state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) hpβ‚‚' : Fact (Nat.Prime pβ‚‚) ⊒ p₁ β‰  pβ‚‚
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by
simpa using hne
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case mk.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) hpβ‚‚' : Fact (Nat.Prime pβ‚‚) hne' : p₁ β‰  pβ‚‚ ⊒ βˆ€ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } β†’ y ∈ P ↑{ val := pβ‚‚, property := hpβ‚‚ } β†’ Commute x y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne
apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚))
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case mk.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) hpβ‚‚' : Fact (Nat.Prime pβ‚‚) hne' : p₁ β‰  pβ‚‚ ⊒ _root_.Disjoint ↑(P p₁) ↑(P pβ‚‚)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚))
apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup'
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚))
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ((p : { x // x ∈ ps }) β†’ (P : Sylow (↑p) G) β†’ β†₯↑P) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup'
refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup'
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_1 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ((p : { x // x ∈ ps }) β†’ (P : Sylow (↑p) G) β†’ β†₯↑P) ≃* ((p : { x // x ∈ ps }) β†’ β†₯(P ↑p)) case refine'_2 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ((p : { x // x ∈ ps }) β†’ β†₯(P ↑p)) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial
show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_1 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ((p : { x // x ∈ ps }) β†’ (P : Sylow (↑p) G) β†’ β†₯P) ≃* ((p : { x // x ∈ ps }) β†’ β†₯(P ↑p))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation
apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_1 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ (j : { x // x ∈ ps }) β†’ ((P : Sylow (↑j) G) β†’ β†₯P) ≃* β†₯↑(P ↑j)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _
rintro ⟨p, hp⟩
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_1.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p : β„• hp : p ∈ ps ⊒ ((P : Sylow (↑{ val := p, property := hp }) G) β†’ β†₯P) ≃* β†₯↑(P ↑{ val := p, property := hp })
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩
haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_1.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p : β„• hp : p ∈ ps hp' : Fact (Nat.Prime p) ⊒ ((P : Sylow (↑{ val := p, property := hp }) G) β†’ β†₯P) ≃* β†₯↑(P ↑{ val := p, property := hp })
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp)
letI := unique_of_normal _ (hn (P p))
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp)
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_1.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p : β„• hp : p ∈ ps hp' : Fact (Nat.Prime p) this : Unique (Sylow p G) := unique_of_normal (P p) (_ : Normal ↑(P p)) ⊒ ((P : Sylow (↑{ val := p, property := hp }) G) β†’ β†₯P) ≃* β†₯↑(P ↑{ val := p, property := hp })
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p))
apply MulEquiv.piUnique
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p))
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ((p : { x // x ∈ ps }) β†’ β†₯(P ↑p)) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique
show (βˆ€ p : ps, P p) ≃* G
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ((p : { x // x ∈ ps }) β†’ β†₯(P ↑p)) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G
apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Bijective ⇑(noncommPiCoprod hcomm)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm)
apply (bijective_iff_injective_and_card _).mpr
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm)
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2 G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Injective ⇑(noncommPiCoprod hcomm) ∧ Fintype.card ((i : { x // x ∈ ps }) β†’ β†₯↑(P ↑i)) = Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr
constructor
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Injective ⇑(noncommPiCoprod hcomm) case refine'_2.right G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Fintype.card ((i : { x // x ∈ ps }) β†’ β†₯↑(P ↑i)) = Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor
show Injective _
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Injective ⇑(noncommPiCoprod hcomm)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β·
apply Subgroup.injective_noncommPiCoprod_of_independent
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β·
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left.hind G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ CompleteLattice.Independent fun i => ↑(P ↑i)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent
apply independent_of_coprime_order hcomm
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left.hind G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ βˆ€ (i j : { x // x ∈ ps }), i β‰  j β†’ Nat.Coprime (Fintype.card β†₯↑(P ↑i)) (Fintype.card β†₯↑(P ↑j))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm
rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left.hind.mk.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } ⊒ Nat.Coprime (Fintype.card β†₯↑(P ↑{ val := p₁, property := hp₁ })) (Fintype.card β†₯↑(P ↑{ val := pβ‚‚, property := hpβ‚‚ }))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne
haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left.hind.mk.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) ⊒ Nat.Coprime (Fintype.card β†₯↑(P ↑{ val := p₁, property := hp₁ })) (Fintype.card β†₯↑(P ↑{ val := pβ‚‚, property := hpβ‚‚ }))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁)
haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁)
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left.hind.mk.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) hpβ‚‚' : Fact (Nat.Prime pβ‚‚) ⊒ Nat.Coprime (Fintype.card β†₯↑(P ↑{ val := p₁, property := hp₁ })) (Fintype.card β†₯↑(P ↑{ val := pβ‚‚, property := hpβ‚‚ }))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚)
have hne' : p₁ β‰  pβ‚‚ := by simpa using hne
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚)
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) hpβ‚‚' : Fact (Nat.Prime pβ‚‚) ⊒ p₁ β‰  pβ‚‚
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by
simpa using hne
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.left.hind.mk.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p₁ : β„• hp₁ : p₁ ∈ ps pβ‚‚ : β„• hpβ‚‚ : pβ‚‚ ∈ ps hne : { val := p₁, property := hp₁ } β‰  { val := pβ‚‚, property := hpβ‚‚ } hp₁' : Fact (Nat.Prime p₁) hpβ‚‚' : Fact (Nat.Prime pβ‚‚) hne' : p₁ β‰  pβ‚‚ ⊒ Nat.Coprime (Fintype.card β†₯↑(P ↑{ val := p₁, property := hp₁ })) (Fintype.card β†₯↑(P ↑{ val := pβ‚‚, property := hpβ‚‚ }))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne
apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup'
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.right G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Fintype.card ((i : { x // x ∈ ps }) β†’ β†₯↑(P ↑i)) = Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup'
show card (βˆ€ p : ps, P p) = card G
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup'
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case refine'_2.right G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ Fintype.card ((p : { x // x ∈ ps }) β†’ β†₯(P ↑p)) = Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' show card (βˆ€ p : ps, P p) = card G Β·
calc card (βˆ€ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi _ = ∏ p : ps, p.1 ^ (card G).factorization p.1 := by congr 1 with ⟨p, hp⟩ exact @card_eq_multiplicity _ _ _ p ⟨Nat.prime_of_mem_primeFactors hp⟩ (P p) _ = ∏ p in ps, p ^ (card G).factorization p := (Finset.prod_finset_coe (fun p => p ^ (card G).factorization p) _) _ = (card G).factorization.prod (Β· ^ Β·) := rfl _ = card G := Nat.factorization_prod_pow_eq_self Fintype.card_ne_zero
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' show card (βˆ€ p : ps, P p) = card G Β·
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y ⊒ ∏ p : { x // x ∈ ps }, Fintype.card β†₯↑(P ↑p) = ∏ p : { x // x ∈ ps }, ↑p ^ (Nat.factorization (Fintype.card G)) ↑p
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' show card (βˆ€ p : ps, P p) = card G Β· calc card (βˆ€ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi _ = ∏ p : ps, p.1 ^ (card G).factorization p.1 := by
congr 1 with ⟨p, hp⟩
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' show card (βˆ€ p : ps, P p) = card G Β· calc card (βˆ€ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi _ = ∏ p : ps, p.1 ^ (card G).factorization p.1 := by
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case e_f.h.mk G : Type u Ξ± : Type v Ξ² : Type w inst✝¹ : Group G inst✝ : Fintype G hn : βˆ€ {p : β„•} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset β„• := (Fintype.card G).primeFactors P : (p : β„•) β†’ Sylow p G := default hcomm : _root_.Pairwise fun p₁ pβ‚‚ => βˆ€ (x y : G), x ∈ P ↑p₁ β†’ y ∈ P ↑pβ‚‚ β†’ Commute x y p : β„• hp : p ∈ ps ⊒ Fintype.card β†₯↑(P ↑{ val := p, property := hp }) = ↑{ val := p, property := hp } ^ (Nat.factorization (Fintype.card G)) ↑{ val := p, property := hp }
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nβ‚š` be the number of Sylow `p`-subgroups of `G`, then `nβ‚š` divides the index of the Sylow `p`-subgroup, `nβ‚š ≑ 1 [MOD p]`, and `nβ‚š` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : β„•) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : βˆ€ {Q : Subgroup G}, IsPGroup p Q β†’ toSubgroup ≀ Q β†’ Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {Ξ± : Type*} [MulAction G Ξ±] : MulAction P Ξ± := inferInstanceAs (MulAction (P : Subgroup G) Ξ±) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (Ο• : K β†’* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : Sylow p K := { P.1.comap Ο• with isPGroup' := P.2.comap_of_ker_isPGroup Ο• hΟ• is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap Ο• rw [← P.3 (hQ.map Ο•) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap Ο•).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hΟ• : IsPGroup p Ο•.ker) (h : ↑P ≀ Ο•.range) : (P.comapOfKerIsPGroup Ο• hΟ• h : Subgroup K) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : Sylow p K := P.comapOfKerIsPGroup Ο• (IsPGroup.ker_isPGroup_of_injective hΟ•) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hΟ• : Function.Injective Ο•) (h : ↑P ≀ Ο•.range) : ↑(P.comapOfInjective Ο• hΟ• h) = Subgroup.comap Ο• ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≀ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≀ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≀ N} {hQ : ↑Q ≀ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊒ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : βˆƒ Q : Sylow p G, P ≀ Q := Exists.elim (zorn_nonempty_partialOrderβ‚€ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊒, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : IsPGroup p f.ker) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H β†’* G} (hf : Function.Injective f) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : βˆƒ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H β†’* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H β†’* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H β†’ Sylow p G := fun P => Classical.choose (h_exists P) have hg : βˆ€ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H β†’* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H β†’* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] : MulAction Ξ± (Sylow p G) where smul g P := ⟨(g β€’ P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (Β· ∈ g⁻¹ β€’ Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g β€’ s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul Ξ± P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {Ξ± : Type*} [Group Ξ±] [MulDistribMulAction Ξ± G] {g : Ξ±} {P : Sylow p G} : ↑(g β€’ P) = g β€’ (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g β€’ P = MulAut.conj g β€’ P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g β€’ P) = MulAut.conj g β€’ (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : ↑(h β€’ P) ≀ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≀ H) (h : H) : h β€’ P.subtype hP = (h β€’ P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g β€’ P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c β–Έ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g β€’ P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≀ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P βŠ“ (Q : Subgroup G).normalizer = P βŠ“ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≀ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≀ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≑ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≑ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≑ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≀ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : Β¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g β€’ P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊀ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≀ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g β€’ P) ≀ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g β€’ P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : βˆƒ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G β§Έ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊀ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G β§Έ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G β§Έ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G β§Έ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G β§Έ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : Β¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G β§Έ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G β§Έ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer β‰  0) : Β¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer βŠ” N = ⊀ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) β€’ P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) βŠ” N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : β„•} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≀ N) : (P : Subgroup G).normalizer βŠ” N = ⊀ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {Ξ± : Type v} {Ξ² : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G β§Έ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G β§Έ H) ∈ MulAction.fixedPoints H (G β§Έ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : βˆ€ {y : G β§Έ H}, y ∈ orbit H (x : G β§Έ H) β†’ y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : βˆ€ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hbβ‚βŸ©, hbβ‚‚βŸ© := hy have hbβ‚‚ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hbβ‚‚ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hbβ‚‚; simpa [mul_inv_rev, mul_assoc] using hbβ‚‚)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G β§Έ H) ≃ normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G β§Έ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ β€Ή_β€Ί _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (Ξ± := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) ≑ card (G β§Έ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≑ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ Subgroup.comap ((normalizer H).subtype : normalizer H β†’* G) H) % p := hcard β–Έ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : β„•} {n : β„•} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : β„•} {n : β„•} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : βˆƒ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≀ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G β§Έ H) = s * p := (mul_left_inj' (show card H β‰  0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H β§Έ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) β–Έ hcard β–Έ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H β§Έ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≀ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : β„•) : βˆ€ {n m : β„•} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≀ m), βˆƒ K : Subgroup G, card K = p ^ m ∧ H ≀ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≀ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : β„•) {n : β„•} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : βˆƒ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd βŠ₯ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≀ Nat.card G) : βˆƒ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊒ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊒ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≀ Nat.card H) : βˆƒ H' ≀ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : β„•} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≀ Nat.card H) (hkβ‚€ : k β‰  0) : βˆƒ H' ≀ H, Nat.card H' ≀ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : βˆƒ s, p ^ s ≀ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hkβ‚€) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm β–Έ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : β„•} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm β–Έ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) β‰  βŠ₯ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : β„•} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G β‰  0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm β–Έ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : β„•} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Ξ¦ show (Ξ¦ β€’ P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : βˆ€ H : Subgroup G, IsCoatom H β†’ H.Normal) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) Β· exact heq Β· haveI := hnc _ hK have hPK : ↑P ≀ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : β„•} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' show card (βˆ€ p : ps, P p) = card G Β· calc card (βˆ€ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi _ = ∏ p : ps, p.1 ^ (card G).factorization p.1 := by congr 1 with ⟨p, hp⟩
exact @card_eq_multiplicity _ _ _ p ⟨Nat.prime_of_mem_primeFactors hp⟩ (P p)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- β€œThe” Sylow subgroup for p let P : βˆ€ p, Sylow p G := default have hcomm : Pairwise fun p₁ pβ‚‚ : ps => βˆ€ x y : G, x ∈ P p₁ β†’ y ∈ P pβ‚‚ β†’ Commute x y := by rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P pβ‚‚)) apply IsPGroup.disjoint_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' refine' MulEquiv.trans (N := βˆ€ p : ps, P p) _ _ -- There is only one Sylow subgroup for each p, so the inner product is trivial show (βˆ€ p : ps, βˆ€ P : Sylow p G, P) ≃* βˆ€ p : ps, P p Β· -- here we need to help the elaborator with an explicit instantiation apply @MulEquiv.piCongrRight ps (fun p => βˆ€ P : Sylow p G, P) (fun p => P p) _ _ rintro ⟨p, hp⟩ haveI hp' := Fact.mk (Nat.prime_of_mem_primeFactors hp) letI := unique_of_normal _ (hn (P p)) apply MulEquiv.piUnique show (βˆ€ p : ps, P p) ≃* G apply MulEquiv.ofBijective (Subgroup.noncommPiCoprod hcomm) apply (bijective_iff_injective_and_card _).mpr constructor show Injective _ Β· apply Subgroup.injective_noncommPiCoprod_of_independent apply independent_of_coprime_order hcomm rintro ⟨p₁, hpβ‚βŸ© ⟨pβ‚‚, hpβ‚‚βŸ© hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hpβ‚‚' := Fact.mk (Nat.prime_of_mem_primeFactors hpβ‚‚) have hne' : p₁ β‰  pβ‚‚ := by simpa using hne apply IsPGroup.coprime_card_of_ne p₁ pβ‚‚ hne' _ _ (P p₁).isPGroup' (P pβ‚‚).isPGroup' show card (βˆ€ p : ps, P p) = card G Β· calc card (βˆ€ p : ps, P p) = ∏ p : ps, card (P p) := Fintype.card_pi _ = ∏ p : ps, p.1 ^ (card G).factorization p.1 := by congr 1 with ⟨p, hp⟩
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : βˆ€ {p : β„•} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (βˆ€ p : (card G).primeFactors, βˆ€ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
R : CommRingCat ⊒ IsIso (CommRingCat.ofHom (algebraMap (↑R) (Localization.Away 1)))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Algebra.Category.Ring.Basic import Mathlib.RingTheory.Localization.Away.Basic import Mathlib.RingTheory.Ideal.LocalRing #align_import algebra.category.Ring.instances from "leanprover-community/mathlib"@"a7c017d750512a352b623b1824d75da5998457d0" /-! # Ring-theoretic results in terms of categorical languages -/ open CategoryTheory instance localization_unit_isIso (R : CommRingCat) : IsIso (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso #align localization_unit_is_iso localization_unit_isIso instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by
cases R
instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by
Mathlib.Algebra.Category.Ring.Instances.24_0.KsJUUT2FWBN0k2J
instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R)))
Mathlib_Algebra_Category_Ring_Instances
case mk α✝ : Type ?u.2113 str✝ : CommRing α✝ ⊒ IsIso (CommRingCat.ofHom (algebraMap (↑(Bundled.mk α✝)) (Localization.Away 1)))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Algebra.Category.Ring.Basic import Mathlib.RingTheory.Localization.Away.Basic import Mathlib.RingTheory.Ideal.LocalRing #align_import algebra.category.Ring.instances from "leanprover-community/mathlib"@"a7c017d750512a352b623b1824d75da5998457d0" /-! # Ring-theoretic results in terms of categorical languages -/ open CategoryTheory instance localization_unit_isIso (R : CommRingCat) : IsIso (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso #align localization_unit_is_iso localization_unit_isIso instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by cases R
exact localization_unit_isIso _
instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by cases R
Mathlib.Algebra.Category.Ring.Instances.24_0.KsJUUT2FWBN0k2J
instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R)))
Mathlib_Algebra_Category_Ring_Instances
R : CommRingCat M : Submonoid ↑R ⊒ Epi (CommRingCat.ofHom (algebraMap (↑R) (Localization M)))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Algebra.Category.Ring.Basic import Mathlib.RingTheory.Localization.Away.Basic import Mathlib.RingTheory.Ideal.LocalRing #align_import algebra.category.Ring.instances from "leanprover-community/mathlib"@"a7c017d750512a352b623b1824d75da5998457d0" /-! # Ring-theoretic results in terms of categorical languages -/ open CategoryTheory instance localization_unit_isIso (R : CommRingCat) : IsIso (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso #align localization_unit_is_iso localization_unit_isIso instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by cases R exact localization_unit_isIso _ #align localization_unit_is_iso' localization_unit_isIso' theorem IsLocalization.epi {R : Type*} [CommRing R] (M : Submonoid R) (S : Type _) [CommRing S] [Algebra R S] [IsLocalization M S] : Epi (CommRingCat.ofHom <| algebraMap R S) := ⟨fun {T} _ _ => @IsLocalization.ringHom_ext R _ M S _ _ T _ _ _ _⟩ #align is_localization.epi IsLocalization.epi instance Localization.epi {R : Type*} [CommRing R] (M : Submonoid R) : Epi (CommRingCat.ofHom <| algebraMap R <| Localization M) := IsLocalization.epi M _ #align localization.epi Localization.epi instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _) := by
rcases R with ⟨α, str⟩
instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _) := by
Mathlib.Algebra.Category.Ring.Instances.40_0.KsJUUT2FWBN0k2J
instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _)
Mathlib_Algebra_Category_Ring_Instances
case mk Ξ± : Type ?u.6221 str : CommRing Ξ± M : Submonoid ↑(Bundled.mk Ξ±) ⊒ Epi (CommRingCat.ofHom (algebraMap (↑(Bundled.mk Ξ±)) (Localization M)))
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Algebra.Category.Ring.Basic import Mathlib.RingTheory.Localization.Away.Basic import Mathlib.RingTheory.Ideal.LocalRing #align_import algebra.category.Ring.instances from "leanprover-community/mathlib"@"a7c017d750512a352b623b1824d75da5998457d0" /-! # Ring-theoretic results in terms of categorical languages -/ open CategoryTheory instance localization_unit_isIso (R : CommRingCat) : IsIso (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso #align localization_unit_is_iso localization_unit_isIso instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by cases R exact localization_unit_isIso _ #align localization_unit_is_iso' localization_unit_isIso' theorem IsLocalization.epi {R : Type*} [CommRing R] (M : Submonoid R) (S : Type _) [CommRing S] [Algebra R S] [IsLocalization M S] : Epi (CommRingCat.ofHom <| algebraMap R S) := ⟨fun {T} _ _ => @IsLocalization.ringHom_ext R _ M S _ _ T _ _ _ _⟩ #align is_localization.epi IsLocalization.epi instance Localization.epi {R : Type*} [CommRing R] (M : Submonoid R) : Epi (CommRingCat.ofHom <| algebraMap R <| Localization M) := IsLocalization.epi M _ #align localization.epi Localization.epi instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _) := by rcases R with ⟨α, str⟩
exact IsLocalization.epi M _
instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _) := by rcases R with ⟨α, str⟩
Mathlib.Algebra.Category.Ring.Instances.40_0.KsJUUT2FWBN0k2J
instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _)
Mathlib_Algebra_Category_Ring_Instances
R S : CommRingCat f : R β‰… S a : ↑R ha : IsUnit (f.hom a) ⊒ IsUnit a
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Algebra.Category.Ring.Basic import Mathlib.RingTheory.Localization.Away.Basic import Mathlib.RingTheory.Ideal.LocalRing #align_import algebra.category.Ring.instances from "leanprover-community/mathlib"@"a7c017d750512a352b623b1824d75da5998457d0" /-! # Ring-theoretic results in terms of categorical languages -/ open CategoryTheory instance localization_unit_isIso (R : CommRingCat) : IsIso (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso #align localization_unit_is_iso localization_unit_isIso instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by cases R exact localization_unit_isIso _ #align localization_unit_is_iso' localization_unit_isIso' theorem IsLocalization.epi {R : Type*} [CommRing R] (M : Submonoid R) (S : Type _) [CommRing S] [Algebra R S] [IsLocalization M S] : Epi (CommRingCat.ofHom <| algebraMap R S) := ⟨fun {T} _ _ => @IsLocalization.ringHom_ext R _ M S _ _ T _ _ _ _⟩ #align is_localization.epi IsLocalization.epi instance Localization.epi {R : Type*} [CommRing R] (M : Submonoid R) : Epi (CommRingCat.ofHom <| algebraMap R <| Localization M) := IsLocalization.epi M _ #align localization.epi Localization.epi instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _) := by rcases R with ⟨α, str⟩ exact IsLocalization.epi M _ #align localization.epi' Localization.epi' instance CommRingCat.isLocalRingHom_comp {R S T : CommRingCat} (f : R ⟢ S) (g : S ⟢ T) [IsLocalRingHom g] [IsLocalRingHom f] : IsLocalRingHom (f ≫ g) := _root_.isLocalRingHom_comp _ _ set_option linter.uppercaseLean3 false in #align CommRing.is_local_ring_hom_comp CommRingCat.isLocalRingHom_comp theorem isLocalRingHom_of_iso {R S : CommRingCat} (f : R β‰… S) : IsLocalRingHom f.hom := { map_nonunit := fun a ha => by
convert f.inv.isUnit_map ha
theorem isLocalRingHom_of_iso {R S : CommRingCat} (f : R β‰… S) : IsLocalRingHom f.hom := { map_nonunit := fun a ha => by
Mathlib.Algebra.Category.Ring.Instances.52_0.KsJUUT2FWBN0k2J
theorem isLocalRingHom_of_iso {R S : CommRingCat} (f : R β‰… S) : IsLocalRingHom f.hom
Mathlib_Algebra_Category_Ring_Instances
case h.e'_3 R S : CommRingCat f : R β‰… S a : ↑R ha : IsUnit (f.hom a) ⊒ a = f.inv (f.hom a)
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.Algebra.Category.Ring.Basic import Mathlib.RingTheory.Localization.Away.Basic import Mathlib.RingTheory.Ideal.LocalRing #align_import algebra.category.Ring.instances from "leanprover-community/mathlib"@"a7c017d750512a352b623b1824d75da5998457d0" /-! # Ring-theoretic results in terms of categorical languages -/ open CategoryTheory instance localization_unit_isIso (R : CommRingCat) : IsIso (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := IsIso.of_iso (IsLocalization.atOne R (Localization.Away (1 : R))).toRingEquiv.toCommRingCatIso #align localization_unit_is_iso localization_unit_isIso instance localization_unit_isIso' (R : CommRingCat) : @IsIso CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R (Localization.Away (1 : R))) := by cases R exact localization_unit_isIso _ #align localization_unit_is_iso' localization_unit_isIso' theorem IsLocalization.epi {R : Type*} [CommRing R] (M : Submonoid R) (S : Type _) [CommRing S] [Algebra R S] [IsLocalization M S] : Epi (CommRingCat.ofHom <| algebraMap R S) := ⟨fun {T} _ _ => @IsLocalization.ringHom_ext R _ M S _ _ T _ _ _ _⟩ #align is_localization.epi IsLocalization.epi instance Localization.epi {R : Type*} [CommRing R] (M : Submonoid R) : Epi (CommRingCat.ofHom <| algebraMap R <| Localization M) := IsLocalization.epi M _ #align localization.epi Localization.epi instance Localization.epi' {R : CommRingCat} (M : Submonoid R) : @Epi CommRingCat _ R _ (CommRingCat.ofHom <| algebraMap R <| Localization M : _) := by rcases R with ⟨α, str⟩ exact IsLocalization.epi M _ #align localization.epi' Localization.epi' instance CommRingCat.isLocalRingHom_comp {R S T : CommRingCat} (f : R ⟢ S) (g : S ⟢ T) [IsLocalRingHom g] [IsLocalRingHom f] : IsLocalRingHom (f ≫ g) := _root_.isLocalRingHom_comp _ _ set_option linter.uppercaseLean3 false in #align CommRing.is_local_ring_hom_comp CommRingCat.isLocalRingHom_comp theorem isLocalRingHom_of_iso {R S : CommRingCat} (f : R β‰… S) : IsLocalRingHom f.hom := { map_nonunit := fun a ha => by convert f.inv.isUnit_map ha
exact (RingHom.congr_fun f.hom_inv_id _).symm
theorem isLocalRingHom_of_iso {R S : CommRingCat} (f : R β‰… S) : IsLocalRingHom f.hom := { map_nonunit := fun a ha => by convert f.inv.isUnit_map ha
Mathlib.Algebra.Category.Ring.Instances.52_0.KsJUUT2FWBN0k2J
theorem isLocalRingHom_of_iso {R S : CommRingCat} (f : R β‰… S) : IsLocalRingHom f.hom
Mathlib_Algebra_Category_Ring_Instances
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊒ (coevaluation K V) 1 = let bV := Basis.ofVectorSpace K V; βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), bV i βŠ—β‚œ[K] Basis.coord bV i
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by
simp only [coevaluation, id]
theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by
Mathlib.LinearAlgebra.Coevaluation.48_0.2OSHLJKAlhD35xC
theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV
Mathlib_LinearAlgebra_Coevaluation
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊒ ((Basis.constr (Basis.singleton Unit K) K) fun x => βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) i βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) i) 1 = βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) i βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) i
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id]
rw [(Basis.singleton Unit K).constr_apply_fintype K]
theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id]
Mathlib.LinearAlgebra.Coevaluation.48_0.2OSHLJKAlhD35xC
theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV
Mathlib_LinearAlgebra_Coevaluation
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊒ βˆ‘ i : Unit, (Basis.equivFun (Basis.singleton Unit K)) 1 i β€’ βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) i βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) i = βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) i βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) i
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K]
simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton]
theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K]
Mathlib.LinearAlgebra.Coevaluation.48_0.2OSHLJKAlhD35xC
theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV
Mathlib_LinearAlgebra_Coevaluation
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊒ LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V) = ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V))
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by
letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V) = ↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V))
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
apply TensorProduct.ext
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V)) = LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V)))
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext
apply (Basis.ofVectorSpace K V).dualBasis.ext
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ βˆ€ (i : ↑(Basis.ofVectorSpaceIndex K V)), (LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) i) = (LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V)))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) i)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext;
intro j
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext;
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j) = (LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V)))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j;
apply LinearMap.ext_ring
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j;
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ ((LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j)) 1 = ((LinearMap.comprβ‚‚ (mk K (Module.Dual K V) K) (↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V)))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j)) 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring
rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.rTensor (Module.Dual K V) (contractLeft K V) βˆ˜β‚— ↑(LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) βˆ˜β‚— LinearMap.lTensor (Module.Dual K V) (coevaluation K V)) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] 1) = (↑(LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) βˆ˜β‚— ↑(TensorProduct.rid K (Module.Dual K V))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] 1)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply]
simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) ((LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) ((LinearMap.lTensor (Module.Dual K V) (coevaluation K V)) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] 1))) = (LinearEquiv.symm (TensorProduct.lid K (Module.Dual K V))) ((TensorProduct.rid K (Module.Dual K V)) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] 1))
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
rw [rid_tmul, one_smul, lid_symm_apply]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) ((LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) ((LinearMap.lTensor (Module.Dual K V) (coevaluation K V)) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] 1))) = 1 βŠ—β‚œ[K] (Basis.dualBasis (Basis.ofVectorSpace K V)) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply]
simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) ((LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) i βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) i)) = 1 βŠ—β‚œ[K] (Basis.dualBasis (Basis.ofVectorSpace K V)) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one]
rw [TensorProduct.tmul_sum, map_sum]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), (LinearEquiv.symm (TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V))) ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] (Basis.ofVectorSpace K V) x βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x)) = 1 βŠ—β‚œ[K] (Basis.dualBasis (Basis.ofVectorSpace K V)) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum];
simp only [assoc_symm_tmul]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum];
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), ((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] (Basis.ofVectorSpace K V) x) βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x) = 1 βŠ—β‚œ[K] (Basis.dualBasis (Basis.ofVectorSpace K V)) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul]
rw [map_sum]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), (LinearMap.rTensor (Module.Dual K V) (contractLeft K V)) (((Basis.dualBasis (Basis.ofVectorSpace K V)) j βŠ—β‚œ[K] (Basis.ofVectorSpace K V) x) βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x) = 1 βŠ—β‚œ[K] (Basis.dualBasis (Basis.ofVectorSpace K V)) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum];
simp only [LinearMap.rTensor_tmul, contractLeft_apply]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum];
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), ((Basis.dualBasis (Basis.ofVectorSpace K V)) j) ((Basis.ofVectorSpace K V) x) βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x = 1 βŠ—β‚œ[K] (Basis.dualBasis (Basis.ofVectorSpace K V)) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply]
simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), if x = j then 1 βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x else 0) = 1 βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul]
rw [Finset.sum_ite_eq']
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul]
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (if j ∈ Finset.univ then 1 βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) j else 0) = 1 βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) j
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq'];
simp only [Finset.mem_univ, if_true]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq'];
Mathlib.LinearAlgebra.Coevaluation.60_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V ⊒ LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V) = ↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by
letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V) = ↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
apply TensorProduct.ext
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V)
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ LinearMap.comprβ‚‚ (mk K K V) (LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V)) = LinearMap.comprβ‚‚ (mk K K V) (↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V))
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext
apply LinearMap.ext_ring
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.comprβ‚‚ (mk K K V) (LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V))) 1 = (LinearMap.comprβ‚‚ (mk K K V) (↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V))) 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring;
apply (Basis.ofVectorSpace K V).ext
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring;
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) ⊒ βˆ€ (i : ↑(Basis.ofVectorSpaceIndex K V)), ((LinearMap.comprβ‚‚ (mk K K V) (LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V))) 1) ((Basis.ofVectorSpace K V) i) = ((LinearMap.comprβ‚‚ (mk K K V) (↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V))) 1) ((Basis.ofVectorSpace K V) i)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext;
intro j
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext;
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ ((LinearMap.comprβ‚‚ (mk K K V) (LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V))) 1) ((Basis.ofVectorSpace K V) j) = ((LinearMap.comprβ‚‚ (mk K K V) (↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V))) 1) ((Basis.ofVectorSpace K V) j)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j
rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.lTensor V (contractLeft K V) βˆ˜β‚— ↑(TensorProduct.assoc K V (Module.Dual K V) V) βˆ˜β‚— LinearMap.rTensor V (coevaluation K V)) (1 βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j) = (↑(LinearEquiv.symm (TensorProduct.rid K V)) βˆ˜β‚— ↑(TensorProduct.lid K V)) (1 βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j)
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply]
simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.lTensor V (contractLeft K V)) ((TensorProduct.assoc K V (Module.Dual K V) V) ((LinearMap.rTensor V (coevaluation K V)) (1 βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j))) = (LinearEquiv.symm (TensorProduct.rid K V)) ((TensorProduct.lid K V) (1 βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j))
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
rw [lid_tmul, one_smul, rid_symm_apply]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.lTensor V (contractLeft K V)) ((TensorProduct.assoc K V (Module.Dual K V) V) ((LinearMap.rTensor V (coevaluation K V)) (1 βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j))) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply]
simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.lTensor V (contractLeft K V)) ((TensorProduct.assoc K V (Module.Dual K V) V) ((βˆ‘ i : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) i βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) i) βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j)) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one]
rw [TensorProduct.sum_tmul, map_sum]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.lTensor V (contractLeft K V)) (βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), (TensorProduct.assoc K V (Module.Dual K V) V) (((Basis.ofVectorSpace K V) x βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x) βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j)) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum];
simp only [assoc_tmul]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum];
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (LinearMap.lTensor V (contractLeft K V)) (βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) x βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul]
rw [map_sum]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), (LinearMap.lTensor V (contractLeft K V)) ((Basis.ofVectorSpace K V) x βŠ—β‚œ[K] Basis.coord (Basis.ofVectorSpace K V) x βŠ—β‚œ[K] (Basis.ofVectorSpace K V) j) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum];
simp only [LinearMap.lTensor_tmul, contractLeft_apply]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum];
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), (Basis.ofVectorSpace K V) x βŠ—β‚œ[K] (Basis.coord (Basis.ofVectorSpace K V) x) ((Basis.ofVectorSpace K V) j) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum]; simp only [LinearMap.lTensor_tmul, contractLeft_apply]
simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum]; simp only [LinearMap.lTensor_tmul, contractLeft_apply]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (βˆ‘ x : ↑(Basis.ofVectorSpaceIndex K V), if j = x then (Basis.ofVectorSpace K V) x βŠ—β‚œ[K] 1 else 0) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum]; simp only [LinearMap.lTensor_tmul, contractLeft_apply] simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite]
rw [Finset.sum_ite_eq]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum]; simp only [LinearMap.lTensor_tmul, contractLeft_apply] simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite]
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
case H.h K : Type u inst✝³ : Field K V : Type v inst✝² : AddCommGroup V inst✝¹ : Module K V inst✝ : FiniteDimensional K V this : DecidableEq ↑(Basis.ofVectorSpaceIndex K V) := Classical.decEq ↑(Basis.ofVectorSpaceIndex K V) j : ↑(Basis.ofVectorSpaceIndex K V) ⊒ (if j ∈ Finset.univ then (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1 else 0) = (Basis.ofVectorSpace K V) j βŠ—β‚œ[K] 1
/- Copyright (c) 2021 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer -/ import Mathlib.LinearAlgebra.Contraction #align_import linear_algebra.coevaluation from "leanprover-community/mathlib"@"d6814c584384ddf2825ff038e868451a7c956f31" /-! # The coevaluation map on finite dimensional vector spaces Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map from `K` to `V βŠ— Dual K V` which corresponds to the identity function on `V`. ## Tags coevaluation, dual module, tensor product ## Future work * Prove that this is independent of the choice of basis on `V`. -/ noncomputable section section coevaluation open TensorProduct FiniteDimensional open TensorProduct BigOperators universe u v variable (K : Type u) [Field K] variable (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] /-- The coevaluation map is a linear map from a field `K` to a finite dimensional vector space `V`. -/ def coevaluation : K β†’β‚—[K] V βŠ—[K] Module.Dual K V := let bV := Basis.ofVectorSpace K V (Basis.singleton Unit K).constr K fun _ => βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i #align coevaluation coevaluation theorem coevaluation_apply_one : (coevaluation K V) (1 : K) = let bV := Basis.ofVectorSpace K V βˆ‘ i : Basis.ofVectorSpaceIndex K V, bV i βŠ—β‚œ[K] bV.coord i := by simp only [coevaluation, id] rw [(Basis.singleton Unit K).constr_apply_fintype K] simp only [Fintype.univ_punit, Finset.sum_const, one_smul, Basis.singleton_repr, Basis.equivFun_apply, Basis.coe_ofVectorSpace, one_nsmul, Finset.card_singleton] #align coevaluation_apply_one coevaluation_apply_one open TensorProduct /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation : (contractLeft K V).rTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).symm.toLinearMap βˆ˜β‚— (coevaluation K V).lTensor (Module.Dual K V) = (TensorProduct.lid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.rid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply (Basis.ofVectorSpace K V).dualBasis.ext; intro j; apply LinearMap.ext_ring rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [rid_tmul, one_smul, lid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.lTensor_tmul, coevaluation_apply_one] rw [TensorProduct.tmul_sum, map_sum]; simp only [assoc_symm_tmul] rw [map_sum]; simp only [LinearMap.rTensor_tmul, contractLeft_apply] simp only [Basis.coe_dualBasis, Basis.coord_apply, Basis.repr_self_apply, TensorProduct.ite_tmul] rw [Finset.sum_ite_eq']; simp only [Finset.mem_univ, if_true] #align contract_left_assoc_coevaluation contractLeft_assoc_coevaluation /-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum]; simp only [LinearMap.lTensor_tmul, contractLeft_apply] simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite] rw [Finset.sum_ite_eq];
simp only [Finset.mem_univ, if_true]
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap := by letI := Classical.decEq (Basis.ofVectorSpaceIndex K V) apply TensorProduct.ext apply LinearMap.ext_ring; apply (Basis.ofVectorSpace K V).ext; intro j rw [LinearMap.comprβ‚‚_apply, LinearMap.comprβ‚‚_apply, TensorProduct.mk_apply] simp only [LinearMap.coe_comp, Function.comp_apply, LinearEquiv.coe_toLinearMap] rw [lid_tmul, one_smul, rid_symm_apply] simp only [LinearEquiv.coe_toLinearMap, LinearMap.rTensor_tmul, coevaluation_apply_one] rw [TensorProduct.sum_tmul, map_sum]; simp only [assoc_tmul] rw [map_sum]; simp only [LinearMap.lTensor_tmul, contractLeft_apply] simp only [Basis.coord_apply, Basis.repr_self_apply, TensorProduct.tmul_ite] rw [Finset.sum_ite_eq];
Mathlib.LinearAlgebra.Coevaluation.80_0.2OSHLJKAlhD35xC
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see `CategoryTheory.Monoidal.Rigid`. -/ theorem contractLeft_assoc_coevaluation' : (contractLeft K V).lTensor _ βˆ˜β‚— (TensorProduct.assoc K _ _ _).toLinearMap βˆ˜β‚— (coevaluation K V).rTensor V = (TensorProduct.rid K _).symm.toLinearMap βˆ˜β‚— (TensorProduct.lid K _).toLinearMap
Mathlib_LinearAlgebra_Coevaluation
π•œ : Type u_1 inst✝⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace π•œ E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E h : HasFPowerSeriesAt f p x ⊒ HasStrictFDerivAt f ((continuousMultilinearCurryFin1 π•œ E F) (p 1)) x
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by
refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _)
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by
Mathlib.Analysis.Calculus.FDeriv.Analytic.36_0.XLJ3uW4JYwyXQcn
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace π•œ E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E h : HasFPowerSeriesAt f p x ⊒ (fun y => β€–y - (x, x)β€– * β€–y.1 - y.2β€–) =o[nhds (x, x)] fun x => β€–x.1 - x.2β€–
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _)
refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _)
Mathlib.Analysis.Calculus.FDeriv.Analytic.36_0.XLJ3uW4JYwyXQcn
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace π•œ E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E h : HasFPowerSeriesAt f p x ⊒ Tendsto (fun y => β€–y - (x, x)β€–) (nhds (x, x)) (nhds 0)
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩
refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩
Mathlib.Analysis.Calculus.FDeriv.Analytic.36_0.XLJ3uW4JYwyXQcn
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁴ : NontriviallyNormedField π•œ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace π•œ E F : Type u_3 inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E h : HasFPowerSeriesAt f p x ⊒ β€–id (x, x) - (x, x)β€– = 0
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _
rw [_root_.id, sub_self, norm_zero]
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _
Mathlib.Analysis.Calculus.FDeriv.Analytic.36_0.XLJ3uW4JYwyXQcn
theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r ⊒ HasFPowerSeriesOnBall (_root_.fderiv π•œ f) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by
suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r A : HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r ⊒ HasFPowerSeriesOnBall (_root_.fderiv π•œ f) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β·
apply A.congr
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β·
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r A : HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r ⊒ Set.EqOn (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (_root_.fderiv π•œ f) (EMetric.ball x r)
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr
intro z hz
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r A : HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r z : E hz : z ∈ EMetric.ball x r ⊒ (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) z = _root_.fderiv π•œ f z
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz
dsimp
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r A : HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r z : E hz : z ∈ EMetric.ball x r ⊒ (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1) = _root_.fderiv π•œ f z
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp
rw [← h.fderiv_eq, add_sub_cancel'_right]
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r A : HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r z : E hz : z ∈ EMetric.ball x r ⊒ ↑‖z - xβ€–β‚Š < r
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right]
simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right]
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
case A π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r ⊒ HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz
suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
case A π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r B : HasFPowerSeriesOnBall (fun z => FormalMultilinearSeries.changeOrigin p (z - x) 1) (FormalMultilinearSeries.changeOriginSeries p 1) x r ⊒ HasFPowerSeriesOnBall (fun z => (continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p (z - x) 1)) (ContinuousLinearMap.compFormalMultilinearSeries (↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryFin1 π•œ E F).toLinearEquiv)) (FormalMultilinearSeries.changeOriginSeries p 1)) x r case B π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r ⊒ HasFPowerSeriesOnBall (fun z => FormalMultilinearSeries.changeOrigin p (z - x) 1) (FormalMultilinearSeries.changeOriginSeries p 1) x r
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r
exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
case B π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : HasFPowerSeriesOnBall f p x r ⊒ HasFPowerSeriesOnBall (fun z => FormalMultilinearSeries.changeOrigin p (z - x) 1) (FormalMultilinearSeries.changeOriginSeries p 1) x r
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B
simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B
Mathlib.Analysis.Calculus.FDeriv.Analytic.87_0.XLJ3uW4JYwyXQcn
/-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s ⊒ AnalyticOn π•œ (_root_.fderiv π•œ f) s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by
intro y hy
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by
Mathlib.Analysis.Calculus.FDeriv.Analytic.118_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s y : E hy : y ∈ s ⊒ AnalyticAt π•œ (_root_.fderiv π•œ f) y
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy
rcases h y hy with ⟨p, r, hp⟩
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy
Mathlib.Analysis.Calculus.FDeriv.Analytic.118_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case intro.intro π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p✝ : FormalMultilinearSeries π•œ E F r✝ : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s y : E hy : y ∈ s p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ hp : HasFPowerSeriesOnBall f p y r ⊒ AnalyticAt π•œ (_root_.fderiv π•œ f) y
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩
exact hp.fderiv.analyticAt
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩
Mathlib.Analysis.Calculus.FDeriv.Analytic.118_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• ⊒ AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by
induction' n with n IH
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case zero π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s ⊒ AnalyticOn π•œ (_root_.iteratedFDeriv π•œ Nat.zero f) s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β·
rw [iteratedFDeriv_zero_eq_comp]
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β·
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case zero π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s ⊒ AnalyticOn π•œ (⇑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 π•œ E F)) ∘ f) s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp]
exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp]
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case succ π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ AnalyticOn π•œ (_root_.iteratedFDeriv π•œ (Nat.succ n) f) s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β·
rw [iteratedFDeriv_succ_eq_comp_left]
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β·
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case succ π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ AnalyticOn π•œ (⇑(continuousMultilinearCurryLeftEquiv π•œ (fun x => E) F) ∘ _root_.fderiv π•œ (_root_.iteratedFDeriv π•œ n f)) s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined.
convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined.
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case h.e'_9.h.e'_4 π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ ⇑(continuousMultilinearCurryLeftEquiv π•œ (fun x => E) F) = ⇑?g case g π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ (E β†’L[π•œ] ContinuousMultilinearMap π•œ (fun i => E) F) β†’L[π•œ] ContinuousMultilinearMap π•œ (fun x => E) F
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv
case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F)
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ (E β†’L[π•œ] ContinuousMultilinearMap π•œ (fun i => E) F) β†’L[π•œ] ContinuousMultilinearMap π•œ (fun x => E) F
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv
case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F)
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ (E β†’L[π•œ] ContinuousMultilinearMap π•œ (fun i => E) F) β†’L[π•œ] ContinuousMultilinearMap π•œ (fun x => E) F
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g =>
exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F)
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g =>
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case h.e'_9.h.e'_4 π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„• IH : AnalyticOn π•œ (_root_.iteratedFDeriv π•œ n f) s ⊒ ⇑(continuousMultilinearCurryLeftEquiv π•œ (fun x => E) F) = ⇑↑(ContinuousLinearEquiv.mk (continuousMultilinearCurryLeftEquiv π•œ (fun x => E) F).toLinearEquiv)
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F)
rfl
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F)
Mathlib.Analysis.Calculus.FDeriv.Analytic.126_0.XLJ3uW4JYwyXQcn
/-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž ⊒ ContDiffOn π•œ n f s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by
let t := { x | AnalyticAt π•œ f x }
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} ⊒ ContDiffOn π•œ n f s
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x }
suffices : ContDiffOn π•œ n f t
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x }
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic
π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} this : ContDiffOn π•œ n f t ⊒ ContDiffOn π•œ n f s case this π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} ⊒ ContDiffOn π•œ n f t
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t;
exact this.mono h
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t;
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case this π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} ⊒ ContDiffOn π•œ n f t
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h
have H : AnalyticOn π•œ f t := fun x hx => hx
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case this π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} H : AnalyticOn π•œ f t ⊒ ContDiffOn π•œ n f t
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h have H : AnalyticOn π•œ f t := fun x hx => hx
have t_open : IsOpen t := isOpen_analyticAt π•œ f
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h have H : AnalyticOn π•œ f t := fun x hx => hx
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case this π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} H : AnalyticOn π•œ f t t_open : IsOpen t ⊒ ContDiffOn π•œ n f t
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h have H : AnalyticOn π•œ f t := fun x hx => hx have t_open : IsOpen t := isOpen_analyticAt π•œ f
apply contDiffOn_of_continuousOn_differentiableOn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h have H : AnalyticOn π•œ f t := fun x hx => hx have t_open : IsOpen t := isOpen_analyticAt π•œ f
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic
case this.Hcont π•œ : Type u_1 inst✝⁡ : NontriviallyNormedField π•œ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace π•œ E F : Type u_3 inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace π•œ F p : FormalMultilinearSeries π•œ E F r : ℝβ‰₯0∞ f : E β†’ F x : E s : Set E inst✝ : CompleteSpace F h : AnalyticOn π•œ f s n : β„•βˆž t : Set E := {x | AnalyticAt π•œ f x} H : AnalyticOn π•œ f t t_open : IsOpen t ⊒ βˆ€ (m : β„•), ↑m ≀ n β†’ ContinuousOn (fun x => iteratedFDerivWithin π•œ m f t x) t
/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import Mathlib.Analysis.Analytic.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.ContDiff.Defs #align_import analysis.calculus.fderiv_analytic from "leanprover-community/mathlib"@"3bce8d800a6f2b8f63fe1e588fd76a9ff4adcebe" /-! # Frechet derivatives of analytic functions. A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of `deriv` when the domain is 1-dimensional. -/ open Filter Asymptotics open scoped ENNReal variable {π•œ : Type*} [NontriviallyNormedField π•œ] variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F] section fderiv variable {p : FormalMultilinearSeries π•œ E F} {r : ℝβ‰₯0∞} variable {f : E β†’ F} {x : E} {s : Set E} theorem HasFPowerSeriesAt.hasStrictFDerivAt (h : HasFPowerSeriesAt f p x) : HasStrictFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := by refine' h.isBigO_image_sub_norm_mul_norm_sub.trans_isLittleO (IsLittleO.of_norm_right _) refine' isLittleO_iff_exists_eq_mul.2 ⟨fun y => β€–y - (x, x)β€–, _, EventuallyEq.rfl⟩ refine' (continuous_id.sub continuous_const).norm.tendsto' _ _ _ rw [_root_.id, sub_self, norm_zero] #align has_fpower_series_at.has_strict_fderiv_at HasFPowerSeriesAt.hasStrictFDerivAt theorem HasFPowerSeriesAt.hasFDerivAt (h : HasFPowerSeriesAt f p x) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p 1)) x := h.hasStrictFDerivAt.hasFDerivAt #align has_fpower_series_at.has_fderiv_at HasFPowerSeriesAt.hasFDerivAt theorem HasFPowerSeriesAt.differentiableAt (h : HasFPowerSeriesAt f p x) : DifferentiableAt π•œ f x := h.hasFDerivAt.differentiableAt #align has_fpower_series_at.differentiable_at HasFPowerSeriesAt.differentiableAt theorem AnalyticAt.differentiableAt : AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x | ⟨_, hp⟩ => hp.differentiableAt #align analytic_at.differentiable_at AnalyticAt.differentiableAt theorem AnalyticAt.differentiableWithinAt (h : AnalyticAt π•œ f x) : DifferentiableWithinAt π•œ f s x := h.differentiableAt.differentiableWithinAt #align analytic_at.differentiable_within_at AnalyticAt.differentiableWithinAt theorem HasFPowerSeriesAt.fderiv_eq (h : HasFPowerSeriesAt f p x) : fderiv π•œ f x = continuousMultilinearCurryFin1 π•œ E F (p 1) := h.hasFDerivAt.fderiv #align has_fpower_series_at.fderiv_eq HasFPowerSeriesAt.fderiv_eq theorem HasFPowerSeriesOnBall.differentiableOn [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : DifferentiableOn π•œ f (EMetric.ball x r) := fun _ hy => (h.analyticAt_of_mem hy).differentiableWithinAt #align has_fpower_series_on_ball.differentiable_on HasFPowerSeriesOnBall.differentiableOn theorem AnalyticOn.differentiableOn (h : AnalyticOn π•œ f s) : DifferentiableOn π•œ f s := fun y hy => (h y hy).differentiableWithinAt #align analytic_on.differentiable_on AnalyticOn.differentiableOn theorem HasFPowerSeriesOnBall.hasFDerivAt [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFDerivAt f (continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1)) (x + y) := (h.changeOrigin hy).hasFPowerSeriesAt.hasFDerivAt #align has_fpower_series_on_ball.has_fderiv_at HasFPowerSeriesOnBall.hasFDerivAt theorem HasFPowerSeriesOnBall.fderiv_eq [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : fderiv π•œ f (x + y) = continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin y 1) := (h.hasFDerivAt hy).fderiv #align has_fpower_series_on_ball.fderiv_eq HasFPowerSeriesOnBall.fderiv_eq /-- If a function has a power series on a ball, then so does its derivative. -/ theorem HasFPowerSeriesOnBall.fderiv [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) : HasFPowerSeriesOnBall (fderiv π•œ f) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r := by suffices A : HasFPowerSeriesOnBall (fun z => continuousMultilinearCurryFin1 π•œ E F (p.changeOrigin (z - x) 1)) ((continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F).compFormalMultilinearSeries (p.changeOriginSeries 1)) x r Β· apply A.congr intro z hz dsimp rw [← h.fderiv_eq, add_sub_cancel'_right] simpa only [edist_eq_coe_nnnorm_sub, EMetric.mem_ball] using hz suffices B : HasFPowerSeriesOnBall (fun z => p.changeOrigin (z - x) 1) (p.changeOriginSeries 1) x r exact (continuousMultilinearCurryFin1 π•œ E F).toContinuousLinearEquiv.toContinuousLinearMap.comp_hasFPowerSeriesOnBall B simpa using ((p.hasFPowerSeriesOnBall_changeOrigin 1 (h.r_pos.trans_le h.r_le)).mono h.r_pos h.r_le).comp_sub x #align has_fpower_series_on_ball.fderiv HasFPowerSeriesOnBall.fderiv /-- If a function is analytic on a set `s`, so is its FrΓ©chet derivative. -/ theorem AnalyticOn.fderiv [CompleteSpace F] (h : AnalyticOn π•œ f s) : AnalyticOn π•œ (fderiv π•œ f) s := by intro y hy rcases h y hy with ⟨p, r, hp⟩ exact hp.fderiv.analyticAt #align analytic_on.fderiv AnalyticOn.fderiv /-- If a function is analytic on a set `s`, so are its successive FrΓ©chet derivative. -/ theorem AnalyticOn.iteratedFDeriv [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) : AnalyticOn π•œ (iteratedFDeriv π•œ n f) s := by induction' n with n IH Β· rw [iteratedFDeriv_zero_eq_comp] exact ((continuousMultilinearCurryFin0 π•œ E F).symm : F β†’L[π•œ] E[Γ—0]β†’L[π•œ] F).comp_analyticOn h Β· rw [iteratedFDeriv_succ_eq_comp_left] -- Porting note: for reasons that I do not understand at all, `?g` cannot be inlined. convert @ContinuousLinearMap.comp_analyticOn π•œ E ?_ (ContinuousMultilinearMap π•œ (fun _ : Fin (n + 1) ↦ E) F) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ s ?g IH.fderiv case g => exact ↑(continuousMultilinearCurryLeftEquiv π•œ (fun _ : Fin (n + 1) => E) F) rfl #align analytic_on.iterated_fderiv AnalyticOn.iteratedFDeriv /-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h have H : AnalyticOn π•œ f t := fun x hx => hx have t_open : IsOpen t := isOpen_analyticAt π•œ f apply contDiffOn_of_continuousOn_differentiableOn Β·
rintro m -
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s := by let t := { x | AnalyticAt π•œ f x } suffices : ContDiffOn π•œ n f t; exact this.mono h have H : AnalyticOn π•œ f t := fun x hx => hx have t_open : IsOpen t := isOpen_analyticAt π•œ f apply contDiffOn_of_continuousOn_differentiableOn Β·
Mathlib.Analysis.Calculus.FDeriv.Analytic.143_0.XLJ3uW4JYwyXQcn
/-- An analytic function is infinitely differentiable. -/ theorem AnalyticOn.contDiffOn [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} : ContDiffOn π•œ n f s
Mathlib_Analysis_Calculus_FDeriv_Analytic