state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ n : ↥N hn : n • MulAut.conjNormal g • P = P ⊢ g ∈ normalizer (map (Subgroup.subtype N) ↑P) ⊔ N
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P
rw [← inv_mul_cancel_left (↑n) g, sup_comm]
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ n : ↥N hn : n • MulAut.conjNormal g • P = P ⊢ (↑n)⁻¹ * (↑n * g) ∈ N ⊔ normalizer (map (Subgroup.subtype N) ↑P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm]
apply mul_mem_sup (N.inv_mem n.2)
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm]
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ n : ↥N hn : n • MulAut.conjNormal g • P = P ⊢ ↑n * g ∈ normalizer (map (Subgroup.subtype N) ↑P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2)
rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2)
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ n : ↥N hn : map ((MulDistribMulAction.toMonoidEnd (MulAut ↥N) ↥N) (MulAut.conjNormal (↑n * g))) ↑P = ↑P ⊢ ↑n * g ∈ normalizer (map (Subgroup.subtype N) ↑P)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn
refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ n : ↥N hn : map ((MulDistribMulAction.toMonoidEnd (MulAut ↥N) ↥N) (MulAut.conjNormal (↑n * g))) ↑P = ↑P x : G ⊢ (MulEquiv.toMonoidHom (MulAut.conj (↑n * g))) x ∈ map (MulEquiv.toMonoidHom (MulAut.conj (↑n * g))) (map (Subgroup.subtype N) ↑P) ↔ ↑n * g * x * (↑n * g)⁻¹ ∈ map (Subgroup.subtype N) ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _
rw [map_map, ← congr_arg (map N.subtype) hn, map_map]
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
case intro p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p ↥N g : G x✝ : g ∈ ⊤ n : ↥N hn : map ((MulDistribMulAction.toMonoidEnd (MulAut ↥N) ↥N) (MulAut.conjNormal (↑n * g))) ↑P = ↑P x : G ⊢ (MulEquiv.toMonoidHom (MulAut.conj (↑n * g))) x ∈ map (MonoidHom.comp (MulEquiv.toMonoidHom (MulAut.conj (↑n * g))) (Subgroup.subtype N)) ↑P ↔ ↑n * g * x * (↑n * g)⁻¹ ∈ map (MonoidHom.comp (Subgroup.subtype N) ((MulDistribMulAction.toMonoidEnd (MulAut ↥N) ↥N) (MulAut.conjNormal (↑n * g)))) ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map]
rfl
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map]
Mathlib.GroupTheory.Sylow.457_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
p✝ : ℕ G : Type u_1 inst✝³ : Group G p : ℕ inst✝² : Fact (Nat.Prime p) N : Subgroup G inst✝¹ : Normal N inst✝ : Finite (Sylow p ↥N) P : Sylow p G hP : ↑P ≤ N ⊢ normalizer ↑P ⊔ N = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by
rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP]
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by
Mathlib.GroupTheory.Sylow.477_0.KwMUNfT2GXiDwTx
/-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G s : Subgroup G t : Set (G ⧸ s) ⊢ Fintype.card ↑(mk ⁻¹' t) = Fintype.card ↥s * Fintype.card ↑t
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by
rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)]
theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by
Mathlib.GroupTheory.Sylow.497_0.KwMUNfT2GXiDwTx
theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ↑x ∈ MulAction.fixedPoints (↥H) (G ⧸ H) ha : ∀ {y : G ⧸ H}, y ∈ orbit ↥H ↑x → y = ↑x n : G hn : n ∈ H this : (n⁻¹ * x)⁻¹ * x ∈ H ⊢ x⁻¹ * n * x⁻¹⁻¹ ∈ H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by
rw [mul_inv_rev, inv_inv] at this
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by
Mathlib.GroupTheory.Sylow.503_0.KwMUNfT2GXiDwTx
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ↑x ∈ MulAction.fixedPoints (↥H) (G ⧸ H) ha : ∀ {y : G ⧸ H}, y ∈ orbit ↥H ↑x → y = ↑x n : G hn : n ∈ H this : x⁻¹ * n * x ∈ H ⊢ x⁻¹ * n * x⁻¹⁻¹ ∈ H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this
convert this
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this
Mathlib.GroupTheory.Sylow.503_0.KwMUNfT2GXiDwTx
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H
Mathlib_GroupTheory_Sylow
case h.e'_4.h.e'_6 G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ↑x ∈ MulAction.fixedPoints (↥H) (G ⧸ H) ha : ∀ {y : G ⧸ H}, y ∈ orbit ↥H ↑x → y = ↑x n : G hn : n ∈ H this : x⁻¹ * n * x ∈ H ⊢ x⁻¹⁻¹ = x
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this
rw [inv_inv]
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this
Mathlib.GroupTheory.Sylow.503_0.KwMUNfT2GXiDwTx
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H y✝ : G ⧸ H y : G hy : Quotient.mk'' y ∈ orbit ↥H ↑x b : G hb₁ : b ∈ H hb₂✝ : (fun m => m • ↑x) { val := b, property := hb₁ } = Quotient.mk'' y hb₂ : (b * x)⁻¹ * y ∈ H ⊢ b⁻¹ * (x * (y⁻¹ * x)⁻¹ * x⁻¹) ∈ H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by
rw [hx] at hb₂
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by
Mathlib.GroupTheory.Sylow.503_0.KwMUNfT2GXiDwTx
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x : G hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H y✝ : G ⧸ H y : G hy : Quotient.mk'' y ∈ orbit ↥H ↑x b : G hb₁ : b ∈ H hb₂✝ : (fun m => m • ↑x) { val := b, property := hb₁ } = Quotient.mk'' y hb₂ : x * ((b * x)⁻¹ * y) * x⁻¹ ∈ H ⊢ b⁻¹ * (x * (y⁻¹ * x)⁻¹ * x⁻¹) ∈ H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂;
simpa [mul_inv_rev, mul_assoc] using hb₂
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂;
Mathlib.GroupTheory.Sylow.503_0.KwMUNfT2GXiDwTx
theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H ⊢ ∀ (x y : Subtype ↑(normalizer H)), Setoid.r x y ↔ ↑x ≈ ↑y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by
intros
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by
Mathlib.GroupTheory.Sylow.526_0.KwMUNfT2GXiDwTx
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x✝ y✝ : Subtype ↑(normalizer H) ⊢ Setoid.r x✝ y✝ ↔ ↑x✝ ≈ ↑y✝
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros
dsimp only [instHasEquiv]
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros
Mathlib.GroupTheory.Sylow.526_0.KwMUNfT2GXiDwTx
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x✝ y✝ : Subtype ↑(normalizer H) ⊢ Setoid.r x✝ y✝ ↔ Setoid.r ↑x✝ ↑y✝
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv]
rw [leftRel_apply (α := normalizer H), leftRel_apply]
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv]
Mathlib.GroupTheory.Sylow.526_0.KwMUNfT2GXiDwTx
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G H : Subgroup G inst✝ : Finite ↑↑H x✝ y✝ : Subtype ↑(normalizer H) ⊢ x✝⁻¹ * y✝ ∈ comap (Subgroup.subtype (normalizer H)) H ↔ (↑x✝)⁻¹ * ↑y✝ ∈ H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply]
rfl
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply]
Mathlib.GroupTheory.Sylow.526_0.KwMUNfT2GXiDwTx
/-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card ↥H = p ^ n ⊢ Fintype.card (↥(normalizer H) ⧸ comap (Subgroup.subtype (normalizer H)) H) ≡ Fintype.card (G ⧸ H) [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by
rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)]
/-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by
Mathlib.GroupTheory.Sylow.540_0.KwMUNfT2GXiDwTx
/-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p]
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card ↥H = p ^ n ⊢ Fintype.card ↑(MulAction.fixedPoints (↥H) (G ⧸ H)) ≡ Fintype.card (G ⧸ H) [MOD p]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)]
exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm
/-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)]
Mathlib.GroupTheory.Sylow.540_0.KwMUNfT2GXiDwTx
/-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p]
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card ↥H = p ^ n ⊢ Fintype.card ↥(normalizer H) ≡ Fintype.card G [MOD p ^ (n + 1)]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by
have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by
Mathlib.GroupTheory.Sylow.550_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)]
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card ↥H = p ^ n this : ↥(subgroupOf H (normalizer H)) ≃ ↥H ⊢ Fintype.card ↥(normalizer H) ≡ Fintype.card G [MOD p ^ (n + 1)]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv
rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv
Mathlib.GroupTheory.Sylow.550_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)]
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) H : Subgroup G hH : Fintype.card ↥H = p ^ n this : ↥(subgroupOf H (normalizer H)) ≃ ↥H ⊢ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) * p ^ n ≡ Fintype.card (G ⧸ H) * p ^ n [MOD p * p ^ n]
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ]
exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ]
Mathlib.GroupTheory.Sylow.550_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)]
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) ⊢ Fintype.card (G ⧸ H) * Fintype.card ↥H = s * p * Fintype.card ↥H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by
rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]
/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by
Mathlib.GroupTheory.Sylow.561_0.KwMUNfT2GXiDwTx
/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ comap (Subgroup.subtype (normalizer H)) H) % p ⊢ Fintype.card (↥(normalizer H) ⧸ comap (Subgroup.subtype (normalizer H)) H) % p = 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by
rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm
/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by
Mathlib.GroupTheory.Sylow.561_0.KwMUNfT2GXiDwTx
/-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) ⊢ Fintype.card (G ⧸ H) * Fintype.card ↥H = s * p * Fintype.card ↥H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by
rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p ⊢ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p = 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by
rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) ⊢ Fintype.card ↥(Subgroup.map (Subgroup.subtype (normalizer H)) (comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by
show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1)
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) ⊢ Fintype.card ↥(Subgroup.map (Subgroup.subtype (normalizer H)) (comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1)
suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1)
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) this : Fintype.card ↑(Subtype.val '' ↑(comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1) ⊢ Fintype.card ↥(Subgroup.map (Subgroup.subtype (normalizer H)) (comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by
convert this using 2
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) ⊢ Fintype.card ↑(Subtype.val '' ↑(comap (mk' (subgroupOf H (normalizer H))) (zpowers x))) = p ^ (n + 1)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2
rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) ⊢ Fintype.card ↑↑(comap (mk' (subgroupOf H (normalizer H))) (zpowers x)) = Fintype.card (↥(subgroupOf H (normalizer H)) × ↥(zpowers x))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod]
exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x))
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod]
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) ⊢ H ≤ Subgroup.map (Subgroup.subtype (normalizer H)) (comap (mk' (subgroupOf H (normalizer H))) (zpowers x))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by
intro y hy
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) y : G hy : y ∈ H ⊢ y ∈ Subgroup.map (Subgroup.subtype (normalizer H)) (comap (mk' (subgroupOf H (normalizer H))) (zpowers x))
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy
simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) y : G hy : y ∈ H ⊢ ∃ x_1, ↑x_1 ∈ zpowers x ∧ ↑x_1 = y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap]
refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap]
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) y : G hy : y ∈ H ⊢ (fun x_1 => x ^ x_1) 0 = ↑{ val := y, property := (_ : y ∈ normalizer H) }
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩
dsimp only
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) y : G hy : y ∈ H ⊢ x ^ 0 = ↑{ val := y, property := (_ : y ∈ normalizer H) }
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only
rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p n : ℕ hp : Fact (Nat.Prime p) hdvd : p ^ (n + 1) ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n s : ℕ hs : Fintype.card G = s * p ^ (n + 1) hcard : Fintype.card (G ⧸ H) = s * p hm : s * p % p = Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) % p hm' : p ∣ Fintype.card (↥(normalizer H) ⧸ subgroupOf H (normalizer H)) x : ↥(normalizer H) ⧸ subgroupOf H (normalizer H) hx : orderOf x = p hequiv : ↥H ≃ ↥(subgroupOf H (normalizer H)) y : G hy : y ∈ H ⊢ { val := y, property := (_ : y ∈ normalizer H) } ∈ subgroupOf H (normalizer H)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff]
simpa using hy
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff]
Mathlib.GroupTheory.Sylow.586_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ _hp✝ : Fact (Nat.Prime p) n m : ℕ hdvd : p ^ m ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n hnm✝ : n ≤ m hnm : n < m h0m : 0 < m _wf : m - 1 < m hnm1 : n ≤ m - 1 K : Subgroup G hK : Fintype.card ↥K = p ^ (m - 1) ∧ H ≤ K ⊢ p ^ (m - 1 + 1) ∣ Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by
rwa [tsub_add_cancel_of_le h0m.nat_succ_le]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by
Mathlib.GroupTheory.Sylow.627_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ _hp✝ : Fact (Nat.Prime p) n m : ℕ hdvd : p ^ m ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n hnm✝ : n ≤ m hnm : n < m h0m : 0 < m _wf : m - 1 < m hnm1 : n ≤ m - 1 K : Subgroup G hK : Fintype.card ↥K = p ^ (m - 1) ∧ H ≤ K hdvd' : p ^ (m - 1 + 1) ∣ Fintype.card G K' : Subgroup G hK' : Fintype.card ↥K' = p ^ (m - 1 + 1) ∧ K ≤ K' ⊢ Fintype.card ↥K' = p ^ m
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by
rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by
Mathlib.GroupTheory.Sylow.627_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ _hp✝ : Fact (Nat.Prime p) n m : ℕ hdvd : p ^ m ∣ Fintype.card G H : Subgroup G hH : Fintype.card ↥H = p ^ n hnm✝ : n ≤ m hnm : n = m ⊢ Fintype.card ↥H = p ^ m ∧ H ≤ H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by
simp [hH, hnm]
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by
Mathlib.GroupTheory.Sylow.627_0.KwMUNfT2GXiDwTx
/-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p n : ℕ inst✝ : Fact (Nat.Prime p) hdvd : p ^ n ∣ Fintype.card G ⊢ 1 = p ^ 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by
simp
/-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by
Mathlib.GroupTheory.Sylow.648_0.KwMUNfT2GXiDwTx
/-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G hn : p ^ n ≤ Nat.card G ⊢ ∃ H, Nat.card ↥H = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by
have : Fact p.Prime := ⟨hp⟩
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G hn : p ^ n ≤ Nat.card G this : Fact (Nat.Prime p) ⊢ ∃ H, Nat.card ↥H = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩
have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos]
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G hn : p ^ n ≤ Nat.card G this : Fact (Nat.Prime p) ⊢ Nat.card G ≠ 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by
linarith [Nat.one_le_pow n p hp.pos]
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G hn : p ^ n ≤ Nat.card G this✝ : Fact (Nat.Prime p) this : Finite G ⊢ ∃ H, Nat.card ↥H = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos]
cases nonempty_fintype G
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos]
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G hn : p ^ n ≤ Nat.card G this✝ : Fact (Nat.Prime p) this : Finite G val✝ : Fintype G ⊢ ∃ H, Nat.card ↥H = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G
obtain ⟨m, hm⟩ := h.exists_card_eq
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G hn : p ^ n ≤ Nat.card G this✝ : Fact (Nat.Prime p) this : Finite G val✝ : Fintype G m : ℕ hm : Fintype.card G = p ^ m ⊢ ∃ H, Nat.card ↥H = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq
simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G this✝ : Fact (Nat.Prime p) this : Finite G val✝ : Fintype G m : ℕ hm : Fintype.card G = p ^ m hn : p ^ n ≤ Fintype.card G ⊢ ∃ H, Fintype.card ↥H = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢
refine exists_subgroup_card_pow_prime _ ?_
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G this✝ : Fact (Nat.Prime p) this : Finite G val✝ : Fintype G m : ℕ hm : Fintype.card G = p ^ m hn : p ^ n ≤ Fintype.card G ⊢ p ^ n ∣ Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_
rw [hm] at hn ⊢
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G this✝ : Fact (Nat.Prime p) this : Finite G val✝ : Fintype G m : ℕ hm : Fintype.card G = p ^ m hn : p ^ n ≤ p ^ m ⊢ p ^ n ∣ p ^ m
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢
exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢
Mathlib.GroupTheory.Sylow.656_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hn : p ^ n ≤ Nat.card ↥H ⊢ ∃ H' ≤ H, Nat.card ↥H' = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by
obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by
Mathlib.GroupTheory.Sylow.669_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hn : p ^ n ≤ Nat.card ↥H H' : Subgroup ↥H H'card : Nat.card ↥H' = p ^ n ⊢ ∃ H' ≤ H, Nat.card ↥H' = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn
refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn
Mathlib.GroupTheory.Sylow.669_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hn : p ^ n ≤ Nat.card ↥H H' : Subgroup ↥H H'card : Nat.card ↥H' = p ^ n ⊢ Nat.card ↥(Subgroup.map (Subgroup.subtype H) H') = p ^ n
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩
rw [← H'card]
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩
Mathlib.GroupTheory.Sylow.669_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hn : p ^ n ≤ Nat.card ↥H H' : Subgroup ↥H H'card : Nat.card ↥H' = p ^ n ⊢ Nat.card ↥(Subgroup.map (Subgroup.subtype H) H') = Nat.card ↥H'
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card]
let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card]
Mathlib.GroupTheory.Sylow.669_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝ : Group G n p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hn : p ^ n ≤ Nat.card ↥H H' : Subgroup ↥H H'card : Nat.card ↥H' = p ^ n e : ↥H' ≃* ↥(Subgroup.map (Subgroup.subtype H) H') := equivMapOfInjective H' (Subgroup.subtype H) (_ : Injective ⇑(Subgroup.subtype H)) ⊢ Nat.card ↥(Subgroup.map (Subgroup.subtype H) H') = Nat.card ↥H'
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective
exact Nat.card_congr e.symm.toEquiv
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective
Mathlib.GroupTheory.Sylow.669_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝ : Group G k p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hk : k ≤ Nat.card ↥H hk₀ : k ≠ 0 ⊢ ∃ H' ≤ H, Nat.card ↥H' ≤ k ∧ k < p * Nat.card ↥H'
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by
obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by
Mathlib.GroupTheory.Sylow.679_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H'
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝ : Group G k p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hk : k ≤ Nat.card ↥H hk₀ : k ≠ 0 m : ℕ hmk : p ^ m ≤ k hkm : k < p ^ (m + 1) ⊢ ∃ H' ≤ H, Nat.card ↥H' ≤ k ∧ k < p * Nat.card ↥H'
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt
obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk)
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt
Mathlib.GroupTheory.Sylow.679_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H'
Mathlib_GroupTheory_Sylow
case intro.intro.intro.intro G : Type u α : Type v β : Type w inst✝ : Group G k p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hk : k ≤ Nat.card ↥H hk₀ : k ≠ 0 m : ℕ hmk : p ^ m ≤ k hkm : k < p ^ (m + 1) H' : Subgroup G H'H : H' ≤ H H'card : Nat.card ↥H' = p ^ m ⊢ ∃ H' ≤ H, Nat.card ↥H' ≤ k ∧ k < p * Nat.card ↥H'
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk)
refine ⟨H', H'H, ?_⟩
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk)
Mathlib.GroupTheory.Sylow.679_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H'
Mathlib_GroupTheory_Sylow
case intro.intro.intro.intro G : Type u α : Type v β : Type w inst✝ : Group G k p : ℕ hp : Nat.Prime p h : IsPGroup p G H : Subgroup G hk : k ≤ Nat.card ↥H hk₀ : k ≠ 0 m : ℕ hmk : p ^ m ≤ k hkm : k < p ^ (m + 1) H' : Subgroup G H'H : H' ≤ H H'card : Nat.card ↥H' = p ^ m ⊢ Nat.card ↥H' ≤ k ∧ k < p * Nat.card ↥H'
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩
simpa only [pow_succ, H'card] using And.intro hmk hkm
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩
Mathlib.GroupTheory.Sylow.679_0.KwMUNfT2GXiDwTx
/-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H'
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p : ℕ inst✝ : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G ⊢ p ∣ Fintype.card ↥↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by
rw [← pow_one p] at hdvd
theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by
Mathlib.GroupTheory.Sylow.696_0.KwMUNfT2GXiDwTx
theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p : ℕ inst✝ : Fact (Nat.Prime p) P : Sylow p G hdvd : p ^ 1 ∣ Fintype.card G ⊢ p ∣ Fintype.card ↥↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd
have key := P.pow_dvd_card_of_pow_dvd_card hdvd
theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd
Mathlib.GroupTheory.Sylow.696_0.KwMUNfT2GXiDwTx
theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G inst✝¹ : Fintype G p : ℕ inst✝ : Fact (Nat.Prime p) P : Sylow p G hdvd : p ^ 1 ∣ Fintype.card G key : p ^ 1 ∣ Fintype.card ↥↑P ⊢ p ∣ Fintype.card ↥↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd
rwa [pow_one] at key
theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd
Mathlib.GroupTheory.Sylow.696_0.KwMUNfT2GXiDwTx
theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G ⊢ ↑P ≠ ⊥
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by
refine' fun h => hp.out.not_dvd_one _
theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by
Mathlib.GroupTheory.Sylow.710_0.KwMUNfT2GXiDwTx
theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G h : ↑P = ⊥ ⊢ p ∣ 1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _
have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd
theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _
Mathlib.GroupTheory.Sylow.710_0.KwMUNfT2GXiDwTx
theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G hdvd : p ∣ Fintype.card G h : ↑P = ⊥ key : p ∣ Fintype.card ↥↑P ⊢ p ∣ 1
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd
rwa [h, card_bot] at key
theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd
Mathlib.GroupTheory.Sylow.710_0.KwMUNfT2GXiDwTx
theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G ⊢ Fintype.card ↥↑P = p ^ (Nat.factorization (Fintype.card G)) p
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by
obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup'
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by
Mathlib.GroupTheory.Sylow.717_0.KwMUNfT2GXiDwTx
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G n : ℕ heq : Fintype.card ↥↑P = p ^ n ⊢ Fintype.card ↥↑P = p ^ (Nat.factorization (Fintype.card G)) p
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup'
refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p))
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup'
Mathlib.GroupTheory.Sylow.717_0.KwMUNfT2GXiDwTx
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G n : ℕ heq : Fintype.card ↥↑P = p ^ n ⊢ Fintype.card ↥↑P ∣ p ^ (Nat.factorization (Fintype.card G)) p
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p))
rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq]
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p))
Mathlib.GroupTheory.Sylow.717_0.KwMUNfT2GXiDwTx
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G p : ℕ hp : Fact (Nat.Prime p) P : Sylow p G n : ℕ heq : Fintype.card ↥↑P = p ^ n ⊢ Fintype.card ↥↑P ∣ Fintype.card G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq]
exact P.1.card_subgroup_dvd_card
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq]
Mathlib.GroupTheory.Sylow.717_0.KwMUNfT2GXiDwTx
/-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Fintype G p : ℕ inst✝¹ : Fact (Nat.Prime p) H : Subgroup G inst✝ : Fintype ↥H card_eq : Fintype.card ↥H = p ^ (Nat.factorization (Fintype.card G)) p ⊢ ∀ {Q : Subgroup G}, IsPGroup p ↥Q → H ≤ Q → Q = H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by
obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow
/-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by
Mathlib.GroupTheory.Sylow.727_0.KwMUNfT2GXiDwTx
/-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Fintype G p : ℕ inst✝¹ : Fact (Nat.Prime p) H : Subgroup G inst✝ : Fintype ↥H card_eq : Fintype.card ↥H = p ^ (Nat.factorization (Fintype.card G)) p P : Sylow p G hHP : H ≤ ↑P ⊢ ∀ {Q : Subgroup G}, IsPGroup p ↥Q → H ≤ Q → Q = H
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow
exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3
/-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow
Mathlib.GroupTheory.Sylow.727_0.KwMUNfT2GXiDwTx
/-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P ⊢ Unique (Sylow p G)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by
refine { uniq := fun Q ↦ ?_ }
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by
Mathlib.GroupTheory.Sylow.746_0.KwMUNfT2GXiDwTx
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G)
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q : Sylow p G ⊢ Q = default
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ }
obtain ⟨x, h1⟩ := exists_smul_eq G P Q
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ }
Mathlib.GroupTheory.Sylow.746_0.KwMUNfT2GXiDwTx
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q : Sylow p G x : G h1 : x • P = Q ⊢ Q = default
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q
obtain ⟨x, h2⟩ := exists_smul_eq G P default
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q
Mathlib.GroupTheory.Sylow.746_0.KwMUNfT2GXiDwTx
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q : Sylow p G x✝ : G h1 : x✝ • P = Q x : G h2 : x • P = default ⊢ Q = default
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default
rw [Sylow.smul_eq_of_normal] at h1 h2
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default
Mathlib.GroupTheory.Sylow.746_0.KwMUNfT2GXiDwTx
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G)
Mathlib_GroupTheory_Sylow
case intro.intro G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P Q : Sylow p G x✝ : G h1 : P = Q x : G h2 : P = default ⊢ Q = default
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2
rw [← h1, ← h2]
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2
Mathlib.GroupTheory.Sylow.746_0.KwMUNfT2GXiDwTx
/-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G)
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P ⊢ Characteristic ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by
haveI := Sylow.unique_of_normal P h
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by
Mathlib.GroupTheory.Sylow.760_0.KwMUNfT2GXiDwTx
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Unique (Sylow p G) ⊢ Characteristic ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h
rw [characteristic_iff_map_eq]
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h
Mathlib.GroupTheory.Sylow.760_0.KwMUNfT2GXiDwTx
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Unique (Sylow p G) ⊢ ∀ (ϕ : G ≃* G), Subgroup.map (MulEquiv.toMonoidHom ϕ) ↑P = ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq]
intro Φ
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq]
Mathlib.GroupTheory.Sylow.760_0.KwMUNfT2GXiDwTx
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Unique (Sylow p G) Φ : G ≃* G ⊢ Subgroup.map (MulEquiv.toMonoidHom Φ) ↑P = ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ
show (Φ • P).toSubgroup = P.toSubgroup
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ
Mathlib.GroupTheory.Sylow.760_0.KwMUNfT2GXiDwTx
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Unique (Sylow p G) Φ : G ≃* G ⊢ ↑(Φ • P) = ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup
congr
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup
Mathlib.GroupTheory.Sylow.760_0.KwMUNfT2GXiDwTx
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic
Mathlib_GroupTheory_Sylow
case e_self G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G h : Normal ↑P this : Unique (Sylow p G) Φ : G ≃* G ⊢ Φ • P = P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr
simp [eq_iff_true_of_subsingleton]
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr
Mathlib.GroupTheory.Sylow.760_0.KwMUNfT2GXiDwTx
theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G hn : Normal (normalizer ↑P) ⊢ Normal ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by
rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem]
theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by
Mathlib.GroupTheory.Sylow.772_0.KwMUNfT2GXiDwTx
theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G ⊢ normalizer (normalizer ↑P) = normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by
have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer))
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by
Mathlib.GroupTheory.Sylow.777_0.KwMUNfT2GXiDwTx
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G this : Normal (normalizer ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P)))) → Normal ↑(Sylow.subtype P (_ : ↑P ≤ normalizer (normalizer ↑P))) ⊢ normalizer (normalizer ↑P) = normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer))
simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer))
Mathlib.GroupTheory.Sylow.777_0.KwMUNfT2GXiDwTx
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G this : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤ ⊢ normalizer (normalizer ↑P) = normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this
rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial]
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this
Mathlib.GroupTheory.Sylow.777_0.KwMUNfT2GXiDwTx
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝² : Group G p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G this : True → subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P)) = ⊤ ⊢ Subgroup.map (Subgroup.subtype (normalizer (normalizer ↑P))) (subgroupOf (normalizer ↑P) (normalizer (normalizer ↑P))) = normalizer ↑P
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial]
exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _)))
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial]
Mathlib.GroupTheory.Sylow.777_0.KwMUNfT2GXiDwTx
@[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G ⊢ normalizer ↑P = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by
rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩)
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by
Mathlib.GroupTheory.Sylow.788_0.KwMUNfT2GXiDwTx
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
case inl G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G heq : normalizer ↑P = ⊤ ⊢ normalizer ↑P = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) ·
exact heq
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) ·
Mathlib.GroupTheory.Sylow.788_0.KwMUNfT2GXiDwTx
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K ⊢ normalizer ↑P = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq ·
haveI := hnc _ hK
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq ·
Mathlib.GroupTheory.Sylow.788_0.KwMUNfT2GXiDwTx
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K this : Normal K ⊢ normalizer ↑P = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK
have hPK : ↑P ≤ K := le_trans le_normalizer hNK
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK
Mathlib.GroupTheory.Sylow.788_0.KwMUNfT2GXiDwTx
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K this : Normal K hPK : ↑P ≤ K ⊢ normalizer ↑P = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK
refine' (hK.1 _).elim
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK
Mathlib.GroupTheory.Sylow.788_0.KwMUNfT2GXiDwTx
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
case inr.intro.intro G : Type u α : Type v β : Type w inst✝³ : Group G inst✝² : Finite G hnc : ∀ (H : Subgroup G), IsCoatom H → Normal H p : ℕ inst✝¹ : Fact (Nat.Prime p) inst✝ : Finite (Sylow p G) P : Sylow p G K : Subgroup G hK : IsCoatom K hNK : normalizer ↑P ≤ K this : Normal K hPK : ↑P ≤ K ⊢ K = ⊤
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim
rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim
Mathlib.GroupTheory.Sylow.788_0.KwMUNfT2GXiDwTx
theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ⊢ ((p : { x // x ∈ (Fintype.card G).primeFactors }) → (P : Sylow (↑p) G) → ↥↑P) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by
set ps := (Fintype.card G).primeFactors
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Fintype.card G).primeFactors ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → ↥↑P) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p
let P : ∀ p, Sylow p G := default
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Fintype.card G).primeFactors P : (p : ℕ) → Sylow p G := default ⊢ ((p : { x // x ∈ ps }) → (P : Sylow (↑p) G) → ↥↑P) ≃* G
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default
have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hp₂' := Fact.mk (Nat.prime_of_mem_primeFactors hp₂) have hne' : p₁ ≠ p₂ := by simpa using hne apply Subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂)) apply IsPGroup.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).isPGroup' (P p₂).isPGroup'
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Fintype.card G).primeFactors P : (p : ℕ) → Sylow p G := default ⊢ _root_.Pairwise fun p₁ p₂ => ∀ (x y : G), x ∈ P ↑p₁ → y ∈ P ↑p₂ → Commute x y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by
rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Fintype.card G).primeFactors P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne
haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Fintype.card G).primeFactors P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁)
haveI hp₂' := Fact.mk (Nat.prime_of_mem_primeFactors hp₂)
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁)
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow
case mk.mk G : Type u α : Type v β : Type w inst✝¹ : Group G inst✝ : Fintype G hn : ∀ {p : ℕ} [inst : Fact (Nat.Prime p)] (P : Sylow p G), Normal ↑P ps : Finset ℕ := (Fintype.card G).primeFactors P : (p : ℕ) → Sylow p G := default p₁ : ℕ hp₁ : p₁ ∈ ps p₂ : ℕ hp₂ : p₂ ∈ ps hne : { val := p₁, property := hp₁ } ≠ { val := p₂, property := hp₂ } hp₁' : Fact (Nat.Prime p₁) hp₂' : Fact (Nat.Prime p₂) ⊢ ∀ (x y : G), x ∈ P ↑{ val := p₁, property := hp₁ } → y ∈ P ↑{ val := p₂, property := hp₂ } → Commute x y
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import Mathlib.Data.Nat.Factorization.Basic import Mathlib.Data.SetLike.Fintype import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.GroupTheory.PGroup import Mathlib.GroupTheory.NoncommPiCoprod import Mathlib.Order.Atoms.Finite #align_import group_theory.sylow from "leanprover-community/mathlib"@"4be589053caf347b899a494da75410deb55fb3ef" /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `Sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `IsPGroup.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `Sylow.card_eq_multiplicity`: The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modEq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open Fintype MulAction Subgroup section InfiniteSylow variable (p : ℕ) (G : Type*) [Group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure Sylow extends Subgroup G where isPGroup' : IsPGroup p toSubgroup is_maximal' : ∀ {Q : Subgroup G}, IsPGroup p Q → toSubgroup ≤ Q → Q = toSubgroup #align sylow Sylow variable {p} {G} namespace Sylow attribute [coe] Sylow.toSubgroup --Porting note: Changed to `CoeOut` instance : CoeOut (Sylow p G) (Subgroup G) := ⟨Sylow.toSubgroup⟩ -- Porting note: syntactic tautology -- @[simp] -- theorem toSubgroup_eq_coe {P : Sylow p G} : P.toSubgroup = ↑P := -- rfl #noalign sylow.to_subgroup_eq_coe @[ext] theorem ext {P Q : Sylow p G} (h : (P : Subgroup G) = Q) : P = Q := by cases P; cases Q; congr #align sylow.ext Sylow.ext theorem ext_iff {P Q : Sylow p G} : P = Q ↔ (P : Subgroup G) = Q := ⟨congr_arg _, ext⟩ #align sylow.ext_iff Sylow.ext_iff instance : SetLike (Sylow p G) G where coe := (↑) coe_injective' _ _ h := ext (SetLike.coe_injective h) instance : SubgroupClass (Sylow p G) G where mul_mem := Subgroup.mul_mem _ one_mem _ := Subgroup.one_mem _ inv_mem := Subgroup.inv_mem _ variable (P : Sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mulActionLeft {α : Type*} [MulAction G α] : MulAction P α := inferInstanceAs (MulAction (P : Subgroup G) α) #align sylow.mul_action_left Sylow.mulActionLeft variable {K : Type*} [Group K] (ϕ : K →* G) {N : Subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : Sylow p K := { P.1.comap ϕ with isPGroup' := P.2.comap_of_ker_isPGroup ϕ hϕ is_maximal' := fun {Q} hQ hle => by show Q = P.1.comap ϕ rw [← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle))] exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm } #align sylow.comap_of_ker_is_p_group Sylow.comapOfKerIsPGroup @[simp] theorem coe_comapOfKerIsPGroup (hϕ : IsPGroup p ϕ.ker) (h : ↑P ≤ ϕ.range) : (P.comapOfKerIsPGroup ϕ hϕ h : Subgroup K) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_ker_is_p_group Sylow.coe_comapOfKerIsPGroup /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : Sylow p K := P.comapOfKerIsPGroup ϕ (IsPGroup.ker_isPGroup_of_injective hϕ) h #align sylow.comap_of_injective Sylow.comapOfInjective @[simp] theorem coe_comapOfInjective (hϕ : Function.Injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comapOfInjective ϕ hϕ h) = Subgroup.comap ϕ ↑P := rfl #align sylow.coe_comap_of_injective Sylow.coe_comapOfInjective /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ protected def subtype (h : ↑P ≤ N) : Sylow p N := P.comapOfInjective N.subtype Subtype.coe_injective (by rwa [subtype_range]) #align sylow.subtype Sylow.subtype @[simp] theorem coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroupOf (↑P) N := rfl #align sylow.coe_subtype Sylow.coe_subtype theorem subtype_injective {P Q : Sylow p G} {hP : ↑P ≤ N} {hQ : ↑Q ≤ N} (h : P.subtype hP = Q.subtype hQ) : P = Q := by rw [SetLike.ext_iff] at h ⊢ exact fun g => ⟨fun hg => (h ⟨g, hP hg⟩).mp hg, fun hg => (h ⟨g, hQ hg⟩).mpr hg⟩ #align sylow.subtype_injective Sylow.subtype_injective end Sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ theorem IsPGroup.exists_le_sylow {P : Subgroup G} (hP : IsPGroup p P) : ∃ Q : Sylow p G, P ≤ Q := Exists.elim (zorn_nonempty_partialOrder₀ { Q : Subgroup G | IsPGroup p Q } (fun c hc1 hc2 Q hQ => ⟨{ carrier := ⋃ R : c, R one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩ inv_mem' := fun {g} ⟨_, ⟨R, rfl⟩, hg⟩ => ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩ mul_mem' := fun {g} h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩ => (hc2.total R.2 S.2).elim (fun T => ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) fun T => ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩ }, fun ⟨g, _, ⟨S, rfl⟩, hg⟩ => by refine' Exists.imp (fun k hk => _) (hc1 S.2 ⟨g, hg⟩) rwa [Subtype.ext_iff, coe_pow] at hk ⊢, fun M hM g hg => ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) fun {Q} ⟨hQ1, hQ2, hQ3⟩ => ⟨⟨Q, hQ1, hQ3 _⟩, hQ2⟩ #align is_p_group.exists_le_sylow IsPGroup.exists_le_sylow instance Sylow.nonempty : Nonempty (Sylow p G) := nonempty_of_exists IsPGroup.of_bot.exists_le_sylow #align sylow.nonempty Sylow.nonempty noncomputable instance Sylow.inhabited : Inhabited (Sylow p G) := Classical.inhabited_of_nonempty Sylow.nonempty #align sylow.inhabited Sylow.inhabited theorem Sylow.exists_comap_eq_of_ker_isPGroup {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : IsPGroup p f.ker) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := Exists.imp (fun Q hQ => P.3 (Q.2.comap_of_ker_isPGroup f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow #align sylow.exists_comap_eq_of_ker_is_p_group Sylow.exists_comap_eq_of_ker_isPGroup theorem Sylow.exists_comap_eq_of_injective {H : Type*} [Group H] (P : Sylow p H) {f : H →* G} (hf : Function.Injective f) : ∃ Q : Sylow p G, (Q : Subgroup G).comap f = P := P.exists_comap_eq_of_ker_isPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.exists_comap_eq_of_injective Sylow.exists_comap_eq_of_injective theorem Sylow.exists_comap_subtype_eq {H : Subgroup G} (P : Sylow p H) : ∃ Q : Sylow p G, (Q : Subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective Subtype.coe_injective #align sylow.exists_comap_subtype_eq Sylow.exists_comap_subtype_eq /-- If the kernel of `f : H →* G` is a `p`-group, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfKerIsPGroup {H : Type*} [Group H] {f : H →* G} (hf : IsPGroup p f.ker) [Fintype (Sylow p G)] : Fintype (Sylow p H) := let h_exists := fun P : Sylow p H => P.exists_comap_eq_of_ker_isPGroup hf let g : Sylow p H → Sylow p G := fun P => Classical.choose (h_exists P) have hg : ∀ P : Sylow p H, (g P).1.comap f = P := fun P => Classical.choose_spec (h_exists P) Fintype.ofInjective g fun P Q h => Sylow.ext (by rw [← hg, h]; exact (h_exists Q).choose_spec) #align sylow.fintype_of_ker_is_p_group Sylow.fintypeOfKerIsPGroup /-- If `f : H →* G` is injective, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable def Sylow.fintypeOfInjective {H : Type*} [Group H] {f : H →* G} (hf : Function.Injective f) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfKerIsPGroup (IsPGroup.ker_isPGroup_of_injective hf) #align sylow.fintype_of_injective Sylow.fintypeOfInjective /-- If `H` is a subgroup of `G`, then `Fintype (Sylow p G)` implies `Fintype (Sylow p H)`. -/ noncomputable instance (H : Subgroup G) [Fintype (Sylow p G)] : Fintype (Sylow p H) := Sylow.fintypeOfInjective H.subtype_injective /-- If `H` is a subgroup of `G`, then `Finite (Sylow p G)` implies `Finite (Sylow p H)`. -/ instance (H : Subgroup G) [Finite (Sylow p G)] : Finite (Sylow p H) := by cases nonempty_fintype (Sylow p G) infer_instance open Pointwise /-- `Subgroup.pointwiseMulAction` preserves Sylow subgroups. -/ instance Sylow.pointwiseMulAction {α : Type*} [Group α] [MulDistribMulAction α G] : MulAction α (Sylow p G) where smul g P := ⟨(g • P.toSubgroup : Subgroup G), P.2.map _, fun {Q} hQ hS => inv_smul_eq_iff.mp (P.3 (hQ.map _) fun s hs => (congr_arg (· ∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs))))⟩ one_smul P := Sylow.ext (one_smul α P.toSubgroup) mul_smul g h P := Sylow.ext (mul_smul g h P.toSubgroup) #align sylow.pointwise_mul_action Sylow.pointwiseMulAction theorem Sylow.pointwise_smul_def {α : Type*} [Group α] [MulDistribMulAction α G] {g : α} {P : Sylow p G} : ↑(g • P) = g • (P : Subgroup G) := rfl #align sylow.pointwise_smul_def Sylow.pointwise_smul_def instance Sylow.mulAction : MulAction G (Sylow p G) := compHom _ MulAut.conj #align sylow.mul_action Sylow.mulAction theorem Sylow.smul_def {g : G} {P : Sylow p G} : g • P = MulAut.conj g • P := rfl #align sylow.smul_def Sylow.smul_def theorem Sylow.coe_subgroup_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Subgroup G) := rfl #align sylow.coe_subgroup_smul Sylow.coe_subgroup_smul theorem Sylow.coe_smul {g : G} {P : Sylow p G} : ↑(g • P) = MulAut.conj g • (P : Set G) := rfl #align sylow.coe_smul Sylow.coe_smul theorem Sylow.smul_le {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := Subgroup.conj_smul_le_of_le hP h #align sylow.smul_le Sylow.smul_le theorem Sylow.smul_subtype {P : Sylow p G} {H : Subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (Sylow.smul_le hP h) := Sylow.ext (Subgroup.conj_smul_subgroupOf hP h) #align sylow.smul_subtype Sylow.smul_subtype theorem Sylow.smul_eq_iff_mem_normalizer {g : G} {P : Sylow p G} : g • P = P ↔ g ∈ (P : Subgroup G).normalizer := by rw [eq_comm, SetLike.ext_iff, ← inv_mem_iff (G := G) (H := normalizer P.toSubgroup), mem_normalizer_iff, inv_inv] exact forall_congr' fun h => iff_congr Iff.rfl ⟨fun ⟨a, b, c⟩ => c ▸ by simpa [mul_assoc] using b, fun hh => ⟨(MulAut.conj g)⁻¹ h, hh, MulAut.apply_inv_self G (MulAut.conj g) h⟩⟩ #align sylow.smul_eq_iff_mem_normalizer Sylow.smul_eq_iff_mem_normalizer theorem Sylow.smul_eq_of_normal {g : G} {P : Sylow p G} [h : (P : Subgroup G).Normal] : g • P = P := by simp only [Sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] #align sylow.smul_eq_of_normal Sylow.smul_eq_of_normal theorem Subgroup.sylow_mem_fixedPoints_iff (H : Subgroup G) {P : Sylow p G} : P ∈ fixedPoints H (Sylow p G) ↔ H ≤ (P : Subgroup G).normalizer := by simp_rw [SetLike.le_def, ← Sylow.smul_eq_iff_mem_normalizer]; exact Subtype.forall #align subgroup.sylow_mem_fixed_points_iff Subgroup.sylow_mem_fixedPoints_iff theorem IsPGroup.inf_normalizer_sylow {P : Subgroup G} (hP : IsPGroup p P) (Q : Sylow p G) : P ⊓ (Q : Subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) #align is_p_group.inf_normalizer_sylow IsPGroup.inf_normalizer_sylow theorem IsPGroup.sylow_mem_fixedPoints_iff {P : Subgroup G} (hP : IsPGroup p P) {Q : Sylow p G} : Q ∈ fixedPoints P (Sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixedPoints_iff, ← inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] #align is_p_group.sylow_mem_fixed_points_iff IsPGroup.sylow_mem_fixedPoints_iff /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : Fact p.Prime] [Finite (Sylow p G)] : IsPretransitive G (Sylow p G) := ⟨fun P Q => by classical cases nonempty_fintype (Sylow p G) have H := fun {R : Sylow p G} {S : orbit G P} => calc S ∈ fixedPoints R (orbit G P) ↔ S.1 ∈ fixedPoints R (Sylow p G) := forall_congr' fun a => Subtype.ext_iff _ ↔ R.1 ≤ S := R.2.sylow_mem_fixedPoints_iff _ ↔ S.1.1 = R := ⟨fun h => R.3 S.1.2 h, ge_of_eq⟩ suffices Set.Nonempty (fixedPoints Q (orbit G P)) by exact Exists.elim this fun R hR => by rw [← Sylow.ext (H.mp hR)] exact R.2 apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card refine' fun h => hp.out.not_dvd_one (Nat.modEq_zero_iff_dvd.mp _) calc 1 = card (fixedPoints P (orbit G P)) := ?_ _ ≡ card (orbit G P) [MOD p] := (P.2.card_modEq_card_fixedPoints (orbit G P)).symm _ ≡ 0 [MOD p] := Nat.modEq_zero_iff_dvd.mpr h rw [← Set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P)] refine' card_congr' (congr_arg _ (Eq.symm _)) rw [Set.eq_singleton_iff_unique_mem] exact ⟨H.mpr rfl, fun R h => Subtype.ext (Sylow.ext (H.mp h))⟩⟩ variable (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ theorem card_sylow_modEq_one [Fact p.Prime] [Fintype (Sylow p G)] : card (Sylow p G) ≡ 1 [MOD p] := by refine' Sylow.nonempty.elim fun P : Sylow p G => _ have : fixedPoints P.1 (Sylow p G) = {P} := Set.ext fun Q : Sylow p G => calc Q ∈ fixedPoints P (Sylow p G) ↔ P.1 ≤ Q := P.2.sylow_mem_fixedPoints_iff _ ↔ Q.1 = P.1 := ⟨P.3 Q.2, ge_of_eq⟩ _ ↔ Q ∈ {P} := Sylow.ext_iff.symm.trans Set.mem_singleton_iff.symm have fin : Fintype (fixedPoints P.1 (Sylow p G)) := by rw [this] infer_instance have : card (fixedPoints P.1 (Sylow p G)) = 1 := by simp [this] exact (P.2.card_modEq_card_fixedPoints (Sylow p G)).trans (by rw [this]) #align card_sylow_modeq_one card_sylow_modEq_one theorem not_dvd_card_sylow [hp : Fact p.Prime] [Fintype (Sylow p G)] : ¬p ∣ card (Sylow p G) := fun h => hp.1.ne_one (Nat.dvd_one.mp ((Nat.modEq_iff_dvd' zero_le_one).mp ((Nat.modEq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modEq_one p G)))) #align not_dvd_card_sylow not_dvd_card_sylow variable {p} {G} /-- Sylow subgroups are isomorphic -/ nonrec def Sylow.equivSMul (P : Sylow p G) (g : G) : P ≃* (g • P : Sylow p G) := equivSMul (MulAut.conj g) P.toSubgroup #align sylow.equiv_smul Sylow.equivSMul /-- Sylow subgroups are isomorphic -/ noncomputable def Sylow.equiv [Fact p.Prime] [Finite (Sylow p G)] (P Q : Sylow p G) : P ≃* Q := by rw [← Classical.choose_spec (exists_smul_eq G P Q)] exact P.equivSMul (Classical.choose (exists_smul_eq G P Q)) #align sylow.equiv Sylow.equiv @[simp] theorem Sylow.orbit_eq_top [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : orbit G P = ⊤ := top_le_iff.mp fun Q _ => exists_smul_eq G P Q #align sylow.orbit_eq_top Sylow.orbit_eq_top theorem Sylow.stabilizer_eq_normalizer (P : Sylow p G) : stabilizer G P = (P : Subgroup G).normalizer := by ext; simp [Sylow.smul_eq_iff_mem_normalizer] #align sylow.stabilizer_eq_normalizer Sylow.stabilizer_eq_normalizer theorem Sylow.conj_eq_normalizer_conj_of_mem_centralizer [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (x g : G) (hx : x ∈ centralizer (P : Set G)) (hy : g⁻¹ * x * g ∈ centralizer (P : Set G)) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := by have h1 : ↑P ≤ centralizer (zpowers x : Set G) := by rwa [le_centralizer_iff, zpowers_le] have h2 : ↑(g • P) ≤ centralizer (zpowers x : Set G) := by rw [le_centralizer_iff, zpowers_le] rintro - ⟨z, hz, rfl⟩ specialize hy z hz rwa [← mul_assoc, ← eq_mul_inv_iff_mul_eq, mul_assoc, mul_assoc, mul_assoc, ← mul_assoc, eq_inv_mul_iff_mul_eq, ← mul_assoc, ← mul_assoc] at hy obtain ⟨h, hh⟩ := exists_smul_eq (centralizer (zpowers x : Set G)) ((g • P).subtype h2) (P.subtype h1) simp_rw [Sylow.smul_subtype, Subgroup.smul_def, smul_smul] at hh refine' ⟨h * g, Sylow.smul_eq_iff_mem_normalizer.mp (Sylow.subtype_injective hh), _⟩ rw [← mul_assoc, Commute.right_comm (h.prop x (mem_zpowers x)), mul_inv_rev, inv_mul_cancel_right] #align sylow.conj_eq_normalizer_conj_of_mem_centralizer Sylow.conj_eq_normalizer_conj_of_mem_centralizer theorem Sylow.conj_eq_normalizer_conj_of_mem [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) [_hP : (P : Subgroup G).IsCommutative] (x g : G) (hx : x ∈ P) (hy : g⁻¹ * x * g ∈ P) : ∃ n ∈ (P : Subgroup G).normalizer, g⁻¹ * x * g = n⁻¹ * x * n := P.conj_eq_normalizer_conj_of_mem_centralizer x g (le_centralizer P hx) (le_centralizer P hy) #align sylow.conj_eq_normalizer_conj_of_mem Sylow.conj_eq_normalizer_conj_of_mem /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def Sylow.equivQuotientNormalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Sylow p G ≃ G ⧸ (P : Subgroup G).normalizer := calc Sylow p G ≃ (⊤ : Set (Sylow p G)) := (Equiv.Set.univ (Sylow p G)).symm _ ≃ orbit G P := by rw [P.orbit_eq_top] _ ≃ G ⧸ stabilizer G P := (orbitEquivQuotientStabilizer G P) _ ≃ G ⧸ (P : Subgroup G).normalizer := by rw [P.stabilizer_eq_normalizer] #align sylow.equiv_quotient_normalizer Sylow.equivQuotientNormalizer noncomputable instance [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : Fintype (G ⧸ (P : Subgroup G).normalizer) := ofEquiv (Sylow p G) P.equivQuotientNormalizer theorem card_sylow_eq_card_quotient_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = card (G ⧸ (P : Subgroup G).normalizer) := card_congr P.equivQuotientNormalizer #align card_sylow_eq_card_quotient_normalizer card_sylow_eq_card_quotient_normalizer theorem card_sylow_eq_index_normalizer [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) = (P : Subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : Subgroup G).normalizer.index_eq_card.symm #align card_sylow_eq_index_normalizer card_sylow_eq_index_normalizer theorem card_sylow_dvd_index [Fact p.Prime] [Fintype (Sylow p G)] (P : Sylow p G) : card (Sylow p G) ∣ (P : Subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) #align card_sylow_dvd_index card_sylow_dvd_index theorem not_dvd_index_sylow' [hp : Fact p.Prime] (P : Sylow p G) [(P : Subgroup G).Normal] [fP : FiniteIndex (P : Subgroup G)] : ¬p ∣ (P : Subgroup G).index := by intro h letI : Fintype (G ⧸ (P : Subgroup G)) := (P : Subgroup G).fintypeQuotientOfFiniteIndex rw [index_eq_card (P : Subgroup G)] at h obtain ⟨x, hx⟩ := exists_prime_orderOf_dvd_card (G := G ⧸ (P : Subgroup G)) p h have h := IsPGroup.of_card ((Fintype.card_zpowers.trans hx).trans (pow_one p).symm) let Q := (zpowers x).comap (QuotientGroup.mk' (P : Subgroup G)) have hQ : IsPGroup p Q := by apply h.comap_of_ker_isPGroup rw [QuotientGroup.ker_mk'] exact P.2 replace hp := mt orderOf_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one) rw [← zpowers_eq_bot, ← Ne, ← bot_lt_iff_ne_bot, ← comap_lt_comap_of_surjective (QuotientGroup.mk'_surjective _), MonoidHom.comap_bot, QuotientGroup.ker_mk'] at hp exact hp.ne' (P.3 hQ hp.le) #align not_dvd_index_sylow' not_dvd_index_sylow' theorem not_dvd_index_sylow [hp : Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hP : relindex ↑P (P : Subgroup G).normalizer ≠ 0) : ¬p ∣ (P : Subgroup G).index := by cases nonempty_fintype (Sylow p G) rw [← relindex_mul_index le_normalizer, ← card_sylow_eq_index_normalizer] haveI : (P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer).Normal := Subgroup.normal_in_normalizer haveI : FiniteIndex ↑(P.subtype le_normalizer : Subgroup (P : Subgroup G).normalizer) := ⟨hP⟩ replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G) #align not_dvd_index_sylow not_dvd_index_sylow /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p N) : ((↑P : Subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := by refine' top_le_iff.mp fun g _ => _ obtain ⟨n, hn⟩ := exists_smul_eq N ((MulAut.conjNormal g : MulAut N) • P) P rw [← inv_mul_cancel_left (↑n) g, sup_comm] apply mul_mem_sup (N.inv_mem n.2) rw [Sylow.smul_def, ← mul_smul, ← MulAut.conjNormal_val, ← MulAut.conjNormal.map_mul, Sylow.ext_iff, Sylow.pointwise_smul_def, Subgroup.pointwise_smul_def] at hn refine' fun x => (mem_map_iff_mem (show Function.Injective (MulAut.conj (↑n * g)).toMonoidHom from (MulAut.conj (↑n * g)).injective)).symm.trans _ rw [map_map, ← congr_arg (map N.subtype) hn, map_map] rfl #align sylow.normalizer_sup_eq_top Sylow.normalizer_sup_eq_top /-- **Frattini's Argument**: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ theorem Sylow.normalizer_sup_eq_top' {p : ℕ} [Fact p.Prime] {N : Subgroup G} [N.Normal] [Finite (Sylow p N)] (P : Sylow p G) (hP : ↑P ≤ N) : (P : Subgroup G).normalizer ⊔ N = ⊤ := by rw [← Sylow.normalizer_sup_eq_top (P.subtype hP), P.coe_subtype, subgroupOf_map_subtype, inf_of_le_left hP] #align sylow.normalizer_sup_eq_top' Sylow.normalizer_sup_eq_top' end InfiniteSylow open Equiv Equiv.Perm Finset Function List QuotientGroup open BigOperators universe u v w variable {G : Type u} {α : Type v} {β : Type w} [Group G] attribute [local instance 10] Subtype.fintype setFintype Classical.propDecidable theorem QuotientGroup.card_preimage_mk [Fintype G] (s : Subgroup G) (t : Set (G ⧸ s)) : Fintype.card (QuotientGroup.mk ⁻¹' t) = Fintype.card s * Fintype.card t := by rw [← Fintype.card_prod, Fintype.card_congr (preimageMkEquivSubgroupProdSet _ _)] #align quotient_group.card_preimage_mk QuotientGroup.card_preimage_mk namespace Sylow theorem mem_fixedPoints_mul_left_cosets_iff_mem_normalizer {H : Subgroup G} [Finite (H : Set G)] {x : G} : (x : G ⧸ H) ∈ MulAction.fixedPoints H (G ⧸ H) ↔ x ∈ normalizer H := ⟨fun hx => have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x := mem_fixedPoints'.1 hx _ (inv_mem_iff (G := G)).1 (mem_normalizer_fintype fun n (hn : n ∈ H) => have : (n⁻¹ * x)⁻¹ * x ∈ H := QuotientGroup.eq.1 (ha ⟨⟨n⁻¹, inv_mem hn⟩, rfl⟩) show _ ∈ H by rw [mul_inv_rev, inv_inv] at this convert this rw [inv_inv]), fun hx : ∀ n : G, n ∈ H ↔ x * n * x⁻¹ ∈ H => mem_fixedPoints'.2 fun y => Quotient.inductionOn' y fun y hy => QuotientGroup.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy have hb₂ : (b * x)⁻¹ * y ∈ H := QuotientGroup.eq.1 hb₂ (inv_mem_iff (G := G)).1 <| (hx _).2 <| (mul_mem_cancel_left (inv_mem hb₁)).1 <| by rw [hx] at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ #align sylow.mem_fixed_points_mul_left_cosets_iff_mem_normalizer Sylow.mem_fixedPoints_mul_left_cosets_iff_mem_normalizer /-- The fixed points of the action of `H` on its cosets correspond to `normalizer H / H`. -/ def fixedPointsMulLeftCosetsEquivQuotient (H : Subgroup G) [Finite (H : Set G)] : MulAction.fixedPoints H (G ⧸ H) ≃ normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H := @subtypeQuotientEquivQuotientSubtype G (normalizer H : Set G) (_) (_) (MulAction.fixedPoints H (G ⧸ H)) (fun a => (@mem_fixedPoints_mul_left_cosets_iff_mem_normalizer _ _ _ ‹_› _).symm) (by intros dsimp only [instHasEquiv] rw [leftRel_apply (α := normalizer H), leftRel_apply] rfl) #align sylow.fixed_points_mul_left_cosets_equiv_quotient Sylow.fixedPointsMulLeftCosetsEquivQuotient /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ theorem card_quotient_normalizer_modEq_card_quotient [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : Fintype.card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) ≡ card (G ⧸ H) [MOD p] := by rw [← Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H)] exact ((IsPGroup.of_card hH).card_modEq_card_fixedPoints _).symm #align sylow.card_quotient_normalizer_modeq_card_quotient Sylow.card_quotient_normalizer_modEq_card_quotient /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ theorem card_normalizer_modEq_card [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] {H : Subgroup G} (hH : Fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := by have : H.subgroupOf (normalizer H) ≃ H := (subgroupOfEquivOfLe le_normalizer).toEquiv rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (H.subgroupOf (normalizer H)), Fintype.card_congr this, hH, pow_succ] exact (card_quotient_normalizer_modEq_card_quotient hH).mul_right' _ #align sylow.card_normalizer_modeq_card Sylow.card_normalizer_modEq_card /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ theorem prime_dvd_card_quotient_normalizer [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ Subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) % p := hcard ▸ (card_quotient_normalizer_modEq_card_quotient hH).symm Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) #align sylow.prime_dvd_card_quotient_normalizer Sylow.prime_dvd_card_quotient_normalizer /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ theorem prime_pow_dvd_card_normalizer [Fintype G] {p : ℕ} {n : ℕ} [_hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := Nat.modEq_zero_iff_dvd.1 ((card_normalizer_modEq_card hH).trans hdvd.modEq_zero_nat) #align sylow.prime_pow_dvd_card_normalizer Sylow.prime_pow_dvd_card_normalizer /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [Fintype G] {p : ℕ} {n : ℕ} [hp : Fact p.Prime] (hdvd : p ^ (n + 1) ∣ card G) {H : Subgroup G} (hH : Fintype.card H = p ^ n) : ∃ K : Subgroup G, Fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd have hcard : card (G ⧸ H) = s * p := (mul_left_inj' (show card H ≠ 0 from Fintype.card_ne_zero)).1 (by rw [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]) have hm : s * p % p = card (normalizer H ⧸ H.subgroupOf H.normalizer) % p := Fintype.card_congr (fixedPointsMulLeftCosetsEquivQuotient H) ▸ hcard ▸ (IsPGroup.of_card hH).card_modEq_card_fixedPoints _ have hm' : p ∣ card (normalizer H ⧸ H.subgroupOf H.normalizer) := Nat.dvd_of_mod_eq_zero (by rwa [Nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) let ⟨x, hx⟩ := @exists_prime_orderOf_dvd_card _ (QuotientGroup.Quotient.group _) _ _ hp hm' have hequiv : H ≃ H.subgroupOf H.normalizer := (subgroupOfEquivOfLe le_normalizer).symm.toEquiv ⟨Subgroup.map (normalizer H).subtype (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x)), by show Fintype.card (Subgroup.map H.normalizer.subtype (comap (mk' (H.subgroupOf H.normalizer)) (Subgroup.zpowers x))) = p ^ (n + 1) suffices Fintype.card (Subtype.val '' (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer)) = p ^ (n + 1) by convert this using 2 rw [Set.card_image_of_injective (Subgroup.comap (mk' (H.subgroupOf H.normalizer)) (zpowers x) : Set H.normalizer) Subtype.val_injective, pow_succ', ← hH, Fintype.card_congr hequiv, ← hx, ← Fintype.card_zpowers, ← Fintype.card_prod] exact @Fintype.card_congr _ _ (_) (_) (preimageMkEquivSubgroupProdSet (H.subgroupOf H.normalizer) (zpowers x)), by intro y hy simp only [exists_prop, Subgroup.coeSubtype, mk'_apply, Subgroup.mem_map, Subgroup.mem_comap] refine' ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩ dsimp only rw [zpow_zero, eq_comm, QuotientGroup.eq_one_iff] simpa using hy⟩ #align sylow.exists_subgroup_card_pow_succ Sylow.exists_subgroup_card_pow_succ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [Fintype G] (p : ℕ) : ∀ {n m : ℕ} [_hp : Fact p.Prime] (_hdvd : p ^ m ∣ card G) (H : Subgroup G) (_hH : card H = p ^ n) (_hnm : n ≤ m), ∃ K : Subgroup G, card K = p ^ m ∧ H ≤ K | n, m => fun {hdvd H hH hnm} => (lt_or_eq_of_le hnm).elim (fun hnm : n < m => have h0m : 0 < m := lt_of_le_of_lt n.zero_le hnm have _wf : m - 1 < m := Nat.sub_lt h0m zero_lt_one have hnm1 : n ≤ m - 1 := le_tsub_of_add_le_right hnm let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le _ _ n (m - 1) _ (Nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 have hdvd' : p ^ (m - 1 + 1) ∣ card G := by rwa [tsub_add_cancel_of_le h0m.nat_succ_le] let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ _ hdvd' K hK.1 ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) fun hnm : n = m => ⟨H, by simp [hH, hnm]⟩ #align sylow.exists_subgroup_card_pow_prime_le Sylow.exists_subgroup_card_pow_prime_le /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [Fintype G] (p : ℕ) {n : ℕ} [Fact p.Prime] (hdvd : p ^ n ∣ card G) : ∃ K : Subgroup G, Fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (card_bot.trans (by simp)) n.zero_le ⟨K, hK.1⟩ #align sylow.exists_subgroup_card_pow_prime Sylow.exists_subgroup_card_pow_prime /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group of size at least `p ^ n` then there is a subgroup of cardinality `p ^ n`. -/ lemma exists_subgroup_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) (hn : p ^ n ≤ Nat.card G) : ∃ H : Subgroup G, Nat.card H = p ^ n := by have : Fact p.Prime := ⟨hp⟩ have : Finite G := Nat.finite_of_card_ne_zero $ by linarith [Nat.one_le_pow n p hp.pos] cases nonempty_fintype G obtain ⟨m, hm⟩ := h.exists_card_eq simp_rw [Nat.card_eq_fintype_card] at hm hn ⊢ refine exists_subgroup_card_pow_prime _ ?_ rw [hm] at hn ⊢ exact pow_dvd_pow _ $ (pow_le_pow_iff_right hp.one_lt).1 hn /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `p ^ n` then there is a subgroup of `H` of cardinality `p ^ n`. -/ lemma exists_subgroup_le_card_pow_prime_of_le_card {n p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hn : p ^ n ≤ Nat.card H) : ∃ H' ≤ H, Nat.card H' = p ^ n := by obtain ⟨H', H'card⟩ := exists_subgroup_card_pow_prime_of_le_card hp (h.to_subgroup H) hn refine ⟨H'.map H.subtype, map_subtype_le _, ?_⟩ rw [← H'card] let e : H' ≃* H'.map H.subtype := H'.equivMapOfInjective (Subgroup.subtype H) H.subtype_injective exact Nat.card_congr e.symm.toEquiv /-- A special case of **Sylow's first theorem**. If `G` is a `p`-group and `H` a subgroup of size at least `k` then there is a subgroup of `H` of cardinality between `k / p` and `k`. -/ lemma exists_subgroup_le_card_le {k p : ℕ} (hp : p.Prime) (h : IsPGroup p G) {H : Subgroup G} (hk : k ≤ Nat.card H) (hk₀ : k ≠ 0) : ∃ H' ≤ H, Nat.card H' ≤ k ∧ k < p * Nat.card H' := by obtain ⟨m, hmk, hkm⟩ : ∃ s, p ^ s ≤ k ∧ k < p ^ (s + 1) := exists_nat_pow_near (Nat.one_le_iff_ne_zero.2 hk₀) hp.one_lt obtain ⟨H', H'H, H'card⟩ := exists_subgroup_le_card_pow_prime_of_le_card hp h (hmk.trans hk) refine ⟨H', H'H, ?_⟩ simpa only [pow_succ, H'card] using And.intro hmk hkm theorem pow_dvd_card_of_pow_dvd_card [Fintype G] {p n : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) #align sylow.pow_dvd_card_of_pow_dvd_card Sylow.pow_dvd_card_of_pow_dvd_card theorem dvd_card_of_dvd_card [Fintype G] {p : ℕ} [Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : p ∣ card P := by rw [← pow_one p] at hdvd have key := P.pow_dvd_card_of_pow_dvd_card hdvd rwa [pow_one] at key #align sylow.dvd_card_of_dvd_card Sylow.dvd_card_of_dvd_card /-- Sylow subgroups are Hall subgroups. -/ theorem card_coprime_index [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : (card P).Coprime (index (P : Subgroup G)) := let ⟨_n, hn⟩ := IsPGroup.iff_card.mp P.2 hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_finite)).symm #align sylow.card_coprime_index Sylow.card_coprime_index theorem ne_bot_of_dvd_card [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) (hdvd : p ∣ card G) : (P : Subgroup G) ≠ ⊥ := by refine' fun h => hp.out.not_dvd_one _ have key : p ∣ card (P : Subgroup G) := P.dvd_card_of_dvd_card hdvd rwa [h, card_bot] at key #align sylow.ne_bot_of_dvd_card Sylow.ne_bot_of_dvd_card /-- The cardinality of a Sylow subgroup is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ theorem card_eq_multiplicity [Fintype G] {p : ℕ} [hp : Fact p.Prime] (P : Sylow p G) : card P = p ^ Nat.factorization (card G) p := by obtain ⟨n, heq : card P = _⟩ := IsPGroup.iff_card.mp P.isPGroup' refine' Nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (Nat.ord_proj_dvd _ p)) rw [heq, ← hp.out.pow_dvd_iff_dvd_ord_proj (show card G ≠ 0 from card_ne_zero), ← heq] exact P.1.card_subgroup_dvd_card #align sylow.card_eq_multiplicity Sylow.card_eq_multiplicity /-- A subgroup with cardinality `p ^ n` is a Sylow subgroup where `n` is the multiplicity of `p` in the group order. -/ def ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : Sylow p G where toSubgroup := H isPGroup' := IsPGroup.of_card card_eq is_maximal' := by obtain ⟨P, hHP⟩ := (IsPGroup.of_card card_eq).exists_le_sylow exact SetLike.ext' (Set.eq_of_subset_of_card_le hHP (P.card_eq_multiplicity.trans card_eq.symm).le).symm ▸ P.3 #align sylow.of_card Sylow.ofCard @[simp, norm_cast] theorem coe_ofCard [Fintype G] {p : ℕ} [Fact p.Prime] (H : Subgroup G) [Fintype H] (card_eq : card H = p ^ (card G).factorization p) : ↑(ofCard H card_eq) = H := rfl #align sylow.coe_of_card Sylow.coe_ofCard /-- If `G` has a normal Sylow `p`-subgroup, then it is the only Sylow `p`-subgroup. -/ noncomputable def unique_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : Unique (Sylow p G) := by refine { uniq := fun Q ↦ ?_ } obtain ⟨x, h1⟩ := exists_smul_eq G P Q obtain ⟨x, h2⟩ := exists_smul_eq G P default rw [Sylow.smul_eq_of_normal] at h1 h2 rw [← h1, ← h2] #align sylow.subsingleton_of_normal Sylow.unique_of_normal section Pointwise open Pointwise theorem characteristic_of_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (h : (P : Subgroup G).Normal) : (P : Subgroup G).Characteristic := by haveI := Sylow.unique_of_normal P h rw [characteristic_iff_map_eq] intro Φ show (Φ • P).toSubgroup = P.toSubgroup congr simp [eq_iff_true_of_subsingleton] #align sylow.characteristic_of_normal Sylow.characteristic_of_normal end Pointwise theorem normal_of_normalizer_normal {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) (hn : (↑P : Subgroup G).normalizer.Normal) : (↑P : Subgroup G).Normal := by rw [← normalizer_eq_top, ← normalizer_sup_eq_top' P le_normalizer, sup_idem] #align sylow.normal_of_normalizer_normal Sylow.normal_of_normalizer_normal @[simp] theorem normalizer_normalizer {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).normalizer.normalizer = (↑P : Subgroup G).normalizer := by have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)) simp_rw [← normalizer_eq_top, Sylow.coe_subtype, ← subgroupOf_normalizer_eq le_normalizer, ← subgroupOf_normalizer_eq le_rfl, subgroupOf_self] at this rw [← subtype_range (P : Subgroup G).normalizer.normalizer, MonoidHom.range_eq_map, ← this trivial] exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))) #align sylow.normalizer_normalizer Sylow.normalizer_normalizer theorem normal_of_all_max_subgroups_normal [Finite G] (hnc : ∀ H : Subgroup G, IsCoatom H → H.Normal) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp (by rcases eq_top_or_exists_le_coatom (↑P : Subgroup G).normalizer with (heq | ⟨K, hK, hNK⟩) · exact heq · haveI := hnc _ hK have hPK : ↑P ≤ K := le_trans le_normalizer hNK refine' (hK.1 _).elim rw [← sup_of_le_right hNK, P.normalizer_sup_eq_top' hPK]) #align sylow.normal_of_all_max_subgroups_normal Sylow.normal_of_all_max_subgroups_normal theorem normal_of_normalizerCondition (hnc : NormalizerCondition G) {p : ℕ} [Fact p.Prime] [Finite (Sylow p G)] (P : Sylow p G) : (↑P : Subgroup G).Normal := normalizer_eq_top.mp <| normalizerCondition_iff_only_full_group_self_normalizing.mp hnc _ <| normalizer_normalizer _ #align sylow.normal_of_normalizer_condition Sylow.normal_of_normalizerCondition open BigOperators /-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hp₂' := Fact.mk (Nat.prime_of_mem_primeFactors hp₂)
have hne' : p₁ ≠ p₂ := by simpa using hne
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G := by set ps := (Fintype.card G).primeFactors -- “The” Sylow subgroup for p let P : ∀ p, Sylow p G := default have hcomm : Pairwise fun p₁ p₂ : ps => ∀ x y : G, x ∈ P p₁ → y ∈ P p₂ → Commute x y := by rintro ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne haveI hp₁' := Fact.mk (Nat.prime_of_mem_primeFactors hp₁) haveI hp₂' := Fact.mk (Nat.prime_of_mem_primeFactors hp₂)
Mathlib.GroupTheory.Sylow.809_0.KwMUNfT2GXiDwTx
/-- If all its Sylow subgroups are normal, then a finite group is isomorphic to the direct product of these Sylow subgroups. -/ noncomputable def directProductOfNormal [Fintype G] (hn : ∀ {p : ℕ} [Fact p.Prime] (P : Sylow p G), (↑P : Subgroup G).Normal) : (∀ p : (card G).primeFactors, ∀ P : Sylow p G, (↑P : Subgroup G)) ≃* G
Mathlib_GroupTheory_Sylow