state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d e f : Derivation R A A a : A ⊢ d (f a) + e (f a) - (f (d a) + f (e a)) = d (f a) - f (d a) + (e (f a) - f (e a))
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add];
ring
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add];
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a : A d e f : Derivation R A A ⊢ ⁅d, e + f⁆ = ⁅d, e⁆ + ⁅d, f⁆
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by
ext a
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d e f : Derivation R A A a : A ⊢ ⁅d, e + f⁆ a = (⁅d, e⁆ + ⁅d, f⁆) a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a;
simp only [commutator_apply, add_apply, map_add]
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a;
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d e f : Derivation R A A a : A ⊢ d (e a) + d (f a) - (e (d a) + f (d a)) = d (e a) - e (d a) + (d (f a) - f (d a))
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add];
ring
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add];
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a : A d : Derivation R A A ⊢ ⁅d, d⁆ = 0
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by
ext a
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d : Derivation R A A a : A ⊢ ⁅d, d⁆ a = 0 a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a;
simp only [commutator_apply, add_apply, map_add]
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a;
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d : Derivation R A A a : A ⊢ d (d a) - d (d a) = 0 a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add];
ring_nf
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add];
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d : Derivation R A A a : A ⊢ 0 = 0 a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf;
simp
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf;
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a : A d e f : Derivation R A A ⊢ ⁅d, ⁅e, f⁆⁆ = ⁅⁅d, e⁆, f⁆ + ⁅e, ⁅d, f⁆⁆
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by
ext a
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d e f : Derivation R A A a : A ⊢ ⁅d, ⁅e, f⁆⁆ a = (⁅⁅d, e⁆, f⁆ + ⁅e, ⁅d, f⁆⁆) a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by ext a;
simp only [commutator_apply, add_apply, sub_apply, map_sub]
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by ext a;
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A d e f : Derivation R A A a : A ⊢ d (e (f a)) - d (f (e a)) - (e (f (d a)) - f (e (d a))) = d (e (f a)) - e (d (f a)) - (f (d (e a)) - f (e (d a))) + (e (d (f a)) - e (f (d a)) - (d (f (e a)) - f (d (e a))))
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by ext a; simp only [commutator_apply, add_apply, sub_apply, map_sub];
ring
instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by ext a; simp only [commutator_apply, add_apply, sub_apply, map_sub];
Mathlib.RingTheory.Derivation.Lie.49_0.lftH2oDc0WOWKWo
instance : LieRing (Derivation R A A) where add_lie d e f
Mathlib_RingTheory_Derivation_Lie
R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a : A src✝ : Module R (Derivation R A A) := instModule r : R d e : Derivation R A A ⊢ ⁅d, r • e⁆ = r • ⁅d, e⁆
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by ext a; simp only [commutator_apply, add_apply, sub_apply, map_sub]; ring instance instLieAlgebra : LieAlgebra R (Derivation R A A) := { Derivation.instModule with lie_smul := fun r d e => by
ext a
instance instLieAlgebra : LieAlgebra R (Derivation R A A) := { Derivation.instModule with lie_smul := fun r d e => by
Mathlib.RingTheory.Derivation.Lie.55_0.lftH2oDc0WOWKWo
instance instLieAlgebra : LieAlgebra R (Derivation R A A)
Mathlib_RingTheory_Derivation_Lie
case H R : Type u_1 inst✝² : CommRing R A : Type u_2 inst✝¹ : CommRing A inst✝ : Algebra R A D D1 D2 : Derivation R A A a✝ : A src✝ : Module R (Derivation R A A) := instModule r : R d e : Derivation R A A a : A ⊢ ⁅d, r • e⁆ a = (r • ⁅d, e⁆) a
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Andrew Yang -/ import Mathlib.Algebra.Lie.OfAssociative import Mathlib.RingTheory.Derivation.Basic #align_import ring_theory.derivation.lie from "leanprover-community/mathlib"@"b608348ffaeb7f557f2fd46876037abafd326ff3" /-! # Results - `Derivation.instLieAlgebra`: The `R`-derivations from `A` to `A` form a Lie algebra over `R`. -/ namespace Derivation variable {R : Type*} [CommRing R] variable {A : Type*} [CommRing A] [Algebra R A] variable (D : Derivation R A A) {D1 D2 : Derivation R A A} (a : A) section LieStructures /-! # Lie structures -/ /-- The commutator of derivations is again a derivation. -/ instance : Bracket (Derivation R A A) (Derivation R A A) := ⟨fun D1 D2 => mk' ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ fun a b => by simp only [Ring.lie_def, map_add, Algebra.id.smul_eq_mul, LinearMap.mul_apply, leibniz, coeFn_coe, LinearMap.sub_apply] ring⟩ @[simp] theorem commutator_coe_linear_map : ↑⁅D1, D2⁆ = ⁅(D1 : Module.End R A), (D2 : Module.End R A)⁆ := rfl #align derivation.commutator_coe_linear_map Derivation.commutator_coe_linear_map theorem commutator_apply : ⁅D1, D2⁆ a = D1 (D2 a) - D2 (D1 a) := rfl #align derivation.commutator_apply Derivation.commutator_apply instance : LieRing (Derivation R A A) where add_lie d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_add d e f := by ext a; simp only [commutator_apply, add_apply, map_add]; ring lie_self d := by ext a; simp only [commutator_apply, add_apply, map_add]; ring_nf; simp leibniz_lie d e f := by ext a; simp only [commutator_apply, add_apply, sub_apply, map_sub]; ring instance instLieAlgebra : LieAlgebra R (Derivation R A A) := { Derivation.instModule with lie_smul := fun r d e => by ext a;
simp only [commutator_apply, map_smul, smul_sub, smul_apply]
instance instLieAlgebra : LieAlgebra R (Derivation R A A) := { Derivation.instModule with lie_smul := fun r d e => by ext a;
Mathlib.RingTheory.Derivation.Lie.55_0.lftH2oDc0WOWKWo
instance instLieAlgebra : LieAlgebra R (Derivation R A A)
Mathlib_RingTheory_Derivation_Lie
C : Type u₁ D : Type u₂ E : Type u₃ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₂, u₂} D inst✝ : Category.{v₃, u₃} E F : C × D ⥤ E W : C X Y Z : D f : X ⟶ Y g : Y ⟶ Z ⊢ F.map (𝟙 W, f ≫ g) = F.map (𝟙 W, f) ≫ F.map (𝟙 W, g)
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Stephen Morgan, Scott Morrison -/ import Mathlib.CategoryTheory.Products.Basic #align_import category_theory.products.bifunctor from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988" /-! # Lemmas about functors out of product categories. -/ open CategoryTheory namespace CategoryTheory.Bifunctor universe v₁ v₂ v₃ u₁ u₂ u₃ variable {C : Type u₁} {D : Type u₂} {E : Type u₃} variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E] @[simp] theorem map_id (F : C × D ⥤ E) (X : C) (Y : D) : F.map ((𝟙 X, 𝟙 Y) : (X, Y) ⟶ (X, Y)) = 𝟙 (F.obj (X, Y)) := F.map_id (X, Y) #align category_theory.bifunctor.map_id CategoryTheory.Bifunctor.map_id @[simp] theorem map_id_comp (F : C × D ⥤ E) (W : C) {X Y Z : D} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((𝟙 W, f ≫ g) : (W, X) ⟶ (W, Z)) = F.map ((𝟙 W, f) : (W, X) ⟶ (W, Y)) ≫ F.map ((𝟙 W, g) : (W, Y) ⟶ (W, Z)) := by
rw [← Functor.map_comp, prod_comp, Category.comp_id]
@[simp] theorem map_id_comp (F : C × D ⥤ E) (W : C) {X Y Z : D} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((𝟙 W, f ≫ g) : (W, X) ⟶ (W, Z)) = F.map ((𝟙 W, f) : (W, X) ⟶ (W, Y)) ≫ F.map ((𝟙 W, g) : (W, Y) ⟶ (W, Z)) := by
Mathlib.CategoryTheory.Products.Bifunctor.31_0.qAcXEiI0C4dEPVM
@[simp] theorem map_id_comp (F : C × D ⥤ E) (W : C) {X Y Z : D} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((𝟙 W, f ≫ g) : (W, X) ⟶ (W, Z)) = F.map ((𝟙 W, f) : (W, X) ⟶ (W, Y)) ≫ F.map ((𝟙 W, g) : (W, Y) ⟶ (W, Z))
Mathlib_CategoryTheory_Products_Bifunctor
C : Type u₁ D : Type u₂ E : Type u₃ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₂, u₂} D inst✝ : Category.{v₃, u₃} E F : C × D ⥤ E X Y Z : C W : D f : X ⟶ Y g : Y ⟶ Z ⊢ F.map (f ≫ g, 𝟙 W) = F.map (f, 𝟙 W) ≫ F.map (g, 𝟙 W)
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Stephen Morgan, Scott Morrison -/ import Mathlib.CategoryTheory.Products.Basic #align_import category_theory.products.bifunctor from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988" /-! # Lemmas about functors out of product categories. -/ open CategoryTheory namespace CategoryTheory.Bifunctor universe v₁ v₂ v₃ u₁ u₂ u₃ variable {C : Type u₁} {D : Type u₂} {E : Type u₃} variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E] @[simp] theorem map_id (F : C × D ⥤ E) (X : C) (Y : D) : F.map ((𝟙 X, 𝟙 Y) : (X, Y) ⟶ (X, Y)) = 𝟙 (F.obj (X, Y)) := F.map_id (X, Y) #align category_theory.bifunctor.map_id CategoryTheory.Bifunctor.map_id @[simp] theorem map_id_comp (F : C × D ⥤ E) (W : C) {X Y Z : D} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((𝟙 W, f ≫ g) : (W, X) ⟶ (W, Z)) = F.map ((𝟙 W, f) : (W, X) ⟶ (W, Y)) ≫ F.map ((𝟙 W, g) : (W, Y) ⟶ (W, Z)) := by rw [← Functor.map_comp, prod_comp, Category.comp_id] #align category_theory.bifunctor.map_id_comp CategoryTheory.Bifunctor.map_id_comp @[simp] theorem map_comp_id (F : C × D ⥤ E) (X Y Z : C) (W : D) (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((f ≫ g, 𝟙 W) : (X, W) ⟶ (Z, W)) = F.map ((f, 𝟙 W) : (X, W) ⟶ (Y, W)) ≫ F.map ((g, 𝟙 W) : (Y, W) ⟶ (Z, W)) := by
rw [← Functor.map_comp, prod_comp, Category.comp_id]
@[simp] theorem map_comp_id (F : C × D ⥤ E) (X Y Z : C) (W : D) (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((f ≫ g, 𝟙 W) : (X, W) ⟶ (Z, W)) = F.map ((f, 𝟙 W) : (X, W) ⟶ (Y, W)) ≫ F.map ((g, 𝟙 W) : (Y, W) ⟶ (Z, W)) := by
Mathlib.CategoryTheory.Products.Bifunctor.38_0.qAcXEiI0C4dEPVM
@[simp] theorem map_comp_id (F : C × D ⥤ E) (X Y Z : C) (W : D) (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((f ≫ g, 𝟙 W) : (X, W) ⟶ (Z, W)) = F.map ((f, 𝟙 W) : (X, W) ⟶ (Y, W)) ≫ F.map ((g, 𝟙 W) : (Y, W) ⟶ (Z, W))
Mathlib_CategoryTheory_Products_Bifunctor
C : Type u₁ D : Type u₂ E : Type u₃ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₂, u₂} D inst✝ : Category.{v₃, u₃} E F : C × D ⥤ E X X' : C f : X ⟶ X' Y Y' : D g : Y ⟶ Y' ⊢ F.map (𝟙 X, g) ≫ F.map (f, 𝟙 Y') = F.map (f, g)
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Stephen Morgan, Scott Morrison -/ import Mathlib.CategoryTheory.Products.Basic #align_import category_theory.products.bifunctor from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988" /-! # Lemmas about functors out of product categories. -/ open CategoryTheory namespace CategoryTheory.Bifunctor universe v₁ v₂ v₃ u₁ u₂ u₃ variable {C : Type u₁} {D : Type u₂} {E : Type u₃} variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E] @[simp] theorem map_id (F : C × D ⥤ E) (X : C) (Y : D) : F.map ((𝟙 X, 𝟙 Y) : (X, Y) ⟶ (X, Y)) = 𝟙 (F.obj (X, Y)) := F.map_id (X, Y) #align category_theory.bifunctor.map_id CategoryTheory.Bifunctor.map_id @[simp] theorem map_id_comp (F : C × D ⥤ E) (W : C) {X Y Z : D} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((𝟙 W, f ≫ g) : (W, X) ⟶ (W, Z)) = F.map ((𝟙 W, f) : (W, X) ⟶ (W, Y)) ≫ F.map ((𝟙 W, g) : (W, Y) ⟶ (W, Z)) := by rw [← Functor.map_comp, prod_comp, Category.comp_id] #align category_theory.bifunctor.map_id_comp CategoryTheory.Bifunctor.map_id_comp @[simp] theorem map_comp_id (F : C × D ⥤ E) (X Y Z : C) (W : D) (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((f ≫ g, 𝟙 W) : (X, W) ⟶ (Z, W)) = F.map ((f, 𝟙 W) : (X, W) ⟶ (Y, W)) ≫ F.map ((g, 𝟙 W) : (Y, W) ⟶ (Z, W)) := by rw [← Functor.map_comp, prod_comp, Category.comp_id] #align category_theory.bifunctor.map_comp_id CategoryTheory.Bifunctor.map_comp_id @[simp] theorem diagonal (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((𝟙 X, g) : (X, Y) ⟶ (X, Y')) ≫ F.map ((f, 𝟙 Y') : (X, Y') ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y')) := by
rw [← Functor.map_comp, prod_comp, Category.id_comp, Category.comp_id]
@[simp] theorem diagonal (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((𝟙 X, g) : (X, Y) ⟶ (X, Y')) ≫ F.map ((f, 𝟙 Y') : (X, Y') ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y')) := by
Mathlib.CategoryTheory.Products.Bifunctor.45_0.qAcXEiI0C4dEPVM
@[simp] theorem diagonal (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((𝟙 X, g) : (X, Y) ⟶ (X, Y')) ≫ F.map ((f, 𝟙 Y') : (X, Y') ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y'))
Mathlib_CategoryTheory_Products_Bifunctor
C : Type u₁ D : Type u₂ E : Type u₃ inst✝² : Category.{v₁, u₁} C inst✝¹ : Category.{v₂, u₂} D inst✝ : Category.{v₃, u₃} E F : C × D ⥤ E X X' : C f : X ⟶ X' Y Y' : D g : Y ⟶ Y' ⊢ F.map (f, 𝟙 Y) ≫ F.map (𝟙 X', g) = F.map (f, g)
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Stephen Morgan, Scott Morrison -/ import Mathlib.CategoryTheory.Products.Basic #align_import category_theory.products.bifunctor from "leanprover-community/mathlib"@"dc6c365e751e34d100e80fe6e314c3c3e0fd2988" /-! # Lemmas about functors out of product categories. -/ open CategoryTheory namespace CategoryTheory.Bifunctor universe v₁ v₂ v₃ u₁ u₂ u₃ variable {C : Type u₁} {D : Type u₂} {E : Type u₃} variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E] @[simp] theorem map_id (F : C × D ⥤ E) (X : C) (Y : D) : F.map ((𝟙 X, 𝟙 Y) : (X, Y) ⟶ (X, Y)) = 𝟙 (F.obj (X, Y)) := F.map_id (X, Y) #align category_theory.bifunctor.map_id CategoryTheory.Bifunctor.map_id @[simp] theorem map_id_comp (F : C × D ⥤ E) (W : C) {X Y Z : D} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((𝟙 W, f ≫ g) : (W, X) ⟶ (W, Z)) = F.map ((𝟙 W, f) : (W, X) ⟶ (W, Y)) ≫ F.map ((𝟙 W, g) : (W, Y) ⟶ (W, Z)) := by rw [← Functor.map_comp, prod_comp, Category.comp_id] #align category_theory.bifunctor.map_id_comp CategoryTheory.Bifunctor.map_id_comp @[simp] theorem map_comp_id (F : C × D ⥤ E) (X Y Z : C) (W : D) (f : X ⟶ Y) (g : Y ⟶ Z) : F.map ((f ≫ g, 𝟙 W) : (X, W) ⟶ (Z, W)) = F.map ((f, 𝟙 W) : (X, W) ⟶ (Y, W)) ≫ F.map ((g, 𝟙 W) : (Y, W) ⟶ (Z, W)) := by rw [← Functor.map_comp, prod_comp, Category.comp_id] #align category_theory.bifunctor.map_comp_id CategoryTheory.Bifunctor.map_comp_id @[simp] theorem diagonal (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((𝟙 X, g) : (X, Y) ⟶ (X, Y')) ≫ F.map ((f, 𝟙 Y') : (X, Y') ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y')) := by rw [← Functor.map_comp, prod_comp, Category.id_comp, Category.comp_id] #align category_theory.bifunctor.diagonal CategoryTheory.Bifunctor.diagonal @[simp] theorem diagonal' (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((f, 𝟙 Y) : (X, Y) ⟶ (X', Y)) ≫ F.map ((𝟙 X', g) : (X', Y) ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y')) := by
rw [← Functor.map_comp, prod_comp, Category.id_comp, Category.comp_id]
@[simp] theorem diagonal' (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((f, 𝟙 Y) : (X, Y) ⟶ (X', Y)) ≫ F.map ((𝟙 X', g) : (X', Y) ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y')) := by
Mathlib.CategoryTheory.Products.Bifunctor.52_0.qAcXEiI0C4dEPVM
@[simp] theorem diagonal' (F : C × D ⥤ E) (X X' : C) (f : X ⟶ X') (Y Y' : D) (g : Y ⟶ Y') : F.map ((f, 𝟙 Y) : (X, Y) ⟶ (X', Y)) ≫ F.map ((𝟙 X', g) : (X', Y) ⟶ (X', Y')) = F.map ((f, g) : (X, Y) ⟶ (X', Y'))
Mathlib_CategoryTheory_Products_Bifunctor
p : ℕ G : Type u_1 inst✝ : Group G P Q : Sylow p G h : ↑P = ↑Q ⊢ P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by
cases P
@[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by
Mathlib.GroupTheory.Sylow.74_0.KwMUNfT2GXiDwTx
@[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q
Mathlib_GroupTheory_Sylow
case mk p : ℕ G : Type u_1 inst✝ : Group G Q : Sylow p G toSubgroup✝ : Subgroup G isPGroup'✝ : IsPGroup p ↥toSubgroup✝ is_maximal'✝ : ∀ {Q : Subgroup G}, IsPGroup p ↥Q → toSubgroup✝ ≤ Q → Q = toSubgroup✝ h : ↑{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } = ↑Q ⊢ { toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P;
cases Q
@[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P;
Mathlib.GroupTheory.Sylow.74_0.KwMUNfT2GXiDwTx
@[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q
Mathlib_GroupTheory_Sylow
case mk.mk p : ℕ G : Type u_1 inst✝ : Group G toSubgroup✝¹ : Subgroup G isPGroup'✝¹ : IsPGroup p ↥toSubgroup✝¹ is_maximal'✝¹ : ∀ {Q : Subgroup G}, IsPGroup p ↥Q → toSubgroup✝¹ ≤ Q → Q = toSubgroup✝¹ toSubgroup✝ : Subgroup G isPGroup'✝ : IsPGroup p ↥toSubgroup✝ is_maximal'✝ : ∀ {Q : Subgroup G}, IsPGroup p ↥Q → toSubgroup✝ ≤ Q → Q = toSubgroup✝ h : ↑{ toSubgroup := toSubgroup✝¹, isPGroup' := isPGroup'✝¹, is_maximal' := is_maximal'✝¹ } = ↑{ toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ } ⊢ { toSubgroup := toSubgroup✝¹, isPGroup' := isPGroup'✝¹, is_maximal' := is_maximal'✝¹ } = { toSubgroup := toSubgroup✝, isPGroup' := isPGroup'✝, is_maximal' := is_maximal'✝ }
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q;
congr
@[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q;
Mathlib.GroupTheory.Sylow.74_0.KwMUNfT2GXiDwTx
@[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G hϕ : IsPGroup p ↥(MonoidHom.ker ϕ) h : ↑P ≤ MonoidHom.range ϕ src✝ : Subgroup K := comap ϕ ↑P Q : Subgroup K hQ : IsPGroup p ↥Q hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q ⊢ Q = { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) }
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by
show Q = P.1.comap ϕ
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by
Mathlib.GroupTheory.Sylow.100_0.KwMUNfT2GXiDwTx
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G hϕ : IsPGroup p ↥(MonoidHom.ker ϕ) h : ↑P ≤ MonoidHom.range ϕ src✝ : Subgroup K := comap ϕ ↑P Q : Subgroup K hQ : IsPGroup p ↥Q hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q ⊢ Q = comap ϕ ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ
rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))]
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ
Mathlib.GroupTheory.Sylow.100_0.KwMUNfT2GXiDwTx
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G hϕ : IsPGroup p ↥(MonoidHom.ker ϕ) h : ↑P ≤ MonoidHom.range ϕ src✝ : Subgroup K := comap ϕ ↑P Q : Subgroup K hQ : IsPGroup p ↥Q hle : { toSubmonoid := src✝.toSubmonoid, inv_mem' := (_ : ∀ {x : K}, x ∈ src✝.carrier → x⁻¹ ∈ src✝.carrier) } ≤ Q ⊢ Q = comap ϕ (map ϕ Q)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))]
exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))]
Mathlib.GroupTheory.Sylow.100_0.KwMUNfT2GXiDwTx
/-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G h : ↑P ≤ N ⊢ ↑P ≤ MonoidHom.range (Subgroup.subtype N)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by
rwa [subtype_range]
/-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by
Mathlib.GroupTheory.Sylow.127_0.KwMUNfT2GXiDwTx
/-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G P✝ : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G P Q : Sylow p G hP : ↑P ≤ N hQ : ↑Q ≤ N h : Sylow.subtype P hP = Sylow.subtype Q hQ ⊢ P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by
rw [SetLike.ext_iff] at h ⊢
theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by
Mathlib.GroupTheory.Sylow.137_0.KwMUNfT2GXiDwTx
theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G P✝ : Sylow p G K : Type u_2 inst✝ : Group K ϕ : K →* G N : Subgroup G P Q : Sylow p G hP : ↑P ≤ N hQ : ↑Q ≤ N h : ∀ (x : ↥N), x ∈ Sylow.subtype P hP ↔ x ∈ Sylow.subtype Q hQ ⊢ ∀ (x : G), x ∈ P ↔ x ∈ Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢
exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩
theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢
Mathlib.GroupTheory.Sylow.137_0.KwMUNfT2GXiDwTx
theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p ↥P c : Set (Subgroup G) hc1 : c ⊆ {Q | IsPGroup p ↥Q} hc2 : IsChain (fun x x_1 => x ≤ x_1) c Q : Subgroup G hQ : Q ∈ c x✝ : ↥{ toSubmonoid := { toSubsemigroup := { carrier := ⋃ R, ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ R, ↑↑R → h ∈ ⋃ R, ↑↑R → g * h ∈ ⋃ R, ↑↑R) }, one_mem' := (_ : ∃ t ∈ Set.range fun R => ↑↑R, 1 ∈ t) }, inv_mem' := (_ : ∀ {g : G}, g ∈ { toSubsemigroup := { carrier := ⋃ R, ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ R, ↑↑R → h ∈ ⋃ R, ↑↑R → g * h ∈ ⋃ R, ↑↑R) }, one_mem' := (_ : ∃ t ∈ Set.range fun R => ↑↑R, 1 ∈ t) }.toSubsemigroup.carrier → g⁻¹ ∈ { toSubsemigroup := { carrier := ⋃ R, ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ R, ↑↑R → h ∈ ⋃ R, ↑↑R → g * h ∈ ⋃ R, ↑↑R) }, one_mem' := (_ : ∃ t ∈ Set.range fun R => ↑↑R, 1 ∈ t) }.toSubsemigroup.carrier) } g : G S : ↑c hg : g ∈ (fun R => ↑↑R) S ⊢ ∃ k, { val := g, property := (_ : ∃ t ∈ Set.range fun R => ↑↑R, g ∈ t) } ^ p ^ k = 1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by
refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩)
/-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by
Mathlib.GroupTheory.Sylow.145_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p ↥P c : Set (Subgroup G) hc1 : c ⊆ {Q | IsPGroup p ↥Q} hc2 : IsChain (fun x x_1 => x ≤ x_1) c Q : Subgroup G hQ : Q ∈ c x✝ : ↥{ toSubmonoid := { toSubsemigroup := { carrier := ⋃ R, ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ R, ↑↑R → h ∈ ⋃ R, ↑↑R → g * h ∈ ⋃ R, ↑↑R) }, one_mem' := (_ : ∃ t ∈ Set.range fun R => ↑↑R, 1 ∈ t) }, inv_mem' := (_ : ∀ {g : G}, g ∈ { toSubsemigroup := { carrier := ⋃ R, ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ R, ↑↑R → h ∈ ⋃ R, ↑↑R → g * h ∈ ⋃ R, ↑↑R) }, one_mem' := (_ : ∃ t ∈ Set.range fun R => ↑↑R, 1 ∈ t) }.toSubsemigroup.carrier → g⁻¹ ∈ { toSubsemigroup := { carrier := ⋃ R, ↑↑R, mul_mem' := (_ : ∀ {g : G} (h : G), g ∈ ⋃ R, ↑↑R → h ∈ ⋃ R, ↑↑R → g * h ∈ ⋃ R, ↑↑R) }, one_mem' := (_ : ∃ t ∈ Set.range fun R => ↑↑R, 1 ∈ t) }.toSubsemigroup.carrier) } g : G S : ↑c hg : g ∈ (fun R => ↑↑R) S k : ℕ hk : { val := g, property := hg } ^ p ^ k = 1 ⊢ { val := g, property := (_ : ∃ t ∈ Set.range fun R => ↑↑R, g ∈ t) } ^ p ^ k = 1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩)
rwa [Subtype.ext_iff, coe_pow] at hk ⊢
/-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩)
Mathlib.GroupTheory.Sylow.145_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G H : Type u_2 inst✝¹ : Group H f : H →* G hf : IsPGroup p ↥(MonoidHom.ker f) inst✝ : Fintype (Sylow p G) h_exists : ∀ (P : Sylow p H), ∃ Q, comap f ↑Q = ↑P := fun P => exists_comap_eq_of_ker_isPGroup P hf g : Sylow p H → Sylow p G := fun P => Classical.choose (_ : ∃ Q, comap f ↑Q = ↑P) hg : ∀ (P : Sylow p H), comap f ↑(g P) = ↑P P Q : Sylow p H h : g P = g Q ⊢ ↑P = ↑Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by
rw [← hg, h]
/-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by
Mathlib.GroupTheory.Sylow.188_0.KwMUNfT2GXiDwTx
/-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G H : Type u_2 inst✝¹ : Group H f : H →* G hf : IsPGroup p ↥(MonoidHom.ker f) inst✝ : Fintype (Sylow p G) h_exists : ∀ (P : Sylow p H), ∃ Q, comap f ↑Q = ↑P := fun P => exists_comap_eq_of_ker_isPGroup P hf g : Sylow p H → Sylow p G := fun P => Classical.choose (_ : ∃ Q, comap f ↑Q = ↑P) hg : ∀ (P : Sylow p H), comap f ↑(g P) = ↑P P Q : Sylow p H h : g P = g Q ⊢ comap f ↑(g Q) = ↑Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h];
exact (h_exists Q).choose_spec
/-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h];
Mathlib.GroupTheory.Sylow.188_0.KwMUNfT2GXiDwTx
/-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Finite (Sylow p G) ⊢ Finite (Sylow p ↥H)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by
cases nonempty_fintype (Sylow p G)
/-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by
Mathlib.GroupTheory.Sylow.208_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H)
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G H : Subgroup G inst✝ : Finite (Sylow p G) val✝ : Fintype (Sylow p G) ⊢ Finite (Sylow p ↥H)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G)
infer_instance
/-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G)
Mathlib.GroupTheory.Sylow.208_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G ⊢ g • P = P ↔ g ∈ normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by
rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv]
theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by
Mathlib.GroupTheory.Sylow.259_0.KwMUNfT2GXiDwTx
theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G ⊢ (∀ (x : G), x ∈ P ↔ x ∈ g • P) ↔ ∀ (h : G), h ∈ ↑P ↔ g⁻¹ * h * g ∈ ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv]
exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩
theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv]
Mathlib.GroupTheory.Sylow.259_0.KwMUNfT2GXiDwTx
theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G h : G x✝ : h ∈ g • P a : G b : a ∈ ↑↑P c : ((MulDistribMulAction.toMonoidEnd (MulAut G) G) (MulAut.conj g)) a = h ⊢ g⁻¹ * ((MulDistribMulAction.toMonoidEnd (MulAut G) G) (MulAut.conj g)) a * g ∈ ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by
simpa [mul_assoc] using b
theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by
Mathlib.GroupTheory.Sylow.259_0.KwMUNfT2GXiDwTx
theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G g : G P : Sylow p G h : Normal ↑P ⊢ g • P = P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by
simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top]
theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by
Mathlib.GroupTheory.Sylow.270_0.KwMUNfT2GXiDwTx
theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G H : Subgroup G P : Sylow p G ⊢ P ∈ fixedPoints (↥H) (Sylow p G) ↔ H ≤ normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by
simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]
theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by
Mathlib.GroupTheory.Sylow.274_0.KwMUNfT2GXiDwTx
theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G H : Subgroup G P : Sylow p G ⊢ P ∈ fixedPoints (↥H) (Sylow p G) ↔ ∀ ⦃x : G⦄, x ∈ H → x • P = P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer];
exact Subtype.forall
theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer];
Mathlib.GroupTheory.Sylow.274_0.KwMUNfT2GXiDwTx
theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G P : Subgroup G hP : IsPGroup p ↥P Q : Sylow p G ⊢ Q ∈ fixedPoints (↥P) (Sylow p G) ↔ P ≤ ↑Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by
rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left]
theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by
Mathlib.GroupTheory.Sylow.288_0.KwMUNfT2GXiDwTx
theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ ∃ g, g • P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by
classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ ∃ g, g • P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical
cases nonempty_fintype (Sylow p G)
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) ⊢ ∃ g, g • P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G)
have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G)
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R ⊢ ∃ g, g • P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩
suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R this : Set.Nonempty (fixedPoints ↥↑Q ↑(orbit G P)) ⊢ ∃ g, g • P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by
exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R this : Set.Nonempty (fixedPoints ↥↑Q ↑(orbit G P)) R : ↑(orbit G P) hR : R ∈ fixedPoints ↥↑Q ↑(orbit G P) ⊢ ∃ g, g • P = Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by
rw [← Sylow.ext (H.mp hR)]
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R this : Set.Nonempty (fixedPoints ↥↑Q ↑(orbit G P)) R : ↑(orbit G P) hR : R ∈ fixedPoints ↥↑Q ↑(orbit G P) ⊢ ∃ g, g • P = ↑R
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)]
exact R.2
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)]
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R ⊢ Set.Nonempty (fixedPoints ↥↑Q ↑(orbit G P))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2
apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R ⊢ ¬p ∣ card ↑(orbit G P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card
refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _)
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ 1 ≡ 0 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _)
calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _)
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ 1 = card ↑(fixedPoints ↥↑P ↑(orbit G P))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h
rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)]
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ card ↑{{ val := P, property := (_ : P ∈ orbit G P) }} = card ↑(fixedPoints ↥↑P ↑(orbit G P))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)]
refine' card_congr' (congr_arg _ (Eq.symm _))
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)]
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ fixedPoints ↥↑P ↑(orbit G P) = {{ val := P, property := (_ : P ∈ orbit G P) }}
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _))
rw [Set.eq_singleton_iff_unique_mem]
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _))
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.hpα p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G val✝ : Fintype (Sylow p G) H : ∀ {R : Sylow p G} {S : ↑(orbit G P)}, S ∈ fixedPoints ↥↑R ↑(orbit G P) ↔ ↑↑S = ↑R h : p ∣ card ↑(orbit G P) ⊢ { val := P, property := (_ : P ∈ orbit G P) } ∈ fixedPoints ↥↑P ↑(orbit G P) ∧ ∀ x ∈ fixedPoints ↥↑P ↑(orbit G P), x = { val := P, property := (_ : P ∈ orbit G P) }
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem]
exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem]
Mathlib.GroupTheory.Sylow.293_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G)
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) ⊢ card (Sylow p G) ≡ 1 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by
refine' Sylow.nonempty.elim fun P : Sylow p G => _
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G ⊢ card (Sylow p G) ≡ 1 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _
have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints (↥↑P) (Sylow p G) = {P} ⊢ card (Sylow p G) ≡ 1 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm
have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints (↥↑P) (Sylow p G) = {P} ⊢ Fintype ↑(fixedPoints (↥↑P) (Sylow p G))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by
rw [this]
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints (↥↑P) (Sylow p G) = {P} ⊢ Fintype ↑{P}
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this]
infer_instance
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this]
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints (↥↑P) (Sylow p G) = {P} fin : Fintype ↑(fixedPoints (↥↑P) (Sylow p G)) ⊢ card (Sylow p G) ≡ 1 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance
have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this]
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this : fixedPoints (↥↑P) (Sylow p G) = {P} fin : Fintype ↑(fixedPoints (↥↑P) (Sylow p G)) ⊢ card ↑(fixedPoints (↥↑P) (Sylow p G)) = 1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by
simp [this]
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this✝ : fixedPoints (↥↑P) (Sylow p G) = {P} fin : Fintype ↑(fixedPoints (↥↑P) (Sylow p G)) this : card ↑(fixedPoints (↥↑P) (Sylow p G)) = 1 ⊢ card (Sylow p G) ≡ 1 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this]
exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this])
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this]
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G this✝ : fixedPoints (↥↑P) (Sylow p G) = {P} fin : Fintype ↑(fixedPoints (↥↑P) (Sylow p G)) this : card ↑(fixedPoints (↥↑P) (Sylow p G)) = 1 ⊢ card ↑(fixedPoints (↥↑P) (Sylow p G)) ≡ 1 [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by
rw [this]
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by
Mathlib.GroupTheory.Sylow.322_0.KwMUNfT2GXiDwTx
/-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p]
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ ↥↑P ≃* ↥↑Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by
rw [← Classical.choose_spec (exists_smul_eq G P Q)]
/-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by
Mathlib.GroupTheory.Sylow.356_0.KwMUNfT2GXiDwTx
/-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P Q : Sylow p G ⊢ ↥↑P ≃* ↥↑(Classical.choose (_ : ∃ m, m • P = Q) • P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)]
exact P.equivSMul (Classical.choose (exists_smul_eq G P Q))
/-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)]
Mathlib.GroupTheory.Sylow.356_0.KwMUNfT2GXiDwTx
/-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝ : Group G P : Sylow p G ⊢ stabilizer G P = normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by
ext
theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by
Mathlib.GroupTheory.Sylow.367_0.KwMUNfT2GXiDwTx
theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
case h p : ℕ G : Type u_1 inst✝ : Group G P : Sylow p G x✝ : G ⊢ x✝ ∈ stabilizer G P ↔ x✝ ∈ normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext;
simp [Sylow.smul_eq_iff_mem_normalizer]
theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext;
Mathlib.GroupTheory.Sylow.367_0.KwMUNfT2GXiDwTx
theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P ⊢ ∃ n ∈ normalizer ↑P, g⁻¹ * x * g = n⁻¹ * x * n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by
have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le]
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P ⊢ ↑P ≤ centralizer ↑(zpowers x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by
rwa [le_centralizer_iff, zpowers_le]
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) ⊢ ∃ n ∈ normalizer ↑P, g⁻¹ * x * g = n⁻¹ * x * n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le]
have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le]
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) ⊢ ↑(g • P) ≤ centralizer ↑(zpowers x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by
rw [le_centralizer_iff, zpowers_le]
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) ⊢ x ∈ centralizer ↑↑(g • P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le]
rintro - ⟨z, hz, rfl⟩
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le]
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) z : G hz : z ∈ ↑↑P ⊢ ((MulDistribMulAction.toMonoidEnd (MulAut G) G) (MulAut.conj g)) z * x = x * ((MulDistribMulAction.toMonoidEnd (MulAut G) G) (MulAut.conj g)) z
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩
specialize hy z hz
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
case intro.intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) z : G hz : z ∈ ↑↑P hy : z * (g⁻¹ * x * g) = g⁻¹ * x * g * z ⊢ ((MulDistribMulAction.toMonoidEnd (MulAut G) G) (MulAut.conj g)) z * x = x * ((MulDistribMulAction.toMonoidEnd (MulAut G) G) (MulAut.conj g)) z
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz
rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) ⊢ ∃ n ∈ normalizer ↑P, g⁻¹ * x * g = n⁻¹ * x * n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy
obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1)
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) h : ↥(centralizer ↑(zpowers x)) hh : h • Sylow.subtype (g • P) h2 = Sylow.subtype P h1 ⊢ ∃ n ∈ normalizer ↑P, g⁻¹ * x * g = n⁻¹ * x * n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1)
simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1)
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) h : ↥(centralizer ↑(zpowers x)) hh : Sylow.subtype ((↑h * g) • P) (_ : ↑((↑h * g) • P) ≤ centralizer ↑(zpowers x)) = Sylow.subtype P h1 ⊢ ∃ n ∈ normalizer ↑P, g⁻¹ * x * g = n⁻¹ * x * n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh
refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G x g : G hx : x ∈ centralizer ↑P hy : g⁻¹ * x * g ∈ centralizer ↑P h1 : ↑P ≤ centralizer ↑(zpowers x) h2 : ↑(g • P) ≤ centralizer ↑(zpowers x) h : ↥(centralizer ↑(zpowers x)) hh : Sylow.subtype ((↑h * g) • P) (_ : ↑((↑h * g) • P) ≤ centralizer ↑(zpowers x)) = Sylow.subtype P h1 ⊢ g⁻¹ * x * g = (↑h * g)⁻¹ * x * (↑h * g)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩
rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right]
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩
Mathlib.GroupTheory.Sylow.372_0.KwMUNfT2GXiDwTx
theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G ⊢ ↑⊤ ≃ ↑(orbit G P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by
rw [P.orbit_eq_top]
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by
Mathlib.GroupTheory.Sylow.396_0.KwMUNfT2GXiDwTx
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝² : Group G inst✝¹ : Fact (Nat.Prime p) inst✝ : Fintype (Sylow p G) P : Sylow p G ⊢ G ⧸ stabilizer G P ≃ G ⧸ normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by
rw [P.stabilizer_eq_normalizer]
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by
Mathlib.GroupTheory.Sylow.396_0.KwMUNfT2GXiDwTx
/-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P ⊢ ¬p ∣ index ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by
intro h
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P h : p ∣ index ↑P ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h
letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P h : p ∣ index ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex
rw [index_eq_card (P : Subgroup G)] at h
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h : p ∣ card (G ⧸ ↑P) ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h
obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h
have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm)
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm)
let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G))
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm)
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G))
have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G))
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ IsPGroup p ↥Q
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by
apply h.comap_of_ker_isPGroup
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case hϕ p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ IsPGroup p ↥(MonoidHom.ker (QuotientGroup.mk' ↑P))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup
rw [QuotientGroup.ker_mk']
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case hϕ p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ IsPGroup p ↥↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk']
exact P.2
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk']
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) hQ : IsPGroup p ↥Q ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2
replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one)
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) hQ : IsPGroup p ↥Q hp : ¬x = 1 ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one)
rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one)
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G P : Sylow p G inst✝ : Normal ↑P fP : FiniteIndex ↑P this : Fintype (G ⧸ ↑P) := fintypeQuotientOfFiniteIndex ↑P h✝ : p ∣ card (G ⧸ ↑P) x : G ⧸ ↑P hx : orderOf x = p h : IsPGroup p ↥(zpowers x) Q : Subgroup G := comap (QuotientGroup.mk' ↑P) (zpowers x) hQ : IsPGroup p ↥Q hp : ↑P < comap (QuotientGroup.mk' ↑P) (zpowers x) ⊢ False
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp
exact hp.ne' (P.3 hQ hp.le)
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp
Mathlib.GroupTheory.Sylow.427_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 ⊢ ¬p ∣ index ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by
cases nonempty_fintype (Sylow p G)
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by
Mathlib.GroupTheory.Sylow.446_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) ⊢ ¬p ∣ index ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G)
rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer]
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G)
Mathlib.GroupTheory.Sylow.446_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer]
haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer]
Mathlib.GroupTheory.Sylow.446_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) this : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer
haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer
Mathlib.GroupTheory.Sylow.446_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hP : relindex (↑P) (normalizer ↑P) ≠ 0 val✝ : Fintype (Sylow p G) this✝ : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) this : FiniteIndex ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩
replace hP := not_dvd_index_sylow' (P.subtype le_normalizer)
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩
Mathlib.GroupTheory.Sylow.446_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
case intro p : ℕ G : Type u_1 inst✝¹ : Group G hp : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G val✝ : Fintype (Sylow p G) this✝ : Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) this : FiniteIndex ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) hP : ¬p ∣ index ↑(Sylow.subtype P (_ : ↑P ≤ normalizer ↑P)) ⊢ ¬p ∣ relindex (↑P) (normalizer ↑P) * card (Sylow p G)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer)
exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G)
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer)
Mathlib.GroupTheory.Sylow.446_0.KwMUNfT2GXiDwTx
theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index
Mathlib_GroupTheory_Sylow
p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N ⊢ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by
refine' top_le_iff.mp fun g _ => _
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ ⊢ g ∈ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _
obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow