a)
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by
suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter' : {a} = Iic a ∩ Ici a ⊢ {a} = Iio (succ a) ∩ Ioi (pred a)
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a ·
rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ]
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a ·
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case h_singleton_eq_inter' α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α ⊢ {a} = Iic a ∩ Ici a
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ]
rw [inter_comm, Ici_inter_Iic, Icc_self a]
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ]
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a]
rw [h_singleton_eq_inter]
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a]
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen (Iio (succ a) ∩ Ioi (pred a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error.
apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a })
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error.
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case h₁ α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen (Iio (succ a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) ·
exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) ·
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case h₂ α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen (Ioi (pred a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ ·
exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ ·
Mathlib.Topology.Instances.Discrete.45_0.ZrbbXQYldP9CdIh
theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α ⊢ DiscreteTopology α ↔ OrderTopology α
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by
refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by
Mathlib.Topology.Instances.Discrete.60_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_1 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : DiscreteTopology α ⊢ inst✝⁵ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ ·
rw [h.eq_bot]
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ ·
Mathlib.Topology.Instances.Discrete.60_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_1 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : DiscreteTopology α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot]
exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot]
Mathlib.Topology.Instances.Discrete.60_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_2 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : OrderTopology α ⊢ inst✝⁵ = ⊥
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder ·
rw [h.topology_eq_generate_intervals]
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder ·
Mathlib.Topology.Instances.Discrete.60_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_2 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : OrderTopology α ⊢ generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} = ⊥
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals]
exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals]
Mathlib.Topology.Instances.Discrete.60_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by
refine' (eq_bot_of_singletons_open fun a => _).symm
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm
have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a]
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α ⊢ {a} = Iic a ∩ Ici a
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by
rw [inter_comm, Ici_inter_Iic, Icc_self a]
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a]
by_cases ha_top : IsTop a
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a]
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ha_top : IsTop a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a ·
rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter
by_cases ha_bot : IsBot a
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ha_bot : IsBot a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a ·
rw [ha_bot.Ici_eq] at h_singleton_eq_inter
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = univ ha_top : IsTop a ha_bot : IsBot a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter
rw [h_singleton_eq_inter]
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = univ ha_top : IsTop a ha_bot : IsBot a ⊢ IsOpen univ
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error.
apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a })
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error.
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ha_bot : ¬IsBot a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) ·
rw [isBot_iff_isMin] at ha_bot
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ha_bot : ¬IsMin a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot
rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ioi (pred a) ha_top : IsTop a ha_bot : ¬IsMin a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter
rw [h_singleton_eq_inter]
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ioi (pred a) ha_top : IsTop a ha_bot : ¬IsMin a ⊢ IsOpen (Ioi (pred a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter]
exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter]
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ha_top : ¬IsTop a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ ·
rw [isTop_iff_isMax] at ha_top
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ha_top : ¬IsMax a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top
rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter
by_cases ha_bot : IsBot a
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ha_bot : IsBot a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a ·
rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ha_top : ¬IsMax a ha_bot : IsBot a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter
rw [h_singleton_eq_inter]
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ha_top : ¬IsMax a ha_bot : IsBot a ⊢ IsOpen (Iio (succ a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter]
exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter]
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ha_bot : ¬IsBot a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ ·
rw [isBot_iff_isMin] at ha_bot
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot
rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen {a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter
rw [h_singleton_eq_inter]
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen (Iio (succ a) ∩ Ioi (pred a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error.
apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a })
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error.
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg.h₁ α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen (Iio (succ a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) ·
exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
case neg.h₂ α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen (Ioi (pred a))
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ ·
exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ ·
Mathlib.Topology.Instances.Discrete.74_0.ZrbbXQYldP9CdIh
theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α ⊢ DiscreteTopology α ↔ OrderTopology α
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by
refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by
Mathlib.Topology.Instances.Discrete.104_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_1 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : DiscreteTopology α ⊢ inst✝³ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ ·
rw [h.eq_bot]
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ ·
Mathlib.Topology.Instances.Discrete.104_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_1 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : DiscreteTopology α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot]
exact LinearOrder.bot_topologicalSpace_eq_generateFrom
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot]
Mathlib.Topology.Instances.Discrete.104_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_2 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : OrderTopology α ⊢ inst✝³ = ⊥
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact LinearOrder.bot_topologicalSpace_eq_generateFrom ·
rw [h.topology_eq_generate_intervals]
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact LinearOrder.bot_topologicalSpace_eq_generateFrom ·
Mathlib.Topology.Instances.Discrete.104_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
case refine'_2 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : OrderTopology α ⊢ generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} = ⊥
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact LinearOrder.bot_topologicalSpace_eq_generateFrom · rw [h.topology_eq_generate_intervals]
exact LinearOrder.bot_topologicalSpace_eq_generateFrom.symm
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact LinearOrder.bot_topologicalSpace_eq_generateFrom · rw [h.topology_eq_generate_intervals]
Mathlib.Topology.Instances.Discrete.104_0.ZrbbXQYldP9CdIh
theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : DiscreteTopology α ⊢ MetrizableSpace α
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact LinearOrder.bot_topologicalSpace_eq_generateFrom · rw [h.topology_eq_generate_intervals] exact LinearOrder.bot_topologicalSpace_eq_generateFrom.symm #align discrete_topology_iff_order_topology_of_pred_succ discreteTopology_iff_orderTopology_of_pred_succ instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ [h : DiscreteTopology α] [LinearOrder α] [PredOrder α] [SuccOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ.mp h #align discrete_topology.order_topology_of_pred_succ DiscreteTopology.orderTopology_of_pred_succ instance (priority := 100) DiscreteTopology.metrizableSpace [DiscreteTopology α] : MetrizableSpace α := by
obtain rfl := DiscreteTopology.eq_bot (α := α)
instance (priority := 100) DiscreteTopology.metrizableSpace [DiscreteTopology α] : MetrizableSpace α := by
Mathlib.Topology.Instances.Discrete.118_0.ZrbbXQYldP9CdIh
instance (priority
Mathlib_Topology_Instances_Discrete
α : Type u_1 inst✝ : DiscreteTopology α ⊢ MetrizableSpace α
/- Copyright (c) 2022 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import Mathlib.Order.SuccPred.Basic import Mathlib.Topology.Order.Basic import Mathlib.Topology.Metrizable.Uniformity #align_import topology.instances.discrete from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4" /-! # Instances related to the discrete topology We prove that the discrete topology is * first-countable, * second-countable for an encodable type, * equal to the order topology in linear orders which are also `PredOrder` and `SuccOrder`, * metrizable. When importing this file and `Data.Nat.SuccPred`, the instances `SecondCountableTopology ℕ` and `OrderTopology ℕ` become available. -/ open Order Set TopologicalSpace Filter variable {α : Type*} [TopologicalSpace α] instance (priority := 100) DiscreteTopology.firstCountableTopology [DiscreteTopology α] : FirstCountableTopology α where nhds_generated_countable := by rw [nhds_discrete]; exact isCountablyGenerated_pure #align discrete_topology.first_countable_topology DiscreteTopology.firstCountableTopology instance (priority := 100) DiscreteTopology.secondCountableTopology_of_encodable [hd : DiscreteTopology α] [Encodable α] : SecondCountableTopology α := haveI : ∀ i : α, SecondCountableTopology (↥({i} : Set α)) := fun i => { is_open_generated_countable := ⟨{univ}, countable_singleton _, by simp only [eq_iff_true_of_subsingleton]⟩ } secondCountableTopology_of_countable_cover (singletons_open_iff_discrete.mpr hd) (iUnion_of_singleton α) #align discrete_topology.second_countable_topology_of_encodable DiscreteTopology.secondCountableTopology_of_encodable theorem bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : {a} = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align bot_topological_space_eq_generate_from_of_pred_succ_order bot_topologicalSpace_eq_generateFrom_of_pred_succOrder theorem discreteTopology_iff_orderTopology_of_pred_succ' [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder · rw [h.topology_eq_generate_intervals] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm #align discrete_topology_iff_order_topology_of_pred_succ' discreteTopology_iff_orderTopology_of_pred_succ' instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ' [h : DiscreteTopology α] [PartialOrder α] [PredOrder α] [SuccOrder α] [NoMinOrder α] [NoMaxOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ'.1 h #align discrete_topology.order_topology_of_pred_succ' DiscreteTopology.orderTopology_of_pred_succ' theorem LinearOrder.bot_topologicalSpace_eq_generateFrom [LinearOrder α] [PredOrder α] [SuccOrder α] : (⊥ : TopologicalSpace α) = generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a } := by refine' (eq_bot_of_singletons_open fun a => _).symm have h_singleton_eq_inter : {a} = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] by_cases ha_top : IsTop a · rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. apply @isOpen_univ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ · rw [isTop_iff_isMax] at ha_top rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter by_cases ha_bot : IsBot a · rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter rw [h_singleton_eq_inter] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · rw [isBot_iff_isMin] at ha_bot rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. apply @IsOpen.inter _ _ _ (generateFrom { s | ∃ a, s = Ioi a ∨ s = Iio a }) · exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ · exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ #align linear_order.bot_topological_space_eq_generate_from LinearOrder.bot_topologicalSpace_eq_generateFrom theorem discreteTopology_iff_orderTopology_of_pred_succ [LinearOrder α] [PredOrder α] [SuccOrder α] : DiscreteTopology α ↔ OrderTopology α := by refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ · rw [h.eq_bot] exact LinearOrder.bot_topologicalSpace_eq_generateFrom · rw [h.topology_eq_generate_intervals] exact LinearOrder.bot_topologicalSpace_eq_generateFrom.symm #align discrete_topology_iff_order_topology_of_pred_succ discreteTopology_iff_orderTopology_of_pred_succ instance (priority := 100) DiscreteTopology.orderTopology_of_pred_succ [h : DiscreteTopology α] [LinearOrder α] [PredOrder α] [SuccOrder α] : OrderTopology α := discreteTopology_iff_orderTopology_of_pred_succ.mp h #align discrete_topology.order_topology_of_pred_succ DiscreteTopology.orderTopology_of_pred_succ instance (priority := 100) DiscreteTopology.metrizableSpace [DiscreteTopology α] : MetrizableSpace α := by obtain rfl := DiscreteTopology.eq_bot (α := α)
exact @UniformSpace.metrizableSpace α ⊥ (isCountablyGenerated_principal _) _
instance (priority := 100) DiscreteTopology.metrizableSpace [DiscreteTopology α] : MetrizableSpace α := by obtain rfl := DiscreteTopology.eq_bot (α := α)
Mathlib.Topology.Instances.Discrete.118_0.ZrbbXQYldP9CdIh
instance (priority
Mathlib_Topology_Instances_Discrete
R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n : ℕ ⊢ (coeff R n) (derivativeFun f) = (coeff R (n + 1)) f * (↑n + 1)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by
rw [derivativeFun, coeff_mk]
theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by
Mathlib.RingTheory.PowerSeries.Derivative.40_0.PcMDeT7Qkkrj2IE
theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1)
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f : R[X] ⊢ derivativeFun ↑f = ↑(derivative f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by
ext
theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by
Mathlib.RingTheory.PowerSeries.Derivative.44_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R f : R[X] n✝ : ℕ ⊢ (coeff R n✝) (derivativeFun ↑f) = (coeff R n✝) ↑(derivative f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext
rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative]
theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext
Mathlib.RingTheory.PowerSeries.Derivative.44_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f g : R⟦X⟧ ⊢ derivativeFun (f + g) = derivativeFun f + derivativeFun g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by
ext
theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by
Mathlib.RingTheory.PowerSeries.Derivative.48_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R f g : R⟦X⟧ n✝ : ℕ ⊢ (coeff R n✝) (derivativeFun (f + g)) = (coeff R n✝) (derivativeFun f + derivativeFun g)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext
rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul]
theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext
Mathlib.RingTheory.PowerSeries.Derivative.48_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R r : R ⊢ derivativeFun ((C R) r) = 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by
ext n
theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by
Mathlib.RingTheory.PowerSeries.Derivative.54_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R r : R n : ℕ ⊢ (coeff R n) (derivativeFun ((C R) r)) = (coeff R n) 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n
rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero]
theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n
Mathlib.RingTheory.PowerSeries.Derivative.54_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n : ℕ ⊢ trunc n (derivativeFun f) = derivative (trunc (n + 1) f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by
ext d
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
case a R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ ⊢ Polynomial.coeff (trunc n (derivativeFun f)) d = Polynomial.coeff (derivative (trunc (n + 1) f)) d
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d
rw [coeff_trunc]
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
case a R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ ⊢ (if d < n then (coeff R d) (derivativeFun f) else 0) = Polynomial.coeff (derivative (trunc (n + 1) f)) d
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc]
split_ifs with h
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc]
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
case pos R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ h : d < n ⊢ (coeff R d) (derivativeFun f) = Polynomial.coeff (derivative (trunc (n + 1) f)) d
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h ·
have : d + 1 < n + 1 := succ_lt_succ_iff.2 h
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h ·
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
case pos R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ h : d < n this : d + 1 < n + 1 ⊢ (coeff R d) (derivativeFun f) = Polynomial.coeff (derivative (trunc (n + 1) f)) d
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h
rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this]
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
case neg R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ h : ¬d < n ⊢ 0 = Polynomial.coeff (derivative (trunc (n + 1) f)) d
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] ·
have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff]
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] ·
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ h : ¬d < n ⊢ ¬d + 1 < n + 1
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by
rwa [succ_lt_succ_iff]
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
case neg R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n d : ℕ h : ¬d < n this : ¬d + 1 < n + 1 ⊢ 0 = Polynomial.coeff (derivative (trunc (n + 1) f)) d
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff]
rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul]
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff]
Mathlib.RingTheory.PowerSeries.Derivative.58_0.PcMDeT7Qkkrj2IE
theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f)
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f g : R[X] ⊢ derivativeFun (↑f * ↑g) = ↑f * ↑(derivative g) + ↑g * ↑(derivative f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by
rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add]
private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by
Mathlib.RingTheory.PowerSeries.Derivative.69_0.PcMDeT7Qkkrj2IE
private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f g : R⟦X⟧ ⊢ derivativeFun (f * g) = f • derivativeFun g + g • derivativeFun f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by
ext n
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by
Mathlib.RingTheory.PowerSeries.Derivative.74_0.PcMDeT7Qkkrj2IE
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R f g : R⟦X⟧ n : ℕ ⊢ (coeff R n) (derivativeFun (f * g)) = (coeff R n) (f • derivativeFun g + g • derivativeFun f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n
have h₁ : n < n + 1 := lt_succ_self n
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n
Mathlib.RingTheory.PowerSeries.Derivative.74_0.PcMDeT7Qkkrj2IE
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R f g : R⟦X⟧ n : ℕ h₁ : n < n + 1 ⊢ (coeff R n) (derivativeFun (f * g)) = (coeff R n) (f • derivativeFun g + g • derivativeFun f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n
have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n
Mathlib.RingTheory.PowerSeries.Derivative.74_0.PcMDeT7Qkkrj2IE
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R f g : R⟦X⟧ n : ℕ h₁ : n < n + 1 h₂ : n < n + 1 + 1 ⊢ (coeff R n) (derivativeFun (f * g)) = (coeff R n) (f • derivativeFun g + g • derivativeFun f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁
rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun]
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁
Mathlib.RingTheory.PowerSeries.Derivative.74_0.PcMDeT7Qkkrj2IE
/-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R ⊢ derivativeFun 1 = 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by
rw [← map_one (C R), derivativeFun_C (1 : R)]
theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by
Mathlib.RingTheory.PowerSeries.Derivative.85_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R r : R f : R⟦X⟧ ⊢ derivativeFun (r • f) = r • derivativeFun f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by
rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul]
theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by
Mathlib.RingTheory.PowerSeries.Derivative.88_0.PcMDeT7Qkkrj2IE
theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R ⊢ (d⁄dX R) X = 1
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by
ext
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by
Mathlib.RingTheory.PowerSeries.Derivative.112_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R n✝ : ℕ ⊢ (coeff R n✝) ((d⁄dX R) X) = (coeff R n✝) 1
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext
rw [coeff_derivative, coeff_one, coeff_X, boole_mul]
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext
Mathlib.RingTheory.PowerSeries.Derivative.112_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R n✝ : ℕ ⊢ (if n✝ + 1 = 1 then ↑n✝ + 1 else 0) = if n✝ = 0 then 1 else 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul]
simp_rw [add_left_eq_self]
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul]
Mathlib.RingTheory.PowerSeries.Derivative.112_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommSemiring R n✝ : ℕ ⊢ (if n✝ = 0 then ↑n✝ + 1 else 0) = if n✝ = 0 then 1 else 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self]
split_ifs with h
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self]
Mathlib.RingTheory.PowerSeries.Derivative.112_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1
Mathlib_RingTheory_PowerSeries_Derivative
case pos R : Type u_1 inst✝ : CommSemiring R n✝ : ℕ h : n✝ = 0 ⊢ ↑n✝ + 1 = 1
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h ·
rw [h, cast_zero, zero_add]
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h ·
Mathlib.RingTheory.PowerSeries.Derivative.112_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1
Mathlib_RingTheory_PowerSeries_Derivative
case neg R : Type u_1 inst✝ : CommSemiring R n✝ : ℕ h : ¬n✝ = 0 ⊢ 0 = 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] ·
rfl
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] ·
Mathlib.RingTheory.PowerSeries.Derivative.112_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n : ℕ ⊢ trunc (n - 1) ((d⁄dX R) f) = Polynomial.derivative (trunc n f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by
cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative]
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by
Mathlib.RingTheory.PowerSeries.Derivative.124_0.PcMDeT7Qkkrj2IE
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f)
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n : ℕ ⊢ trunc (n - 1) ((d⁄dX R) f) = Polynomial.derivative (trunc n f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by
cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative]
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by
Mathlib.RingTheory.PowerSeries.Derivative.124_0.PcMDeT7Qkkrj2IE
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f)
Mathlib_RingTheory_PowerSeries_Derivative
case zero R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ ⊢ trunc (Nat.zero - 1) ((d⁄dX R) f) = Polynomial.derivative (trunc Nat.zero f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with
| zero => simp
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with
Mathlib.RingTheory.PowerSeries.Derivative.124_0.PcMDeT7Qkkrj2IE
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f)
Mathlib_RingTheory_PowerSeries_Derivative
case zero R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ ⊢ trunc (Nat.zero - 1) ((d⁄dX R) f) = Polynomial.derivative (trunc Nat.zero f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero =>
simp
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero =>
Mathlib.RingTheory.PowerSeries.Derivative.124_0.PcMDeT7Qkkrj2IE
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f)
Mathlib_RingTheory_PowerSeries_Derivative
case succ R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n : ℕ ⊢ trunc (succ n - 1) ((d⁄dX R) f) = Polynomial.derivative (trunc (succ n) f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp
| succ n => rw [succ_sub_one, trunc_derivative]
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp
Mathlib.RingTheory.PowerSeries.Derivative.124_0.PcMDeT7Qkkrj2IE
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f)
Mathlib_RingTheory_PowerSeries_Derivative
case succ R : Type u_1 inst✝ : CommSemiring R f : R⟦X⟧ n : ℕ ⊢ trunc (succ n - 1) ((d⁄dX R) f) = Polynomial.derivative (trunc (succ n) f)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n =>
rw [succ_sub_one, trunc_derivative]
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n =>
Mathlib.RingTheory.PowerSeries.Derivative.124_0.PcMDeT7Qkkrj2IE
theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f)
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g ⊢ f = g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by
ext n
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g n : ℕ ⊢ (coeff R n) f = (coeff R n) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n
cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g n : ℕ ⊢ (coeff R n) f = (coeff R n) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n
cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h.zero R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g ⊢ (coeff R Nat.zero) f = (coeff R Nat.zero) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with
| zero => rw [coeff_zero_eq_constantCoeff, hc]
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h.zero R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g ⊢ (coeff R Nat.zero) f = (coeff R Nat.zero) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero =>
rw [coeff_zero_eq_constantCoeff, hc]
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero =>
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h.succ R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g n : ℕ ⊢ (coeff R (succ n)) f = (coeff R (succ n)) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc]
| succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc]
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h.succ R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g n : ℕ ⊢ (coeff R (succ n)) f = (coeff R (succ n)) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n =>
have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD]
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n =>
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g n : ℕ ⊢ (coeff R n) ((d⁄dX R) f) = (coeff R n) ((d⁄dX R) g)
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by
rw [hD]
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
case h.succ R : Type u_1 inst✝¹ : CommRing R inst✝ : NoZeroSMulDivisors ℕ R f g : R⟦X⟧ hD : (d⁄dX R) f = (d⁄dX R) g hc : (constantCoeff R) f = (constantCoeff R) g n : ℕ equ : (coeff R n) ((d⁄dX R) f) = (coeff R n) ((d⁄dX R) g) ⊢ (coeff R (succ n)) f = (coeff R (succ n)) g
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD]
rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD]
Mathlib.RingTheory.PowerSeries.Derivative.138_0.PcMDeT7Qkkrj2IE
/-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : CommRing R f : R⟦X⟧ˣ ⊢ (d⁄dX R) ↑f⁻¹ = -↑f⁻¹ ^ 2 * (d⁄dX R) ↑f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by
apply Derivation.leibniz_of_mul_eq_one
@[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by
Mathlib.RingTheory.PowerSeries.Derivative.150_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
case h R : Type u_1 inst✝ : CommRing R f : R⟦X⟧ˣ ⊢ ↑f⁻¹ * ↑f = 1
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one
simp
@[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one
Mathlib.RingTheory.PowerSeries.Derivative.150_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝¹ : CommRing R f : R⟦X⟧ inst✝ : Invertible f ⊢ (d⁄dX R) ⅟f = -⅟f ^ 2 * (d⁄dX R) f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by
rw [Derivation.leibniz_invOf, smul_eq_mul]
@[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by
Mathlib.RingTheory.PowerSeries.Derivative.155_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : Field R f : R⟦X⟧ ⊢ (d⁄dX R) f⁻¹ = -f⁻¹ ^ 2 * (d⁄dX R) f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by rw [Derivation.leibniz_invOf, smul_eq_mul] /- The following theorem is stated only in the case that `R` is a field. This is because there is currently no instance of `Inv R⟦X⟧` for more general base rings `R`. -/ @[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by
by_cases h : constantCoeff R f = 0
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by
Mathlib.RingTheory.PowerSeries.Derivative.163_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
case pos R : Type u_1 inst✝ : Field R f : R⟦X⟧ h : (constantCoeff R) f = 0 ⊢ (d⁄dX R) f⁻¹ = -f⁻¹ ^ 2 * (d⁄dX R) f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by rw [Derivation.leibniz_invOf, smul_eq_mul] /- The following theorem is stated only in the case that `R` is a field. This is because there is currently no instance of `Inv R⟦X⟧` for more general base rings `R`. -/ @[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 ·
suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero]
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 ·
Mathlib.RingTheory.PowerSeries.Derivative.163_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝ : Field R f : R⟦X⟧ h : (constantCoeff R) f = 0 this : f⁻¹ = 0 ⊢ (d⁄dX R) f⁻¹ = -f⁻¹ ^ 2 * (d⁄dX R) f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by rw [Derivation.leibniz_invOf, smul_eq_mul] /- The following theorem is stated only in the case that `R` is a field. This is because there is currently no instance of `Inv R⟦X⟧` for more general base rings `R`. -/ @[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by
rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero]
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by
Mathlib.RingTheory.PowerSeries.Derivative.163_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
case pos R : Type u_1 inst✝ : Field R f : R⟦X⟧ h : (constantCoeff R) f = 0 ⊢ f⁻¹ = 0
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by rw [Derivation.leibniz_invOf, smul_eq_mul] /- The following theorem is stated only in the case that `R` is a field. This is because there is currently no instance of `Inv R⟦X⟧` for more general base rings `R`. -/ @[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero]
rwa [MvPowerSeries.inv_eq_zero]
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero]
Mathlib.RingTheory.PowerSeries.Derivative.163_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
case neg R : Type u_1 inst✝ : Field R f : R⟦X⟧ h : ¬(constantCoeff R) f = 0 ⊢ (d⁄dX R) f⁻¹ = -f⁻¹ ^ 2 * (d⁄dX R) f
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by rw [Derivation.leibniz_invOf, smul_eq_mul] /- The following theorem is stated only in the case that `R` is a field. This is because there is currently no instance of `Inv R⟦X⟧` for more general base rings `R`. -/ @[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero] rwa [MvPowerSeries.inv_eq_zero]
apply Derivation.leibniz_of_mul_eq_one
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero] rwa [MvPowerSeries.inv_eq_zero]
Mathlib.RingTheory.PowerSeries.Derivative.163_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
case neg.h R : Type u_1 inst✝ : Field R f : R⟦X⟧ h : ¬(constantCoeff R) f = 0 ⊢ f⁻¹ * f = 1
/- Copyright (c) 2023 Richard M. Hill. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Richard M. Hill -/ import Mathlib.RingTheory.PowerSeries.Basic import Mathlib.RingTheory.Derivation.Basic /-! # Definitions In this file we define an operation `derivative` (formal differentiation) on the ring of formal power series in one variable (over an arbitrary commutative semiring). Under suitable assumptions, we prove that two power series are equal if their derivatives are equal and their constant terms are equal. This will give us a simple tool for proving power series identities. For example, one can easily prove the power series identity $\exp ( \log (1+X)) = 1+X$ by differentiating twice. ## Main Definition - `PowerSeries.derivative R : Derivation R R⟦X⟧ R⟦X⟧` the formal derivative operation. This is abbreviated `d⁄dX R`. -/ namespace PowerSeries open Polynomial Derivation Nat section CommutativeSemiring variable {R} [CommSemiring R] /-- The formal derivative of a power series in one variable. This is defined here as a function, but will be packaged as a derivation `derivative` on `R⟦X⟧`. -/ noncomputable def derivativeFun (f : R⟦X⟧) : R⟦X⟧ := mk λ n ↦ coeff R (n + 1) f * (n + 1) theorem coeff_derivativeFun (f : R⟦X⟧) (n : ℕ) : coeff R n f.derivativeFun = coeff R (n + 1) f * (n + 1) := by rw [derivativeFun, coeff_mk] theorem derivativeFun_coe (f : R[X]) : (f : R⟦X⟧).derivativeFun = derivative f := by ext rw [coeff_derivativeFun, coeff_coe, coeff_coe, coeff_derivative] theorem derivativeFun_add (f g : R⟦X⟧) : derivativeFun (f + g) = derivativeFun f + derivativeFun g := by ext rw [coeff_derivativeFun, map_add, map_add, coeff_derivativeFun, coeff_derivativeFun, add_mul] theorem derivativeFun_C (r : R) : derivativeFun (C R r) = 0 := by ext n rw [coeff_derivativeFun, coeff_succ_C, zero_mul, map_zero] theorem trunc_derivativeFun (f : R⟦X⟧) (n : ℕ) : trunc n f.derivativeFun = derivative (trunc (n + 1) f) := by ext d rw [coeff_trunc] split_ifs with h · have : d + 1 < n + 1 := succ_lt_succ_iff.2 h rw [coeff_derivativeFun, coeff_derivative, coeff_trunc, if_pos this] · have : ¬d + 1 < n + 1 := by rwa [succ_lt_succ_iff] rw [coeff_derivative, coeff_trunc, if_neg this, zero_mul] --A special case of `derivativeFun_mul`, used in its proof. private theorem derivativeFun_coe_mul_coe (f g : R[X]) : derivativeFun (f * g : R⟦X⟧) = f * derivative g + g * derivative f := by rw [← coe_mul, derivativeFun_coe, derivative_mul, add_comm, mul_comm _ g, ← coe_mul, ← coe_mul, Polynomial.coe_add] /-- **Leibniz rule for formal power series**.-/ theorem derivativeFun_mul (f g : R⟦X⟧) : derivativeFun (f * g) = f • g.derivativeFun + g • f.derivativeFun := by ext n have h₁ : n < n + 1 := lt_succ_self n have h₂ : n < n + 1 + 1 := Nat.lt_add_right _ h₁ rw [coeff_derivativeFun, map_add, coeff_mul_eq_coeff_trunc_mul_trunc _ _ (lt_succ_self _), smul_eq_mul, smul_eq_mul, coeff_mul_eq_coeff_trunc_mul_trunc₂ g f.derivativeFun h₂ h₁, coeff_mul_eq_coeff_trunc_mul_trunc₂ f g.derivativeFun h₂ h₁, trunc_derivativeFun, trunc_derivativeFun, ← map_add, ← derivativeFun_coe_mul_coe, coeff_derivativeFun] theorem derivativeFun_one : derivativeFun (1 : R⟦X⟧) = 0 := by rw [← map_one (C R), derivativeFun_C (1 : R)] theorem derivativeFun_smul (r : R) (f : R⟦X⟧) : derivativeFun (r • f) = r • derivativeFun f := by rw [smul_eq_C_mul, smul_eq_C_mul, derivativeFun_mul, derivativeFun_C, smul_zero, add_zero, smul_eq_mul] variable (R) /--The formal derivative of a formal power series.-/ noncomputable def derivative : Derivation R R⟦X⟧ R⟦X⟧ where toFun := derivativeFun map_add' := derivativeFun_add map_smul' := derivativeFun_smul map_one_eq_zero' := derivativeFun_one leibniz' := derivativeFun_mul /--Abbreviation of `PowerSeries.derivative`, the formal derivative on `R⟦X⟧`.-/ scoped notation "d⁄dX" => derivative variable {R} @[simp] theorem derivative_C (r : R) : d⁄dX R (C R r) = 0 := derivativeFun_C r theorem coeff_derivative (f : R⟦X⟧) (n : ℕ) : coeff R n (d⁄dX R f) = coeff R (n + 1) f * (n + 1) := coeff_derivativeFun f n theorem derivative_coe (f : R[X]) : d⁄dX R f = Polynomial.derivative f := derivativeFun_coe f @[simp] theorem derivative_X : d⁄dX R (X : R⟦X⟧) = 1 := by ext rw [coeff_derivative, coeff_one, coeff_X, boole_mul] simp_rw [add_left_eq_self] split_ifs with h · rw [h, cast_zero, zero_add] · rfl theorem trunc_derivative (f : R⟦X⟧) (n : ℕ) : trunc n (d⁄dX R f) = Polynomial.derivative (trunc (n + 1) f) := trunc_derivativeFun .. theorem trunc_derivative' (f : R⟦X⟧) (n : ℕ) : trunc (n-1) (d⁄dX R f) = Polynomial.derivative (trunc n f) := by cases n with | zero => simp | succ n => rw [succ_sub_one, trunc_derivative] end CommutativeSemiring /-In the next lemma, we use `smul_right_inj`, which requires not only `NoZeroSMulDivisors ℕ R`, but also cancellation of addition in `R`. For this reason, the next lemma is stated in the case that `R` is a `CommRing`.-/ /-- If `f` and `g` have the same constant term and derivative, then they are equal.-/ theorem derivative.ext {R} [CommRing R] [NoZeroSMulDivisors ℕ R] {f g} (hD : d⁄dX R f = d⁄dX R g) (hc : constantCoeff R f = constantCoeff R g) : f = g := by ext n cases n with | zero => rw [coeff_zero_eq_constantCoeff, hc] | succ n => have equ : coeff R n (d⁄dX R f) = coeff R n (d⁄dX R g) := by rw [hD] rwa [coeff_derivative, coeff_derivative, ← cast_succ, mul_comm, ← nsmul_eq_mul, mul_comm, ← nsmul_eq_mul, smul_right_inj n.succ_ne_zero] at equ @[simp] theorem derivative_inv {R} [CommRing R] (f : R⟦X⟧ˣ) : d⁄dX R ↑f⁻¹ = -(↑f⁻¹ : R⟦X⟧) ^ 2 * d⁄dX R f := by apply Derivation.leibniz_of_mul_eq_one simp @[simp] theorem derivative_invOf {R} [CommRing R] (f : R⟦X⟧) [Invertible f] : d⁄dX R ⅟f = - ⅟f ^ 2 * d⁄dX R f := by rw [Derivation.leibniz_invOf, smul_eq_mul] /- The following theorem is stated only in the case that `R` is a field. This is because there is currently no instance of `Inv R⟦X⟧` for more general base rings `R`. -/ @[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero] rwa [MvPowerSeries.inv_eq_zero] apply Derivation.leibniz_of_mul_eq_one
exact PowerSeries.inv_mul_cancel (h := h)
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f := by by_cases h : constantCoeff R f = 0 · suffices f⁻¹ = 0 by rw [this, pow_two, zero_mul, neg_zero, zero_mul, map_zero] rwa [MvPowerSeries.inv_eq_zero] apply Derivation.leibniz_of_mul_eq_one
Mathlib.RingTheory.PowerSeries.Derivative.163_0.PcMDeT7Qkkrj2IE
@[simp] theorem derivative_inv' {R} [Field R] (f : R⟦X⟧) : d⁄dX R f⁻¹ = -f⁻¹ ^ 2 * d⁄dX R f
Mathlib_RingTheory_PowerSeries_Derivative
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1✝ D2✝ : Derivation R A A a✝ : A D1 D2 : Derivation R A A a b : A ⊢ ⁅↑D1, ↑D2⁆ (a * b) = a • ⁅↑D1, ↑D2⁆ b + b • ⁅↑D1, ↑D2⁆ a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by
simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply]
/-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by
Mathlib.RingTheory.Derivation.Lie.32_0.lftH2oDc0WOWKWo
/-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A)
Mathlib_RingTheory_Derivation_Lie
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1✝ D2✝ : Derivation R A A a✝ : A D1 D2 : Derivation R A A a b : A ⊢ a * D1 (D2 b) + D2 b * D1 a + (b * D1 (D2 a) + D2 a * D1 b) - (a * D2 (D1 b) + D1 b * D2 a + (b * D2 (D1 a) + D1 a * D2 b)) = a * (D1 (D2 b) - D2 (D1 b)) + b * (D1 (D2 a) - D2 (D1 a))
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply]
ring
/-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply]
Mathlib.RingTheory.Derivation.Lie.32_0.lftH2oDc0WOWKWo
/-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A)
Mathlib_RingTheory_Derivation_Lie
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a : A d e f : Derivation R A A ⊢ ⁅d + e, f⁆ = ⁅d, f⁆ + ⁅e, f⁆
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by
ext a
instance : LieRing (Derivation R A A) where add_lie d e f := by
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d e f : Derivation R A A a : A ⊢ ⁅d + e, f⁆ a = (⁅d, f⁆ + ⁅e, f⁆) a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a;
simp only [commutator_apply, add_apply, map_add]
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a;
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie